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Abstract: Consumption of raw or undercooked meat is responsible for 2.3 million foodborne illnesses
yearly in Europe alone. The greater part of this illness is associated with beef meat, which is used
in many traditional dishes across the world. Beneath the low microbiological quality of beef lies
(pathogenic) bacterial contamination during primary production as well as inadequate hygiene
operations along the farm-to-fork chain. Therefore, this study seeks to understand the microbiological
quality pathway of minced beef processed for fast-food restaurants over three years using an artificial
neural network (ANN) system. This simultaneous approach provided adequate precision for the
prediction of a microbiological profile of minced beef meat as one of the easily spoiled products with a
short shelf life. For the first time, an ANN model was developed to predict the microbiological profile
of beef minced meat in fast-food restaurants according to meat and storage temperatures, butcher
identification, and working shift. Predictive challenges were identified and included standardized
microbiological analyses that are recommended for freshly processed meat. The obtained predictive
models (an overall r2 of 0.867 during the training cycle) can serve as a source of data and help for the
scientific community and food safety authorities to identify specific monitoring and research needs.

Keywords: beef minced meat; microbiological analysis; ISO standards; prediction models; meat
microbiology

1. Introduction

The presence of microbes in food is a major issue in the food industry. This problem
arises as a global issue because it poses a constant threat to health. For example, foodborne
illnesses related to food-producing animals affect millions of people every year and cause
approximately 5000 deaths [1]. In order to solve this problem, it is necessary to constantly
develop procedures that would minimize the occurrence and survival of microbiological
contamination in food and food preparation systems. This problem is reflected in the fact
that a large number of microorganisms can survive the effects of chemicals allowed for use
in food, as well as physicochemical processes currently used in the industry [2]. Food safety
depends on appropriate state regulations, but also requires the proper application of legal
regulations, such as constant training of people involved in food manipulation. Basic rules
of food hygiene are essential, but they are still missing in many steps of food processing.

Meat is an easily spoiled product with a short shelf life [3]. Some very popular dishes
across the world are meat-based, while a minced version of meat is essential for making
traditional foods in some parts of Europe [2]. Ground or minced meat, like all other raw
meat products, is a water-based substrate, with approximately 99% water. Additionally, it
consists of an acceptable pH value and nutritional composition which can cause microbial
proliferation and development contamination [4]. After initial contamination, microbial
growth is rapid, and the number of viable cells is exponentially increased in a short time [5].
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Many factors can affect meat quality, such as storage temperature, moisture, oxygen
availability, packaging, microbiological contamination, etc. [6]. Several research groups
have reported that temperature represents the most influential factor for meat quality and
safety. More precisely, inadequate storage, manufacturing, and transport temperature, as
well as variability in meat temperature profile, will increase the shelf life of meat [7]. It can
be summarized that storage temperature, and consequently meat temperature, is directly
connected to the risk of foodborne diseases [8]. Besides the fact that muscle from healthy
animals is sterile, poor hygiene practices during slaughtering and cutting can change the
microbiological profile of processed meat [9]. Microbial contamination exists primarily on
the meat’s surface, which is exposed to external conditions but also can be spread to the
entire production process.

The most potent phases for microbial spreading in meat processing are the mincing
and mixing phases [10,11]. The dispersion of microbiological contamination during these
phases is of major concern for quantitative microbiological risk assessment. For example,
eating raw or undercooked minced meat in fast-food restaurants has been reported as the
cause of large outbreaks of salmonellosis and Escherichia coli infection [12–15]. Pathogens
such as Salmonella spp. and E. coli may be present in the gastrointestinal tract of cattle [16],
which can endanger the microbiological quality of meat after the slaughtering process [17].
As one of the faecal indicators, E. coli represents an illness-causing agent, and much
effort has been invested in risk assessment of the public health impact of this bacterium,
especially of E. coli O157:H7 in ground beef [18]. Chilled raw beef is a major source of
pathogenic E. coli, and it has been supposed that such organisms in the faeces of cattle are
spread to meat during processing steps [19]. Due to this fact, this bacterium is recognized
worldwide as one of the main hygiene criteria in the meat industry [3]. Along with E. coli,
Staphylococcus aureus is also one of the impacts of meat processing. Namely, Mohamed [2]
reported that the presence of S. aureus can be expected as meat contamination, because
this bacterium represents normal flora in humans and its presence in foods indicates
inadequate butcher handling. As one of the bacteria that can grow and produce toxins under
different environmental and nutritional conditions, S. aureus can cause food poisoning
by enterotoxins, while meat and meat products represent frequently incriminated foods
in staphylococcal food poisoning [20]. As two main food safety criteria, Salmonella spp.
and Listeria monocytogenes are recognized for many types of food products and can be
transferred to contaminated raw or undercooked red meats [21,22]. In the last few years,
there has been an increasing trend in reporting outbreaks and sporadic cases associated
with meat and meat products contaminated with these bacteria [22]. Aside from these
specific bacteria, which are monitored in meat and meat products, one of the mainly
followed parameters of a hygienic routine in meat processing is mesophilic and aerobic
bacteria. In many reports, a high level of contamination of meat with this group of bacteria
is an unsatisfactory parameter indicating the need for better hygiene practices during meat
processing, as well as choice and/or raw material improvements [10,11,23,24]. Furthermore,
lactic acid bacteria (LAB) are consequently present as contamination microflora of meat
after the slaughtering process. These bacteria may reach a significant number in packaged
and refrigerated minced meat. Depending on the LAB genera, this bacterial group can be
involved in meat product preservation and development of desirable sensory characteristics
(homofermentative LAB) or cause meat spoilage (in general heterofermentative LAB) [25].
Other, but less monitored, specific spoilage bacteria for red meat and meat products are
Pseudomonas and Clostridium representatives, as well as Enterobacteriaceae, Shewanella
putrefaciens, and Brochothrix thermosphacta [26].

Monitoring of the microbiological profile is very difficult during each step in the
supply chain, although there is adequate standardized microbiological analysis. Obtaining
results requires a lot of time, while the meat is usually transported immediately after
processing to the retail phase. Due to this fact, many meat industry producers are open to
the implementation of intelligent systems that can predict the microbiological quality of
the meat and meat products based on the experimental data collected over time. Using pre-
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dictive microbiologically techniques, meat producers can decrease the cost and time spent
on the microbiological analysis and also have a better picture of microbial contamination,
growth, mortality, and survival of microorganisms [27]. In recent years, many prediction
models have been utilized for a predictive microbiological profile in different scientific
and industrial fields, but using artificial neural network (ANN) modelling is a widely
accepted tool for providing an empirical explanation of microbial behaviour. Moreover,
ANN represents an essential base for handling complex responses with nonlinearities and
interactions between decision variables [28].

Therefore, the formation of a system for long-time monitoring of the microbiolog-
ical quality of beef meat based on the predictive capabilities of the ANN models was
tested, using standardized microbiological analysis, as well as meat temperature, storage
temperature, butcher working shift, and sampling weekday (equally with weekday for
primary production and distribution). Sampling was conducted for three consecutive
years (2019–2021) for the same meat production after the mincing and mixing process. The
obtained experimental data were served for mathematical modelling and determination
of the relative influence of independent variables on the microbiological profile of beef
minced meat.

2. Materials and Methods
2.1. Sampling

The minced meat samples were obtained from a local butcher specializing in beef,
located in Novi Pazar, Republic of Serbia. All processed meat batches were transported at
4 ◦C to the fast-food restaurant in Novi Sad, Republic of Serbia. Samples represent ground
meat without bones that is minced and contains less than 1% salt. Approximately one
hundred grams of minced meat was obtained from each batch immediately after transport
and placed in a sterilized sampling box. The sample collection was conducted for three
consecutive years (2019–2021, January–June, every Monday, Wednesday, and Friday) for
each batch transported to the restaurant after the phase of mincing and mixing.

2.2. Microbiological Analysis

The microbiological profile of minced meat samples was determined following stan-
dard methods presented in Table 1. Although the Rulebook on general and specific food hy-
giene requirements in any phase of food production, processing, and trade in the Republic
of Serbia (Official Gazette RS, No. 72/2010) recommend only two analyses—determination
of aerobic and mesophilic bacteria and Escherichia coli [29]—microbiological analysis in
this study was expanded with the examination indicated in the Guide to Microbiological
Criteria for Food [30] and previous experiences of the butcher. The obtained results were
compared to the allowable values for every type of food. Briefly, all results are presented as
the number of a colony in a gram of samples (log CFU/g), except for the determination
of Salmonella spp. or L. monocytogenes, where the absence of the bacterium is required. All
analyses were performed in five repetitions.

According to the Rulebook, the obtained results can be classified as satisfactory (result
is below m-value), acceptable (result is between m- and M-value), or unsatisfactory (result
is above M-value). The m- and M-value represent defined limit values, minimum and
maximum for each analysis separately, and depend on the type of food. Briefly, to determine
compliance with food safety or hygiene criteria for one batch of food, it is mandatory to
take an adequate number of samples in a few repetitions (e.g., five). If the results of the
microbiological testing are less than or equal to the limit (<m-value), the tested sample can
be evaluated as satisfactory. In the case when the maximum allowed results are between m-
and M-value and all other results are less than or equal to the m-value, the sample can be
defined as acceptable. On the other hand, when one or more results exceed the M-value, a
sample is unsatisfactory. If one or more tested microorganisms are deemed acceptable and
if the results for other tested microorganisms are consistent, then the sample is considered
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acceptable. If one or more results for a particular parameter are assessed as non-compliant,
then the sample is unsatisfactory [30].

Table 1. ISO methods for microbiological analysis.

Microbiological Analysis of Minced Meat Allowable Limit Values
(m- and M-Values) According to the Guide to
Microbiological Criteria for Food (log CFU/g)

Microorganism/Group of
Microorganisms

Method
Ref.

Mesophilic and aerobic
bacteria (MAB) [31] m = 5; M = 6

Escherichia coli [32] m = 2; M = 3

Salmonella spp. [33] nd *

Listeria monocytogenes [34] nd

Staphylococcus aureus [35] m = 2; M = 3

Lactic acid bacteria (LAB) [36] **
* nd—not detected in 25 g of samples; ** the Guide to Microbiological Criteria for Food did not indicate a value for
this parameter.

2.3. Statistical Analysis

As one of the potential solutions for long-time monitoring of microbiological criteria in
food production processes, advanced mathematical tools can be included in the interpreta-
tion of the obtained results. In view of practical application, this type of mathematical tool
can potentially decrease some crucial time-consuming and economic parameters of micro-
biological profiling of food samples, such as the number of samples, frequency of analyses,
etc. Therefore, this study used a mathematical modelling approach to evaluate the obtained
results of microbiological testing. Descriptive statistics were used for the collected data,
while mathematical modelling was performed using STATISTICA 10.0 software (StatSoft
Inc., Tulsa, OK, USA, 2010). The independent variables used for ANN modelling were:
meat temperature, storage temperature, butcher identification (butcher A, B, C, and D), and
sampling weekday (Monday, Wednesday, and Friday)—equally with weekday for primary
production and distribution, while the output variables were the microbiological profile
of beef minced meat. Butchers (meatmen) are permanent employees in the local butcher
located in Novi Pazar, Republic of Serbia. In order to classify them, each butcher is marked
with A, B, C, or D instead of their names, which is in accordance with their shifts. The se-
lected four independent variables were chosen due to their reproducibility and traceability
in any other butcher without special equipment or investments. In this way, processing
and sampling parameters as well as a human influence were included in this study. In the
whole process, butchers A, B, C, and D were the same persons working in continuous shifts
at the butcher. The storage temperature was determined by an inside/outside thermometer
(Carl Roth, Karlsruhe, Germany), while meat temperature was monitored by a penetration
laboratory thermometer (Carl Roth, Karlsruhe, Germany). Principal component analysis
(PCA) was selected as a tool to discover the possible correlations among measured parame-
ters (MAB, E. coli, Salmonella spp., S. aureus, and LAB) and to classify objects into groups in
the factor space.

2.3.1. Artificial Neural Network (ANN) Modelling

The ANN model was built as a three-layer perceptron model, having input, hidden,
and output layers. The data were normalized prior to the ANN modelling, in order to
facilitate the improvement of the ANN model’s conduct [37]. The experimentally derived
data were randomly parted into training, cross-validation, and testing datasets, prior
to ANN model calculation. The training dataset was used for the learning cycle and the
investigation of the optimal number of neurons in the hidden layer and the calculation of the
weight coefficient associated with each network neuron. The Broyden–Fletcher–Goldfarb–
Shanno (BFGS) procedure was employed for the solving of the unconstrained nonlinear
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optimization problem during the ANN model’s development. The effective ANN training
was accomplished when learning and cross-validation curves reached zero [38]. Coefficients
assigned to the hidden and the output layers (weights and biases) were presented in
matrices W1 and B1 as well as W2 and B2, respectively. Equation (1) presents the ANN by
using matrix notation.

Y = f1(W2 · f2(W1 · X + B1) + B2) (1)

where Y is the matrix of the output variables, f 1 and f 2 are transfer functions in the hidden
and output layers, respectively, and X is the matrix of input variables. The W1 and W2 are
determined during the ANN learning cycle using minimization of the error between the
network and experimental outputs, according to the sum of squares (SOS) and the BFGS
algorithm used to speed up and stabilize convergence. The coefficients of determination
were used to check the performance of the gained ANN model [39,40].

A numerical verification of the obtained models in the previous step was tested using
the coefficient of determination (r2), reduced chi-squared (χ2), mean bias error (MBE), root
mean square error (RMSE), and mean percentage error (MPE) using Equations (2)–(5) [37,41].
A statistical test that determines how well sample data fit a distribution from a popula-
tion with a normal distribution, “the goodness of fit” was evaluated for the obtained
mathematical models based on the mentioned numerical verification.

χ2 =

N
∑

i=1
(xexp,i − xpre,i)

2

N − n
(2)

RMSE =

[
1
N

·
N

∑
i=1

(xpre,i − xexp,i)
2

]1/2

(3)

MBE =
1
N

·
N

∑
i=1

(xpre,i − xexp,i) (4)

MPE =
100
N

·
N

∑
i=1

(

∣∣xpre,i − xexp,i
∣∣

xexp,i
) (5)

In Equations (2)–(5), xexp,i represents the experimental values, and xpre,i represents the
predicted values obtained by calculating the model for these measurements. N and n are
the number of observations and constants, respectively.

2.3.2. Global Sensitivity Analysis

Yoon’s interpretation method was used to determine the relative influence of indepen-
dent variables on the microbiological profile of beef minced meat [42]. This method was
applied based on the weight coefficients of the developed ANN.

3. Results

Minced meat represents a good medium for microbiological growth, which can primar-
ily be spotted on the meat’s surface but is also distributed into the meat product during the
mincing and mixing process [40]. Therefore, the first steps included the determination of
the microbiological profile of meat samples using standardized methods. The summarized
microbiological quality of meat samples is shown in Table 2 based on the distribution of
the obtained results on the satisfactory, acceptable, and unsatisfactory levels presented in
percentages. The obtained results are connected with allowable limit values according to
the Guide to Microbiological Criteria for Minced Meat Samples [30]. All analyses presented in
Table 2 are performed using protocols from proper ISO standards (see Table 1).
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Table 2. The descriptive analysis of minced meat samples.

Microbiological
Analysis

Allowable Limit Values
(m- and M-Values) *

The Average Percentage (%) of Samples Classified as:

Satisfactory Acceptable Unsatisfactory

Mesophilic and aerobic bacteria (MAB) m = 5; M = 6 32.85 26.85 40.3

E. coli m = 2; M = 3 95.4 4.6 0

Salmonella spp. nd ** 93.1 / 6.9

L. monocytogenes nd 100 / 0

S. aureus m = 2; M = 3 94 3.7 2.3

* m- and M- values are indicated in log CFU/g; ** nd—not detected in 25 g of samples.

Considering that a specific limitation for a number of lactic acid bacteria does not
exist, the summarizing distribution of lactic acid bacteria determination was individually
presented in Figure 1. It can be observed that all tested samples had the presence of LAB.
The LAB is part of the normal meat microbiota, and contamination with this bacterial group
is expected at some level.
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Figure 1. Frequency plot of lactic acid bacteria in minced meat samples.

Additionally, The PCA of the presented data (Figure 2) explained that the first three
components accounted for 80.10% of the total variance (33.40, 27.20, and 22.80%, respec-
tively) in the four quantitative variables’ factor space: mesophilic and aerobic bacteria
(MAB), E. coli, lactic acid bacteria (LAB), and S. aureus. From this statistical analysis,
Salmonella spp. and L. monocytogenes are excluded, because they were not influential in any
of the tested samples. For a better understanding of the obtained results, each gained result
is classified using different colours based on levels represented in the Rulebook and the
Guide to Microbiological Criteria for Food. The green colour represents a satisfactory level of
the obtained results, while yellow and red signify an acceptable and unsatisfactory level of
tested samples, respectively.

Based on the previously presented data about the microbiological quality profile of the
meat samples, Table 3 provides information about the obtained artificial neural network
(ANN). For the first time, a microbiological profile of beef samples was evaluated through
this advanced mathematical analysis. According to ANN performance, it was noticed that
the optimal number of neurons in the hidden layer for aerobic and mesophilic bacteria,
E. coli, LAB, and S. aureus prediction was equal to 10 (network MLP 9-10-4) to obtain
high values of r2 (overall r2 was 0.867 during training period) and low values of SOS
(Table 3). The obtained coefficients of determination for training, testing, and validation
sequences of ANN modelling were 0.867, 0.832, and 0.854, respectively. This indicates
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the accuracy of the proposed ANN model. Furthermore, the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) 6447 was used as a training algorithm, and the error function was SOS
(sum of squares). The optimal hidden and output layer activation functions were logistic
and identity, respectively. It can be concluded that the gained ANN model (MLP 9-10-4)
predicted experimental variables reasonably well for a broad range of variables (Table 3).
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Table 3. ANN summary or observed results.

The Obtained Network Name MLP 9-10-4

Performance

Training 0.867

Testing 0.832

Validation 0.854

Error

Training 0.484

Testing 0.490

Validation 0.897

Training algorithm BFGS 6447

Error function SOS

Hidden activation Logistic

Output activation Identity

The accuracy of the ANN model could be visually assessed by the dispersion of points
from the diagonal line in the graphics presented in Figure 3. The predicted values were
very close to the desired values in most cases in terms of the value of the coefficient of
determination.

Table 4 presents the elements of matrix W1 and vector B1 (presented in the bias row),
as well as the elements of matrix W2 and vector B2 (bias) for the hidden layer, used for
calculation in Equation (1).
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Table 4. Coefficients assigned to the hidden and the output layers (weights and biases).

Elements of Matrix W1 and Vector B1 (Presented in the Bias Row)

Independent
Variables 1 2 3 4 5 6 7 8 9 10

Store temperature 3.70 0.37 −147.96 −17.66 −82.56 −15.34 231.07 29.54 28.94 −14.48
Meat temperature 99.23 142.56 58.25 20.10 65.60 27.46 −94.96 105.16 151.15 25.96

Butcher A −65.60 −105.46 −37.80 −7.51 −20.39 −14.53 35.69 −78.06 61.40 −121.10
Butcher B 107.49 303.75 29.99 2.40 20.45 2.62 −80.11 115.68 41.76 52.01
Butcher C 41.19 −63.16 59.55 3.81 19.07 4.05 34.42 −64.03 −101.17 53.46
Butcher D −65.26 −103.04 1.93 2.01 14.19 7.24 −114.51 98.64 −34.24 56.38

Weekday (Friday) 6.55 6.67 52.01 7.05 73.63 7.72 44.36 78.00 93.39 73.42
Weekday
(Monday) 4.87 10.37 25.22 −1.54 −2.84 0.28 −37.29 58.36 −73.23 66.34

Weekday
(Wednesday) 6.45 15.05 −23.48 −4.91 −37.44 −8.57 −131.65 −64.04 −52.44 −98.96

Bias 17.80 32.05 53.77 0.68 33.38 −0.58 −124.66 72.23 −32.28 40.75

Elements of matrix W2 and vector B2 (presented in the bias column)

Output variables 1 2 3 4 5 6 7 8 9 10 Bias
MAB * 65.57 −65.39 −5.27 −0.52 5.61 5.91 −3.40 −0.25 0.08 −5.50 0.30
LAB ** 3.41 −3.35 −38.85 0.96 38.44 15.05 −27.28 0.49 −0.15 −16.01 0.56
E. coli 55.53 −55.56 71.22 0.43 −71.60 2.03 50.36 0.16 −0.10 −2.21 0.09

S. aureus 20.40 −20.35 −13.56 −0.59 13.24 −33.94 −9.39 0.40 0.04 34.45 −0.06

* MAB—mesophilic and aerobic bacteria; ** LAB—lactic acid bacteria.

As a statistical test that determines how well sample data fit a distribution from a
population with a normal distribution, numerical verification of the obtained data was
conducted. The goodness of fit, between experimental measurements and calculated results,
was presented in Table 5. For this quality analysis, the following parameters were presented:
reduced chi-square (χ2), root mean square error, (RMSE), mean bias error (MBE), coefficient
of determination (r2), skewness (Skew), kurtosis (Kurt), mean of the residuals (Mean),
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standard deviation of the residuals (SD), and variance of the residuals (Var.). Except for
the quality of the model fit, the residual analysis of the developed predictive model was
presented in the same table. The presented four-parameter sigmoidal mathematical model
appears to be simple, robust, and accurate. Mathematical models had an insignificant
lack of fit tests, which means that all the models represented the data satisfactorily. A
high coefficient of determination (r2) is indicative that the variation was accounted for and
that the data fitted adequately to the proposed model. The adequacy of the model can
be summarized by comparing the microbiological parameters as follows (in descending
order): S. aureus, E. coli, lactic acid bacteria, and mesophilic and aerobic bacteria (Table 5).
The obtained results indicate the possibility of using the ANN model in the presented
experimental setup.

Table 5. The ‘goodness of fit’ tests for the microbiological profile prediction of beef minced meat.

Parameters χ2 RMSE MBE MPE r2 Skew Kurt SD Var.

MAB * 1.612 1.176 0.000 26.823 0.592 −0.125 −0.274 0.738 0.545
LAB ** 1.047 0.947 0.000 31.823 0.731 0.144 0.085 0.595 0.354
E. coli 0.087 0.2737 0.000 36.413 0.819 4.195 27.617 0.171 0.029

S. aureus 0.153 0.362 0.000 67.756 0.880 0.933 3.896 0.228 0.052

* MAB—mesophilic and aerobic bacteria; ** LAB—lactic acid bacteria; Abbreviations: χ2, reduced chi2 square;
RMSE, root mean square error; MBE, mean bias error; MPE, mean percentage error; r2, coefficient of determination;
Skew, skewness; Kurt, kurtosis; SD, the standard deviation of the residuals; Var, the variance of the residuals.

For understanding the influence of input variables on the microbiological profile of
beef minced meat, global sensitivity analysis (Yoon’s interpretation method) was used. The
obtained results are presented in Figure 4.
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4. Discussion

According to the following Rulebook [29] and the Guide [30], microbiological criteria
for food can be divided into two significant groups. Briefly, the food safety criterion is
applied to assess the safety of a product or production batch, and this criterion applies
to products during product shelf-time. If food safety criteria are not satisfied, the tested
product cannot be placed on the market or have to be withdrawn/recalled from the
market [30]. The second criteria include the criterion of hygiene in the production process,
which indicates correct production processing. If this criterion is not fulfilled, the applied
procedures should be reviewed, and corrective measures should be applied in order to
improve the hygiene of the production process. Both microbiological criteria for food
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are determined based on the general principles of international standards and guidelines
on food safety (Codex Alimentarius), conclusions drawn up by the Scientific Committee
on Veterinary measures relating to Public Health [30] as well as a timeline of the actual
European regulations.

In order to test both food safety criteria as well as criteria of hygiene, this study involves
the determination of the microbiological profile of freshly processed minced meat based on
Salmonella spp. and Listeria monocytogenes (food safety criteria) and mesophilic and aerobic
bacteria (MAB), Escherichia coli, and Staphylococcus aureus (criteria of hygiene). Additionally,
lactic acid bacteria (LAB) as one of the specific spoilage groups of microorganisms for meat
are tested [25]. In this way, requirements related to the product during its shelf life, as
well as the possibility of improving production hygiene and the choice and/or origin of
raw materials are included in the following analyses. According to the obtained results
of microbiological analysis (Table 2), in the case of analysis of mesophilic and aerobic
bacteria (MAB), only 32.85% of samples were at a satisfactory level, while 26.85% were at
an acceptable level. In the rest of the samples, approx. 40% of samples, were unsatisfactory
because the number of detected aerobic and mesophilic bacteria was above 6 log CFU/g.
This group of bacteria presents a practical problem in meat production and for butchers.
Many scientific papers reported a high level of aerobic and mesophilic bacteria in minced
meat, which is unsatisfactory and presented a big challenge in view of the reduction
in microbiological contamination in order to prolong shelf-life [10,11,23,24]. Briefly, the
obtained results in this investigation are in agreement with the results by Siriken [10],
who reported 56% of samples with an unsatisfactory level of tested bacteria. A similar
result is observed by Zerabruk et al. [11], where 67% of minced meat samples contained an
unsatisfactory level of these bacteria. The trend of MAB multiplication was detected as a
function of time [23], so only freshly- and cold-storage processed meat can be acceptable
for consumption.

Out of the total number of meat samples, more than 95% of samples were satisfactory
in view of E. coli analysis with an acceptable level according to the Guideline. The minced
meat contaminated with E. coli can be a source of several illnesses, including haemolytic
uremic syndrome, haemolysis, thrombocytopenia, renal failure, etc. [24]. When E. coli is
detected in meat products, meat production needs to revise current hygiene practices and
provide a safer product. L. monocytogenes were not noticed in any of the 216 samples, while
Salmonella spp. was present in only 6.9% of samples. The non-appearance of Salmonella
spp. is especially important considering the widespread presence of Salmonella in minced
meat, salmonellosis outbreak, and the frequency of its consumption via many traditional
products [2]. Furthermore, meat products are frequently observed as one of the main
sources of listeriosis caused by L. monocytogenes, especially by the three serotypes 1/2a,
1/2b, and 4b [43]. On the other hand, the absence of L. monocytogenes in the samples
after the production process does not provide security for recontamination during final
packaging or later handling [44]. In the case of S. aureus contamination, the total percent of
samples at on satisfactory level was 94%, which is a greater value than previously reported
(62%) by Shawish and Al-Humam [20] as well as by Saad et al. (between 28 and 60%) [45].

Additionally, Figure 1 indicates that the most frequent ranges of LAB concentration
were 2–4 log CFU/g and 4–6 log CFU/g, while ranges of 0–2 and 6–7 log CFU/g were
spotted in the case of several samples annually. The scientific literature emphasizes that the
number of LAB above 7 log CFU/g leads to the development of spoilage and results in meat
unacceptability [46], wherefore the obtained results in this study are propitious. On the
other hand, the presence of LAB can have a positive effect on the meat. Namely, metabolic
activities and produced metabolites can have an inhibitory effect on food spoilage and
pathogenic bacteria such as E. coli and S. aureus [46].

The points in the PCA graphics (Figure 2), which are in close vicinity to each other,
display the possible similarity of patterns that are assigned to these points. The orien-
tation of the vector which describes the variable in factor space indicates an increasing
trend of the variable, while the length of the vector is proportional to the square of the
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correlation coefficient between the fitting value for the variable and the variable itself.
The angles between corresponding vectors indicate the value of the correlation coefficient
between these variables (small angles corresponding to high correlations). Considering
the map of the PCA performed on the data, aerobic and mesophilic bacteria and LAB
(which contributed 47.2 and 48.2% of the total variance, respectively, based on correlations)
positively influenced the first-factor coordinate (PC1), while S. aureus (49.8%) and E. coli
(49.8%) exhibited negative scores according to the second principal component (PC2). E.
coli (51.2%) showed a positive influence on the third principal component, while S. aureus
(43.8%) showed a negative influence toward the third principal coordinate (PC3) (Figure 2).

Many empirical models are used for understanding microbiological profiles of meat
and meat products, but a step forward in advanced mathematical and statistical modelling
is still not widely applied. Only a few studies included using predictive tools for an ex-
planation of microbiological experimental data, such as partial least squares regression
analysis [47], growth kinetics modelling [48,49], nonlinear least square regression analysis
with the Levenberg–Marquardt method of estimation [50], Lorentzian distribution function
and Nonlinear regression [51], etc. On the other hand, when attempting to build a mathe-
matical model in the area of predictive microbiology, the artificial neural network (ANN)
model is perceived as one of the most relevant and universal anticipating tools [52,53].
In this investigation, these facts are used and verified for the first time for analysing the
obtained results of microbiological profiling of meat samples. The elaborated optimal
ANN model exhibited adequate generalization ability to the acquired experimental data
prediction and can be utilized to foresee the precise output for a wide span of the input
parameters. The anticipated values were in close vicinity to the expected values in most
cases, in relation to the r2 value, for ANN models. The ANN model anticipated experimen-
tal aerobic and mesophilic bacteria, E. coli, LAB, and S. aureus rather well for a broad range
of the parameters, as seen in Figure 3, where the experimentally obtained and ANN model
anticipated values are shown. Based on the quality parameters displayed in Table 4, the
ANN model had a negligible lack of fit tests, meaning that the ANN model presented the
data correctly. Additionally, the goodness of fit among experimental data and ANN model
results was displayed in Table 5. A high r2 is illustrative that the data fitted satisfactorily to
the developed model.

According to Figure 4, which presents the Yoon sensitivity model, Butcher C was
the most important factor for predicting the MAB of beef minced meat, with a relative
importance of 21.48%, while the influence of Butcher B exerted the most negative impact,
with −44.32% negative importance. Weekdays (Wednesday) were the most important
factor for predicting the LAB of beef minced meat, with a relative importance of 20.90%.
while the influence of storage temperature showed the most negative impact, with −17.44%
negative importance. Butcher C was the most important factor for predicting the number
of E. coli in beef minced meat, with a relative importance of 19.08%, while the influence of
Butcher B showed the most negative impact, with −26.62% negative importance. Butcher
D was the most important factor for predicting the amount of S. aureus in beef minced
meat, with a relative importance of 19.60%, while the influence of Butcher A showed the
most negative impact, with −15.67% negative importance. Due to the obtained results
of the relatively high influence of butcher shift on the microbiological quality of meat, it
can be suggested that certain workers maintain much more hygiene in the working space
than others, doing the work in accordance with good hygienic practice and in the shortest
possible time. Accordingly, it would be recommended that a specific aspect of corrective
action be taken in relation to these results. Although storage and meat temperature do not
have a high relative influence on the number of MAB, these two variables have a great
influence on other tested microorganisms. Consequently, it can be seen in Figure 4 that
meat and storage temperature have different relative influences depending on LAB, E. coli,
and S. aureus.

In the meat industry, all production, storage, and transport processes need to be under
cold conditions, in a temperature range between 2 and 7 ◦C [54]. Frequently, incorrect
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temperatures have been reported as an essential problem for meat quality [55]. Variability
in storage and meat temperatures can be very problematic because it can decrease the shelf-
life of meat, which almost no producer will not estimate when determining an expiration
date. Taking into account these parameters as one of the essentials to determine the shelf-
life of meat, predictive modelling can be a very important tool to determine a definitive
remaining self-life, upgrade storage conditions, and minimize economic loss.

5. Conclusions

A parallel mathematical investigation of feasible analysis and the construction of
a mathematical model displayed suitable accuracy for the anticipation of the quality of
minced beef meat, which is one of the most consumable types of meat, but also a food
product with short shelf life due to propensities for microbial growth. According to the
obtained results, all tested samples had a relatively high number of aerobic and mesophilic
bacteria, while E. coli, Salmonella spp., and S. aureus appeared randomly during the exam-
ination period. The butcher shift and temperature were the most important factors for
predicting the microbiological profile of beef minced meat, with a high relative importance
of tested microbiological parameters. Furthermore, the developed artificial neural network
provided a good prediction of the microbiological profile of beef minced meat with an
overall r2 of 0.867 during the training cycle. It can be concluded that maintenance of good
hygiene practices in a meat production and distribution process can prevent increasing
the number and occurrence of some microorganisms, but potential critical points are al-
ready in the primary production process. In terms of practicality, ANN models offer a
simpler alternative to traditional models for the prediction of microorganisms but require
a greater amount of parameters and data. Furthermore, using statistical analysis of the
gained microbiological results in the everyday routine of meat processing can facilitate the
establishment of microbiological quality control system and minimize economic losses. In
future work, it is recommended to carry out the prediction model of other indicators of
the physicochemical and microbiological quality of meat for other meat industries based
on the proposed methodology. In addition, it is recommended to extend the prediction
model to the supply chain, taking into account other types of storage and exploitation
categories. For example, all parameters in maintaining hygiene during production and the
whole transport chain can be based on a better understanding.
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