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Abstract: This report develops a conceivable mathematical model for the transmission and spread of
COVID-19 in Romania. Understanding the early spread dynamics of the infection and evaluating the
effectiveness of control measures in the first wave of infection is crucial for assessing and evaluating
the potential for sustained transmission occurring in the second wave. The main aim of the study was
to emphasize the impact of control measures and the rate of case detection in slowing the spread of
the disease. Non pharmaceutical control interventions include government actions, public reactions,
and other measures. The methodology consists of an empirical model, taking into consideration the
generic framework of the Stockholm Environment Institute (SEI) Epidemic–Macroeconomic Model,
and incorporates the effect of interventions through a multivalued parameter, a stepwise constant
varying during different phases of the interventions designed to capture their impact on the model.
The model is mathematically consistent and presents various simulation results using best-estimated
parameter values. The model can be easily updated later in response to real-world alterations, for
example, the easing of restrictions. We hope that our simulation results may guide local authorities to
make timely, correct decisions for public health and risk assessment.

Keywords: COVID-19; empirical modeling; accelerated spread; delayed spread; mortality; Romania

1. Introduction

Coronavirus infections in humans were first identified in the 1960s [1–5]. The ma-
jority of coronavirus infections are respiratory, meaning they primarily affect the upper
respiratory tract and lungs [5]. There are seven identified and reported coronaviruses,
including 229E, NL63, OC43, HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2, that infect
humans. Coronaviruses are zoonotic, meaning they primarily/basically infect animals and
later gained the ability to infect humans [6,7]. Globally, the SARS-CoV pandemic came to
the scene in 2002–2003 and led to 8000 infections in humans, with more than 770 deaths
across 27 countries [8–11]. Accordingly, detection and controlling of such infection-based
disease outbreaks have been a major concern in public health [7,12–15]. The novel 2019
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is responsible for
the ongoing COVID-19 pandemic has spread worldwide, causing a significant number of
deaths. It is new and unlike the previous known virus-induced diseases. Data collected
worldwide have indicated that older adults, particularly those with serious underlying
health conditions, are at higher risk that younger persons for severe COVID-19-associated
illness and death (CDC, 2020). As of 12 March 2020, COVID-19 had been confirmed in
125,048 people worldwide and carried a mortality rate of approximately 3.7% compared
with a mortality rate of less than 1% for influenza. The development of a vaccine against
SARS-CoV-2 is a cornerstone in the prevention of COVID-19 spread, but non pharmaceu-
tical preventive measures are also vital. The non pharmaceutical preventive measures
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include frequent hand washing, use of face masks, cleaning and ventilation of indoors
environments, social distancing, and successful mathematical models that could predict the
speed of disease transmission and the efficacy of interventions [16,17]. There is a significant
research effort, including mathematical modeling, to understand the characteristics and the
epidemiological dynamics of the virus and its COVID-19 disease. Due to its novelty, the
research is often likely to produce results only on specific aspects of the disease, providing
only partial answers to research questions, or collect evidence for formulating a hypothesis
yet to be tested. The continuously increasing number of COVID-19 cases necessitates
sharing even such partial results as soon as they are available in order to facilitate the
advancement of the research on this disease. While eventually a more comprehensive
picture of both the virus and the disease will emerge, even incomplete but timely and
scientifically based information will help authorities make sound decisions on the course
of action during the epidemic [18–20]. Since SARS-CoV2 causes a contagious respiratory
infection, the second wave started during the winter. Accordingly, a reliable predictive
mathematical model is urgently needed to support the efforts in our battle against SARS-
CoV2. Since the first reported case during the first wave, all countries were afraid and
expecting the 2019 novel coronavirus (2019-nCoV) outbreak would lead to a large number
of deaths. Every day estimates of the number of cases and deaths are provided by the
authorities in all countries and distributed worldwide. From these data, the fragility of
health systems in developing countries was uncovered. There are official data available
for Romania to make empirical modeling of the pandemic transmission of COVID-19. The
first reported case of COVID-19 in Romania was announced on 15 February 2020, and the
first death was reported on 8 March 2020. At that time, the overall number of infected
was estimated to be around 36.The number of cases was then increased exponentially to
be more than 82,000 by the end of August 2020, with a similar increase in mortality to
3858 confirmed deaths during the same period. Undoubtedly, there are far more numbers
of undetected cases due to the limited number of screening tests, public hesitancy to re-
port, and, even worse, the denial attitudes of some people. Since the onset of COVID-19
spread in Romania, the government has allocated isolation hospitals across the country
and gradually placed a series of measures to prevent the disease from attaining widespread
community transmission in attempts to flatten the rate of spread. Romania decided to
lockdown the schools and universities on 10 March 2020 in response to the number of cases
exceeding 100. A curfew was imposed, during which all public and private transportation
was suspended. Air flights, social activities, worship meetings, and sports events were also
suspended in the same period [7,21]. These activities were resumed partially towards the
end of June 2020, with a continued gradual decline in the restrictions. There were efforts
to fund many scientific projects aiming to improve the preventive measures, diagnostic
procedures, and development of treatment for COVID-19. The ministry of health published
and updated the Romanian protocol for the management of COVID-19 cases. After a short
lag period, the outbreak started growing again. Some specialists expected a second wave
of disease transmission that would pose a socioeconomic crisis and a huge burden on
the public health of millions of people globally. From the transmission curve of the virus,
the three phases of the COVID-19 pandemic in Romania can be distinguished. First, the
latent growth phase, where the number of daily reported cases is almost constant from
day to day, lasted from 15 February to 28 February (Table S1). The second phase of the
pandemic corresponds to the accelerated growth phase and started on the 29 of February.
The third phase, beginning on 19 June, corresponds to the delayed growth phase, where
a time-dependent, exponentially decreasing transmission rate occurs due to major public
interventions and social distancing measures [22–50]. Mathematical models have been
proven to play a significant role in the study of infectious diseases [23]. They can provide
deeper insight into the dynamics of the diseases’ spread and also suggest effective control
strategies to help local public health authorities in the process of control and decision-
making/risk management to protect populations and to end the crisis [24,25,34–50]. In the
present work, as a semi-empirical study, the pandemic spread behavior will be modeled in
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simplified exponential form over time with three adjustable parameters in order to offer
an accurate prediction and estimation, as well as to contribute to the improvement and
the advancement of certain theories by proposing a particular solution to their systems
by using theoretical equations. In other words, our study is focused on a conceivable
mathematical model of official data concerning the impacts of COVID-19 on the quality of
public health and the interrelationship between environmental health and quality of life.
Our simulation results may guide local authorities to make timely, correct decisions for
public health and risk assessment.

2. Reported Cases and Deaths Data
2.1. Data Scope

The investigation data of reported cases and deaths attributed to COVID-19 in
Romania are collected for a period of about twenty-one months (from 25 February 2020
to 11 December 2021) from three principal electronic resources. The first is the COVID-19
dashboard of the Johns Hopkins University [26], the second are the COVID-19 world
meters [27], and the third is GitHub [28]. Data are given in Table 1 in the Supplementary
Materials section and are depicted in Figure 1. In view of the adequate empirical expres-
sions, we propose to divide the time range into three domains according to the different
trends of curvatures shownin Figure 1. Table 1 indicates the three main phases: (I) latent
phase, (II) accelerated phase, and (III) delayed phase.

Table 1. Different spread phases and identification of the accelerated phase for the reported cases
and deaths.

Phase 0 Phase I Phase II Phase III

Reported cases
Absence t = tc0 Latent t = tc Accelerated t = tc1 Delayed

Deaths
Absence t = td0 Latent t = td Accelerated t = td1 Delayed
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Baldwin, 2020 [29], has considered that the two phases (0) and (I) in Table 1 constitute
the pre-pandemic intervals and can be assigned as the two stages of Investigation and
Recognition, while phases (II) and (III) constitute the pandemic intervals and can be
assigned as the four stages of Initiation, Acceleration, Deceleration, and Preparation.

2.2. Delimitation of Phases’ Domains

The delineation of the three domains mainly depends on the accuracy in determination
of the inflection point coordinates indicated in Figure 1 and Table 1, such as Fc(tc1,Nc1)
and Fd(td1,Nd1) for the reported daily cases and daily deaths, respectively. We note that
the initial times (tc0) and (td0) of phase (I) correspond to the day before the first non-
null appearance of a new case (Tables 2 and S1). On the other hand, the final times of
the latent phase (I), which are the initial times (tc1) and (td1) of the accelerated phase
(II), are obtained by optimization techniques using least-square methods and nonlinear
regression of the proposed model for the accelerated phase (II) presented in Section 3.
However, the times (tc1) and (td1) of the inflection points (Fc) and (Fd) in Figure 1 can be
determined by two techniques—the derivation method and tangent method—which will
be detailed below.

Table 2. Different spread phases and identification of the accelerated phases.

tc0 tc tc1 τc Nc0 Erel σ Nc1 Ac0
0 7 266 67.92 6745 7.85% 13,693 373,474 99.31

td0 td td1 τd Nd0 Erel σ Nd1 Ad0
25 15 279 121.88 1135 9.78% 404.3 11,331 9.312

Derivation Method

The ideal and precise technique consists in modeling by smoothing some small por-
tions of the curve with similar curvatures using simple nonlinear regression, such as
a low-degree polynomial, and then making a derivative of each part (Equation (1)) with
the precaution of ensuring continuity and derivability for each boundary.

Then, the derivative function reaches its maximum exactly at the inflection times (tc1)
and (td1).

ni(t) =
dNi(t)

dt
(1)

However, due to the irregularities of curvature, we can encounter some difficulties
in the partial modeling. In this situation, we can use the relative variation for a very
small interval of time (Equation (2)) or simplify the daily reported case given from the
provided data.

ni(t) =
∆Ni(t)

∆t
(2)

In practice, we can also approximately determine the inflection times (tc1) and (td1)
when the daily reported cases reach the maximum of the smoothed peak (Figure 2). Indeed,
the inflection points (Fc) and (Fd) occur at the daily highest cases tc1 and the daily highest
deaths td1. Consequently, corresponding coordinates: Nc1 = Nc(t = tc1) and Nd1 = Nd(t = td1),
respectively, are available (Table 1).
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3. Accelerated Phase Modeling

Once the two inflection times (tc1) and (td1), as the second boundary of the accelerated
phase (II) are determined, the first limit of times (tc) and (td) can be adequately recognized
only by nonlinear regression by optimizing the standard deviation (σ) and the relative
error (Erel) between the experimental values (Table S1) and the values estimated by the
proposed model.

However, due to the pseudo-Gaussian shape of the derivative function dN(t)/d(t)
plotted in Figure 2, the following expressions with three independent adjustable parameters
for the reported cumulative cases Nc(t) and the recorded cumulative deaths Nd(t) in the
accelerated phase (II) were suggested:

Nc(t) = Nc0

(
e
(t−tc)

τc − 1
)
+ δNc (3)

Nd(t) = Nd0

(
e
(t−td)

τd − 1
)
+ δNd (4)

where increments of (δNc) and (δNd) are reliant on parameters and can be adjusted to the
values of the reported cases Nc(tc) and the deaths Nd(td) at the start of the accelerated
phase (II), with optimization being the main preferred mean irrespective of the existence of
a slight difference from the experimental values shown in Table S1.

δNc ≈ Nc(tc) (5)

and
δNd ≈ Nd(td) (6)

The optimal values reported for the adjustable parameters for the accelerated phase (II)
cases and deaths as determined by nonlinear regressions for Equations (3) and (4) are identi-
fiable from Table 2. All terminology has been defined above and applied to Equations (1)–(8).

We note that (Ac0) and (Ad0) denote case activity and death activity, respectively,
expressed as follows:

Ac0 =
Nc0

τc
(7)
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and
Ad0 =

Nd0
τd

(8)

Figure 3 shows an excellent agreement between the experimental values and the
estimated ones in the accelerated phase (II), while the discrepancy observed in the de-
layed phase (III) prompts us to slightly modify the model of Equation (3) to predict this
slower phase.
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Nevertheless, there are studies which stated that “the spread of COVID-19 is not
going to follow an exponential curve and serious errors will follow if analysts believe it
would [30]. The number of new cases rises rapidly, peaks, and then declines. It’s called the
epidemiological curve. It’s not a theory or hypothesis”. This statement is real/true if the
phenomenon is described with a simple exponential form. There are several causes that
interfere together which give such complicated propagation, which necessitates expression
by an exponential function whose argument is a non-simple function of time. Given
that what we are proposing is empirical, we have suggested the simplest possible form
(Equation (3)). In fact, Figure S4 justifies our choice, where the linearity of the logarithm
can be seen in a wide range of time in the accelerated phase (II), which is the subject of the
proposed model.

Furthermore, the peak height (Figure 2a, Equation (9)) defined as the maximum of
the derivative function of Nc(tc1) occurring at the highest day (tc1) and an inflection point
(Fc) for the Nc(t)-curve (Figure 1)—indicates that containment efforts are ineffective and
interventions are minimal [30], and the curve takes on different shapes depending on the
virus’s infection rate and the health system’s capacity [31].

The maximum derivative function of Nc(tc1) which occurs at the highest day (tc1)
coupled with inflection point (Fc) for the Nc(t)-curve (Figure 1) causes the peak height
(Figure 2a, Equation (9)), being an indication of very weak containment policies and
negligible interventions [32,33]. The curve assumes diverse shapes, depending on the
infection rate of the virus and the health system capacity [34].

nc,max(t = tc1) = Ac0e
(tc1−tc)

τc (9)
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4. Correlation between Reported Cases and Deaths

Considering the present work as an empirical investigation, this section will only
introduce empirical comparisons in order to help theoreticians to invest in more details in
their investigations of the applicable theoretical parameters.

As a first examination from Table 2, we can write the following inequalities:
td > tc

Nd0 < Nc0
τd < τc

(10)

This must be considered as mathematically necessary criteria and fundamental limita-
tions in Romanian optimization issues. We can also add the following derived parameters
necessary for subsequent discussions and interpretations:

∆t = td − tdc
∆N = Nc0 − Nd0

∆τ = τd − τc

(11)

Ad0 < Ac0 (12)

One of the ways to see the mutual correlation between the reported cumulative cases
Nc(t) and the cumulative deaths Nd(t) is to eliminate the time-variable and plot Nd(t)
as a function of Nc(t), like in Figure 4. We observe an interesting linear dependence in
a domain stretched between the two accelerated (II) and delayed (III) phases. After that,
the positive deviation to the linearity (with high slope value) indicates that each reported
case’s phase always precedes in time the similar phase related to death cases.
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Another manner of comparison consists of introducing the mortality rate T(t), ex-
pressed as follows:

T(t) =
Nd(t)
Nc(t)

(13)
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The plot of the mortality rate T(t) in percent is shown in Figure 5. Distinct behaviors
of the three spread phases are observed. The maximum occurring in the accelerated
phase at (t = tdc) of about 64 days is due mathematically to the sign conflict between the
two logarithms lnNd(t) and lnNc(t), which is clearly revealed in Figure S5. There is a benefit
from this feature by following this variation over time from the beginning of the spread,
and, when the mortality rate T(t) reaches the maximum, we can predict that the pandemic
is preparing to move from the accelerated phase (I) to the delayed phase (II) (assuming
there are no great changes in precautionary measures and the peoples’ behavior towards
the pandemic.)
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5. Prediction of Delayed Phase for Symmetric Behavior

To predict the delayed phase (III) from only the accelerated phase (II) data, we must
consider as a first approximation that the kinetic progress of the COVID-19 pandemic is the
same before and after the highest day (t = tc1). This symmetric behavior occurs when there
are no changes in the pandemic environments, such as precautionary measures and peoples’
behavior toward the COVID-19 pandemic, etc. On the other hand, the symmetric behavior
is translated mathematically by the fact that the inflection point (Fc) will be a center of
symmetry of the curve in Figure 1.

Herein, there is a trial of predicting the delayed phase by transforming the proposed
model by two assumptions. Subsequently, by following the boundary conditions, continuity
and the derivability at the inflection point Fc(t = tc1), the equation predicting the delayed
phase (III) is expressed is as follows:

Nc(t) = Nc1

(
2− e

−(t−tc1)
τ′c

)
(14)

with
τ′c =

τcNc1

Nc0
e
−(tc1−tc)

τc (15)

In this case, τ′c = 37 days. The previous values are close to the (τc) given in Table 2
for the accelerated phase (II). Therefore, we can conclude that in a reliable approximation,
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we can simplify the problem and put the value of (τc) in Equation (14) in place of (τ′c)
without any net imprecision (Figure 6). The discrepancy between experimental values and
estimated ones within 320 days is due to the fact that the process of spread is not symmetric.
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6. Prediction of Delayed Phase for Asymmetric Behavior

Generally, and for real situations, we cannot observe the symmetric behavior previ-
ously mentioned due to the instantaneous change of peoples’ behaviors and authorities’
decisions. So, respecting the continuity and the derivability on the highest day (t = tc1)
occurring at the inflection point Fc (t = tc1), the equation predicting the delayed phase (III)
becomes expressed as follows:

Nc(t) = Nc1 +
τ′cNc0

τc

(
1− e

−(t−tc1)
τ′c

)
e
(tc1−tc)

τc (16)

Here, only one adjustable parameter (τ′c) is needed to be estimated using optimiza-
tions techniques. The downside of this situation is that we cannot apply any nonlinear
regression if we do not have enough data points after the highest day (t = tc1). However,
a successful prediction should also be in agreement with the limiting value (Nc∞) of the
reported cumulative case at the end of the COVID-19 pandemic (Equation (17)).

Nc∞ = Nc1 +
τ′cNc0

τc
e
(tc1−tc)

τc (17)

Figure 7 shows net improvement relative to the symmetric prediction using in Equation (17)
an optimal value (τ′c = 56 days) determined by the least-square method of nonlinear regression.

Starting at 400 days, we can notice the emergence of a new wave with a larger ampli-
tude than the previous one.
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7. Results and Discussion

In the case of an epidemic, prediction at an initial stage plays a pivotal role to control
the epidemic. Government agencies and public health organizations can prepare accord-
ingly as per the prediction. Indeed, mathematical models play a key role in generating
quantitative information in the field of epidemiology by providing important guidelines
for outbreak management for decision makers. To improve the forecast accuracy and
investigate the spread of SARS-CoV-2 during the second wave, we established an empir-
ical mathematical model in order to numerically estimate the spread of SARS-CoV-2 in
Romania. This study is trying to do what the American president, Theodore Roosevelt,
said: “The more you know about the past, the better prepared you are for the future”.
This model is linking the Romanian governmental efforts to limit COVID-19 spread in
Romania and to reduce mortality in infected cases with the real-life situation of the first
wave. Estimating and predicting the number of people affected by COVID-19 is crucial in
deciding which public health policies to follow. After the appearance of the first case of
COVID-19 infection in Romania on 15 February, there were no public restrictions to prevent
the disease spread. The Romanian government depended mainly on spreading awareness
about the importance of wearing masks, hand hygiene, and social distancing. This action
was quite enough until the end of February 2020, the end of the latent phase.

This analysis declares that Romania responded adequately to the beginning of the
accelerated phase. After about ten days after the onset of the accelerated phase, Romania
started gradually increasing public lockdown procedures. The accelerated phase continued
for about 110 days despite the governmental actions, which may reflect the lack of public
commitment to the imposed restrictions. The higher mortality rates observed in Romania
cannot be attributed to a defect in the Romanian health system, as there was no curative
treatment for SARS-CoV-2 up until now. These higher mortality rates may be explained by
the delay in seeking medical aid due to the fear of stigma. This analytic model can lead
to better management for the expected second wave of COVID-19 infection in Romania.
To shorten the duration of the accelerated phase in the second wave, we suggest, based
on this model, to hasten the lockdown procedure in response to any increase in the daily
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number of cases. Emphasis on implementing the established restrictions and on imposing
sanctions on nonconformists may also abbreviate the accelerated phase.

The Romanian authorities should encourage people to seek medical advice as early
as they feel any symptom of COVID-19 infection. This may decrease the mortality rates
all over the world, as earlier medical intervention was shown to abate the mortality rates
in SARS-CoV-2 infection cases [36–43]. The authorities in different countries carry out
mortality counts. The mortality reported in each country can be used to create an index
of the number of actual cases at a given time. The specificity of whether or not COVID-19
causes mortality is rapid, affecting the number of actual cases. The number of days between
the declaration of illness and death varies between 12 and 18 days. The mortality rate up
to10 October reached 5.8%, which is one of the highest reported death values worldwide.
The pessimistic scenario predicted 22,320 infected people, and the most optimistic predicted
744 (which is the number of reported cases on 12 April 2020). Modeling the occurrence of
COVID-19 cases is critical to assess the impact of policies to prevent the spread of the virus.
The main objective of this study is the estimation of the average number of infections one
case can generate throughout the infectious period. It is the basic reproduction number of
an infectious agent.

8. Conclusions

The current mathematical effort uses the dataset to produce an estimate of the true
number of infection cases in Romania, based on the 23-day effect from infection to death.
The data includes the cumulative number of reported cases. Two deterministic compart-
mental models based on the clinical progression of the disease and the epidemiological
status of the individuals have been proposed. The SEIR model of dengue fever studies the
disease transmission based on the Susceptible–Exposed–Infectious–Removed (SEIR) model,
including an asymptomatic transmission rate. Four categories are present: susceptible,
exposed, infectious, and recovered. The cumulative number of reported symptomatic
infectious cases at time t, denoted by Nc(t), is computed. Afterward, development and
comparison of numerical simulations with data were performed. To give physical mean-
ing to the three parameters in our suggested model for future work, probable causal
correlation with factors such as infected, recovered, hospitalized, serious cases, etc. will
be investigated.

Future modifications can be easily accommodated by updating the model (for example,
the easing of some restrictions.)
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www.mdpi.com/article/10.3390/ijerph19063707/s1, Table S1. Data of Reported cases and deaths of
Covid-19 for Romania for about twenty-one months (from 25 February 2020 to 11 December 2021).
Figure S1. Total Reported Cases for the First 440 days of the Pandemic in Romania. Figure S2. New
daily reported cases (a) and new daily deaths (b) for the eight months of the pandemic in Romania
(Reported from original data without smoothing of duplicated values). Scheme S1. Flowchart for
Adjustment the Duplicate Data in Romania Excel Sheet. Figure S3. (a) Graphical determination of
the inflection point Fc(tc1,Nc1) related the total reported cases Nc(t) for the first 350 days in Romania.
(b) Graphical determination of the inflection point Fd(td1,Nd1) related the total death cases Nd(t)
for the first 350 days in Romania. Figure S4. Second derivative function (d2Nc.dt2) related the total
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