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Abstract: Heart rate variability (HRV) has allowed the implementation of a methodology for daily
decision making called day-to-day training, which allows data to be recorded by anyone with a
smartphone. The purpose of the present work was to evaluate the validity and reliability of HRV
measurements with a new mobile app (Selftraining UMH) in two resting conditions. Twenty healthy
people (10 male and 10 female) were measured at rest in supine and seated positions with an
electrocardiogram and an application for smartphones at the same time (Selftraining UMH) using
recordings obtained through an already validated chest-worn heart rate monitor (Polar H10). The
Selftraining UMH app showed no significant differences compared to an electrocardiogram, neither in
supine nor in sitting position (p > 0.05) and they presented almost perfect correlation levels (r ≥ 0.99).
Furthermore, no significant differences were found between ultra-short (1-min) and short (5-min)
length measurements. The intraclass correlation coefficient showed excellent reliability (>0.90) and
the standard error of measurement remained below 5%. The Selftraining UMH smartphone app
connected via Bluetooth to the Polar H10 chest strap can be used to register daily HRV recordings in
healthy sedentary people.

Keywords: app; heart rate variability; short and ultra-short measurements; exercise training

1. Introduction

Physical activity is an indispensable element for the health of the population. Cur-
rently, non-communicable diseases, such as cardiovascular and respiratory diseases, cancer,
diabetes, and mental disorders, account for 68% of the causes of death worldwide. More-
over, lack of physical activity increases the risk of diseases, such as obesity, hypertension,
the development of different forms of cancer, and cardiovascular diseases [1]. On the other
hand, physical activity is a factor that increases the population’s longevity and quality of
life [2]. Furthermore, its positive effect on these diseases has led to physical activity being
considered as an effective tool for preventing and treating these diseases [3]. Moreover, the
American College of Sports Medicine (ACSM) has included physical activity as one of the
topics of special relevance among physical activity and health professionals in recent years,
coining the term “Exercise is Medicine” [4].

Although supervised exercise has advantages and many people choose to attend
supervised interventions to improve their fitness and health, unfortunately, the cost and
time involved in travelling to the sport centres is beyond the reach of a large part of the
population [5]. For this reason, most individuals who start exercising do so autonomously
and without any kind of control [6]. As a result, they rarely adhere to exercising adequately
and often put their health at risk [6]. It also means that this practice of physical exercise
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is not tailored to their needs and can cause an inadequate and inefficient response of the
organism due to a lack or an excess of physical exercise which can, as a consequence, limit
and even distance them from the benefits they are trying to obtain. To compensate for
this, home-based exercise interventions have emerged as a suitable, cheaper and more
accessible alternative [6]. However, currently two major problems prevent a real and
sustained improvement using home-based exercise interventions, with the consequent
quality loss: the low practitioner adherence and the lack of an individualised monitoring
strategy.

Adherence is understood as the degree of correspondence between a person’s be-
haviour and the recommendations provided by health professionals [7]. The factors influ-
encing adherence to exercise and physical activity are complex and range from personal to
environmental factors [8]. In addition, we do not have a gold standard for measuring adher-
ence to physical exercise either, which adds further uncertainty in identifying predictors [8].
The increasing development of digital technologies, including wearable technologies (WTs),
is enabling to both the collection of objective adherence measures and the improvement
of educational processes for the learning of physical exercise practitioners [8]. The WTs
include a wide range of devices, which can be embedded in smartphones, smartwatches
and other portable devices [9]. Today, most WTs are designed to be easy for users to apply
in everyday situations, using wireless technology to transmit information to a device such
as a smartphone [9]. Aspects, such as the use of WTs and autonomy support, have been
shown to be beneficial in improving adherence to physical exercise [10].

The lack of an individualised monitoring strategy is based on the great heterogeneity
that exists in the population in response to the same physical exercise stimulus. We can find
different responses to the same physical exercise programmes even in people with a similar
fitness and health status level [11]. Therefore, it is necessary to individualise and optimise
these physical exercise programmes based on this individual response in order to obtain
the greatest health benefits [12]. One tool for assessing an individual’s response to physical
exercise is heart rate variability (HRV) [13]. HRV is a non-invasive, valid and reliable
measure of the balance of the sympathetic and parasympathetic branch of the autonomic
nervous system (ANS) [14]. Numerous studies have identified it as a variable which is
sensitive to the effect of training, showing the response to exercise and fatigue levels [13,15]
and it has been used to guide training on a daily basis in sports, such as running [16–18],
cross-country skiing [19], cycling [20,21] or in untrained healthy women [22]. The main
findings of these previous studies are that greater increases in physical fitness were obtained
for day-to-day models compared to traditional ones [16,19,20] or they showed similar
improvements, but with a lower dose of physical exercise by day-to-day models [17,18,21],
which meant a time optimisation to achieve the desired improvements. The premise
of these day-to-day models is that training is modulated according to the organism’s
status (based on HRV), performing vigorous physical exercise when the individual is
prepared (i.e., normal values in HRV) and, conversely, performing light physical exercise
or resting when there is a sign of excessive fatigue or stress (i.e., alteration in HRV values).
Currently, there are some apps that have been validated for HRV measurement using
photoplethysmography, such as HRV4Training [23] and Welltory [24], and using a HR
monitor with the placement of a Bluetooth-connected chest strap like Elite HRV [25],
finding acceptable agreement compared to an electrocardiogram (ECG) as the gold standard.
However, these HRV apps indicate the value and whether the subject is in normal condition
or not, but they do not recommend physical exercise based on the HRV value.

In order to reduce the problems of home-based exercise interventions and to facilitate
access to physical exercise for sedentary people or people with a low level of physical
fitness, the authors have developed a mobile application (Selftraining UMH), using a
guided day-to-day model based on the HRV parameter root-mean-squared differences
of successive RR intervals (rMSSD). Therefore, the aim of this study was to evaluate the
validity and reliability of HRV measurements with this new mobile application in two
resting conditions (supine and seated) and in short time intervals.
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2. Materials and Methods
2.1. Experimental Design

Two different devices that recorded HRV were used for the measurements: a Biopac
MP35 3-lead electrocardiogram (Biopac Systems, Goleta, CA, USA) and a new smartphone
application (Selftraining UMH (Elche, Spain)). The electrocardiogram was connected
to a computer via a USB port and the mobile application was linked using Bluetooth
to a previously validated HR sensor chest strap (Polar H10, Polar Electro Oy, Kempele,
Finland) [26]. Four consecutive 6 min recordings were captured by alternating the supine
position with the seated position in a resting state [24]. During the 6 min period, the first
minute was used to stabilize the HRV signal [27] and the last 5 min in each position were
taken for the subsequent analysis.

2.2. Participants

Twenty healthy people (10 male and 10 female) participated in this study (their char-
acteristics can be found in Table 1). People with pathologies or physically active people
(i.e., people who conducted more than 150 min of moderate physical activity per week)
were excluded [28]. Before starting the study, all the participants were informed of the
purpose of the study and signed an informed consent form. This study was approved by
the Ethics Committee of the university (reference number: CID.DPC.01.19). The study was
conducted in accordance with the standards of Good Clinical Practice and international
ethical principles applicable to medical research in humans (Declaration of Helsinki).

Table 1. Participants descriptive statistics (mean ± SD).

Males (n = 10) Females (n = 10)

Age (y) 27.70 ± 4.40 25.00 ± 2.67
Weight (kg) 77.10 ± 4.71 62.43 ± 5.91
Height (m) 1.77 ± 0.05 1.64 ± 0.08

BMI (kg·m−2) 24.54 ± 1.76 23.27 ± 2.08
Breathing frequency (bpm) 9.50 ± 0.94 9.70 ± 1.06

N, sample number; SD, standard deviation; Y, years; M, meters; Kg, kilograms; Bpm, breaths per minute.

2.3. Data Acquisition

The data collection was conducted under constant temperature and humidity condi-
tions. Participants were instructed to relax and maintain a constant, comfortable respiratory
rate using a metronome (range between 7 and 11 breaths per minute), and lights were
turned off to ensure a quiet environment that could not alter HRV measurements. The
Biopac MP35, considered the gold standard for quantifying the time elapsed between con-
secutive R-waves (R-R interval) of each heartbeat, was chosen to record the ECG signal [29].
The Biopac MP35 was connected to a computer using the Biopac Lesson Student Lab & for
PC software (version 3.7.1), with a sample rate of 1000 Hz. In addition, the Selftraining
UMH (version 1.5) smartphone application was used. There are different ways to conduct
recordings with the Selftraining UHM app: 1. by photoplethysmography, 2. with a Polar
heart rate sensor, 3. through the Welltory mobile app [24], and 4. you can enter the values
by hand. In this case, the authors wanted to validate the use of a Polar HR sensor.

2.4. Procedures

Prior to recording the HR and HRV, electrode placement on the participant’s chest was
distributed according to the recommendations of the American Heart Association (AHA) in
the standard ECG position using 3-leads [30]: RA, right midclavicular line, intersection with
the second right intercostal space; LA, left midclavicular line, intersection with the second
left intercostal space; LL, left midclavicular line, intersection with the last left intercostal
space. The participant’s skin was cleaned with alcohol and shaved for the placement
of the electrodes. After these steps, the Polar H10 chest strap was placed following the
manufacturer’s recommendations. Polar HR monitors have been shown to be suitable
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for measuring the time between consecutive heartbeats and are not only used in sports,
but also in other areas, such as science and medicine for HRV recording and analysis [31].
The chest strap was linked using Bluetooth to the Selftraining UMH application. All the
procedures were performed by the same researcher and the measurements were supervised
simultaneously on both the devices used. The measurement protocol was repeated in those
instances in which synchronization failed. All the recordings were conducted individually
for each participant.

After the recordings, the raw R-R interval data files from the two devices were down-
loaded and examined with Kubios HRV Premium software (version 3.5.0; Biosignal Anal-
ysis and Medical Imaging Group, Department of Physics, University of Kuopio, Kuopio,
Finland) [32]. For the HRV analysis, the rMSSD parameter was chosen for each measure-
ment period based on its better suitability and reliability than other indices [33]. rMSSD
values were transformed to their natural logarithms (LnrMSSD) to allow parametric sta-
tistical comparisons assuming normal distributions [34]. Data examination and treatment
was performed according to standard criteria [35]. Each file was corrected for ectopic beats
and artifacts using an artifact correction method provided by Kubios software (automatic
beat correction) prior to the analysis [32]. A mean level of artifact correction that identifies
R-R intervals that vary above or below 0.25 s compared to the mean was chosen to help
preserve variability and address the presence of any artifacts [25]. The correction of the arte-
facts was conducted using interpolation methods that allow the replacement of abnormal
intervals by a new one. Specifically, Kubios uses cubic spline interpolation which makes the
construction of trend curves calculated through a polynomial fit possible [36]. It has been
recommended that this artifact correction technique be used for occasional artifacts and
ectopic beats when examining R-R intervals [37]. In this study, only recordings with less
than 20% of the corrected beats were included, as current literature recommends to main-
tain at least 80% of the normal consecutive beats for later examination [38]. Consequently,
HRV recordings should be examined with caution when lifestyle factors and participant
behaviours are not controlled [39].

The data obtained during the five minute measurements in the two devices (ECG and
Selftraining UMH) were evaluated in two ways, taking the first minute and the total five
minutes, with the aim of comparing the ultrashort duration measurement with the full
duration measurement [24].

2.5. How the Selftraining UMH Application Works

The application requires a control period of one month, in which participants must
measure their HRV (i.e., the parameter LnrMSSD) to establish a profile for each person
which constitutes a range of normative values, setting a zone of smallest worthwhile change
(SWC), which is used to interpret the changes in values by using a seven day rolling average
(LnrMSSD7day-roll-avg) for the purpose of prescribing a training based on these values. The
SWC is calculated as the mean± 0.5× standard deviation (SD) following recommendations
from previous studies [40]. The application is integrated to perform three training sessions
per week and to perform the day-to-day training prescription based on HRV. It uses the
decision making algorithm used by Javaloyes et al. (2019) [20] which is a modification of
Kiviniemi et al. (2007) [16]. On the first training day, a low-intensity session is performed.
From the first session onwards, when the LnrMSSD7day-roll-avg values remain within the
SWC (+), high-intensity training sessions are prescribed. If the LnrMSSD7day-roll-avg falls
outside the SWC (−), low intensity or rest sessions are prescribed. Within the application
there are four intensity levels and within each intensity level there are four different sessions
to choose from. The application is set up as a game, in which by completing sessions of
a level the participant obtains stars and when a certain number of stars is reached, the
participant progresses to the next level. The application is programmed to perform a
training for three months for people who want to start exercising. The physical exercise
programme from the Selftraining UMH app is detailed in the Electronic Supplementary
Material (ESM).
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2.6. Statistical Analysis

To confirm the normality of the data, a Shapiro–Wilk statistical test for a sample of
less than 50 subjects was used [41]. A repeated measures ANOVA analysis was performed
using the Selftraining UMH app and the Kubios software to evaluate possible differences in
means according to the device used or the duration of the measurement (1 min vs. 5 min).
In addition, a Bonferroni post hoc test was used to assess the pairwise comparison between
the different ways to obtain the measurements. They were expressed in Cohen’s d units
and were interpreted as trivial (<0.19), small (0.20–0.49), moderate (0.50–0.79) and large
(>0.80), and the effect sizes (ES) were shown with a CI of 95% between groups [42]. Pearson
correlation coefficient (r) was calculated to assess the strength of association between HRV
measurements with the different devices and the duration of the measurement in 1 min and
5 min and it was interpreted as trivial (<0.09), small (0.10–0.29), moderate (0.30–0.49), high
(0.50–0.69), very high (0.70–0.89), and almost perfect (>0.90) [43]. The intraclass correlation
coefficient (ICC) [44] and the standard error of measurement (SEM) [45] were used to assess
relative and absolute reliability between trials. ICC values were interpreted as poor to
moderate (<0.75), good (0.75–0.90), and excellent (>0.90) [46]. The results obtained from the
SEM values below 10% were estimated as admissible, and the minimum detectable change
(MDC) was evaluated based on the results obtained from the SEM values using the formula
1.96 × SEM ×

√
2 [24]. Bland–Altman analyses were performed on the time domain

HRV for LnrMSSD to constitute an agreement between the measurement instruments
(Selftraining UMH application vs. ECG), geometrically showing differences and limits of
agreement [43]. All the results obtained were analysed using Excel software, a spreadsheet
program developed by Microsoft (Microsoft, Seattle, USA) and the JASP program [47].
The results are presented as mean ± SD and the level of statistical significance was set at
p < 0.05.

3. Results

No significant differences (p > 0.05) in the data obtained from the Selftraining UMH
application in both supine and sitting positions when compared with the ECG (regarded as
the gold standard) have been found (Table 2). Selftraining UMH data analysis in the supine
position with kubios showed trivial ES (Cohen’s d) while for the smartphone application
the ES was moderate. Selftraining UMH data analysis in the sitting position with kubios
and with the smartphone showed small ES. Correlation analysis showed a nearly perfect
correlation between the Selftraining UMH application and the gold standard (ECG). The
scattered plots are shown in Figures 1 and 2 for supine and sitting position, respectively.
In the Bland–Altman plots, there was no apparent bias for agreement in the measurement
device (Selftraining UMH app) versus the gold standard ECG method in either resting
measurement condition (Figure 3).

Table 2. Comparison of the ECG vs. the Selftraining UMH app.

Position Device Descriptive Data MD p Effect Sizes (95%CI)

Supine
ECG 3.995 ± 0.64

Selftraining UMH (kubios) 3.998 ± 0.65 −0.002 1.00 −0.174 (−0.010, 0.006)
Selftraining UMH (app) 3.964 ± 0.65 0.031 0.13 0.615 (−0.005, 0.068)

Sitting
ECG 3.947 ± 0.66

Selftraining UMH (kubios) 3.951 ± 0.66 −0.004 1.00 −0.236 (−0.016, 0.008)
Selftraining UMH (app) 3.913 ± 0.67 0.034 0.86 0.405 (−0.026, 0.094)

ECG, electrocardiogram; app, smartphone application analysis; MD, Mean Difference; CI, Confidence intervals.
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The repeated measures ANOVA did not show significant differences for the measure-
ment device when comparing the short 5 min measurement and the ultrashort recording
of 1 min (Table 3). Furthermore, ES presented trivial effects and the correlation coefficient
showed an almost perfect correlation. The scattered plots are shown in Figures 4 and 5 for
supine and sitting position, respectively.

Table 3. Comparison between ultra-short 1 min and 5 min standard recordings.

Device Position 1 min 5 min MD p Effect Sizes (95%CI)

ECG Supine 3.978 ± 0.66 3.970 ± 0.65 0.007 0.73 0.078 (−0.038, 0.053)
Seated 3.942 ± 0.71 3.918 ± 0.69 0.025 0.42 0.183 (−0.038, 0.087)

Selftraining UMH Supine 4.002 ± 0.66 3.981 ± 0.65 0.020 0.52 0.147 (−0.045, 0.086)
Seated 3.939 ± 0.70 3.920 ± 0.69 0.019 0.52 0.145 (−0.043, 0.082)

MD, Mean Difference; CI, Confidence intervals.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 3. Comparing Bland–Altman plots in rMSSD. The images included show the values between 
ECG and Selftraining UMH in supine (A) and sitting (B) position. 

The repeated measures ANOVA did not show significant differences for the meas-
urement device when comparing the short 5 min measurement and the ultrashort record-
ing of 1 min (Table 3). Furthermore, ES presented trivial effects and the correlation coeffi-
cient showed an almost perfect correlation. The scattered plots are shown in Figures 4 and 
5 for supine and sitting position, respectively. 

Table 3. Comparison between ultra-short 1 min and 5 min standard recordings. 

Device Position 1 min 5 min MD p Effect Sizes (95%CI) 
ECG Supine 3.978 ± 0.66 3.970 ± 0.65 0.007 0.73 0.078 (−0.038, 0.053) 

 Seated 3.942 ± 0.71 3.918 ± 0.69 0.025 0.42 0.183 (−0.038, 0.087) 
Selftraining UMH Supine 4.002 ± 0.66 3.981 ± 0.65 0.020 0.52 0.147 (−0.045, 0.086) 

  Seated 3.939 ± 0.70 3.920 ± 0.69 0.019 0.52 0.145 (−0.043, 0.082) 
MD, Mean Difference; CI, Confidence intervals. 

 
Figure 4. Correlation plots in the supine position, the confidence intervals of ± 95% are expressed 
by dashed lines and the solid black line represents the line of equivalence (r = 1.0). 

Figure 4. Correlation plots in the supine position, the confidence intervals of ±95% are expressed by
dashed lines and the solid black line represents the line of equivalence (r = 1.0).

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. Correlation plots in the sitting position, the confidence intervals of ± 95% are expressed by 
dashed lines and the solid black line represents the line of equivalence (r = 1.0). 

Consecutive HRV measurements showed excellent ICC values for reliability analysis 
(Table 4). Table 4 shows the values for the SEM, reporting values below the 10% limit in 
all measurements. 

Table 4. Reliability of the ECG and Selftraining UMH. 

Position Device Mean Difference ICC (90%CI) SEM (%) MCD (%) 

Supine  
ECG 0.10 ± 0.26 0.93 (0.82, 0.97) 4.51 0.50 

Selftraining UMH (kubios) 0.09 ± 0.26 0.92 (0.82, 0.97) 4.54 0.50 
Selftraining UMH (app) 0.09 ± 0.26 0.92 (0.82, 0.97) 4.66 0.51 

Sitting  
ECG 0.03 ± 0.12 0.99 (0.97, 0.99) 2.11 0.23 

Selftraining UMH (kubios) 0.03 ± 0.11 0.99 (0.97, 1.00) 1.99 0.22 
Selftraining UMH (app) 0.01 ± 0.11 0.99 (0.97, 1.00) 1.98 0.21 

ICC, Intraclass correlation coefficient; SEM, Standard error of the measurement, MDC: Minimal de-
tectable change; app, smartphone application analysis. 

4. Discussion 
The aim of this study was to assess the validity and reliability of HRV measurements 

with this new Selftraining UMH mobile app in two resting conditions (supine and sitting). 
To assess validity and reliability, the Selftraining UMH app measurements were com-
pared with the ECG (gold standard). 

Selftraining UMH showed no statistical differences (p > 0.05) neither in the raw data 
using the Kubios software, nor in the results analysed by the app in any of the body posi-
tions evaluated, compared to the ECG (Table 2). The Selftraining UMH application ES 
showed trivial to moderate effects for the different body positions in resting conditions; 
however, as can be seen in Table 2, the statistical analyses showed no differences with 
respect to the ECG. Furthermore, our study showed an almost perfect correlation (>0.90) 
in both body positions in resting conditions compared to the ECG in the results analysed 
with Kubios and with the app (Figures 1 and 2). The results found in the present study 
are very similar to previous studies with other smartphone applications using a HR mon-
itor with the placement of a Bluetooth-connected chest strap [23–25,48]. However, in other 
studies the correlation coefficient was lower than those shown in this study [24,25,48] and 
one study showed the same coefficient as in the present study using a HR monitor [23]. 
Importantly, our study includes a 1 min stabilisation period to obtain valid and reliable 
HRV measurement data [49] in the time domain, situation which has only been used in 
one previous study [24]. 

Figure 5. Correlation plots in the sitting position, the confidence intervals of ±95% are expressed by
dashed lines and the solid black line represents the line of equivalence (r = 1.0).



Int. J. Environ. Res. Public Health 2023, 20, 1528 8 of 12

Consecutive HRV measurements showed excellent ICC values for reliability analysis
(Table 4). Table 4 shows the values for the SEM, reporting values below the 10% limit in all
measurements.

Table 4. Reliability of the ECG and Selftraining UMH.

Position Device Mean Difference ICC (90%CI) SEM (%) MCD (%)

Supine
ECG 0.10 ± 0.26 0.93 (0.82, 0.97) 4.51 0.50

Selftraining UMH (kubios) 0.09 ± 0.26 0.92 (0.82, 0.97) 4.54 0.50
Selftraining UMH (app) 0.09 ± 0.26 0.92 (0.82, 0.97) 4.66 0.51

Sitting
ECG 0.03 ± 0.12 0.99 (0.97, 0.99) 2.11 0.23

Selftraining UMH (kubios) 0.03 ± 0.11 0.99 (0.97, 1.00) 1.99 0.22
Selftraining UMH (app) 0.01 ± 0.11 0.99 (0.97, 1.00) 1.98 0.21

ICC, Intraclass correlation coefficient; SEM, Standard error of the measurement, MDC: Minimal detectable change;
app, smartphone application analysis.

4. Discussion

The aim of this study was to assess the validity and reliability of HRV measurements
with this new Selftraining UMH mobile app in two resting conditions (supine and sitting).
To assess validity and reliability, the Selftraining UMH app measurements were compared
with the ECG (gold standard).

Selftraining UMH showed no statistical differences (p > 0.05) neither in the raw data
using the Kubios software, nor in the results analysed by the app in any of the body
positions evaluated, compared to the ECG (Table 2). The Selftraining UMH application ES
showed trivial to moderate effects for the different body positions in resting conditions;
however, as can be seen in Table 2, the statistical analyses showed no differences with
respect to the ECG. Furthermore, our study showed an almost perfect correlation (>0.90)
in both body positions in resting conditions compared to the ECG in the results analysed
with Kubios and with the app (Figures 1 and 2). The results found in the present study are
very similar to previous studies with other smartphone applications using a HR monitor
with the placement of a Bluetooth-connected chest strap [23–25,48]. However, in other
studies the correlation coefficient was lower than those shown in this study [24,25,48] and
one study showed the same coefficient as in the present study using a HR monitor [23].
Importantly, our study includes a 1 min stabilisation period to obtain valid and reliable
HRV measurement data [49] in the time domain, situation which has only been used in one
previous study [24].

To analyse validity and reliability, this study analysed the results obtained from ultra-
short (1 min) recordings with short (5 min) recordings which are considered the standard.
The comparison between ultra-short (1 min) and short (5 min) figures showed no statistical
difference in any of the body positions under resting conditions (Table 3). The ES was
trivial between both measurements (Cohen’s d < 0.2). For all measurements, the correlation
values were almost perfect with a value of r > 0.9 (Figures 4 and 5). The results found in
the present study are very similar to previous studies using ECG and other apps that use a
chest strap HR monitor to measure HRV [23–25,48]. Furthermore, the Bland–Altman plots
revealed that the Selftraining UMH app shows good agreement in both body positions
under resting conditions for the magnitudes of bias and 95% CI (Figure 3) compared to
the ECG. The limits of agreement and confidence intervals obtained for the bias show that
there is no statistical difference for the application of the Selftraining UMH vs. ECG system
between measurement of the two body positions under resting conditions.

In this study, an excellent intraclass correlation coefficient (>0.90) together with a
standard error of measurement below 10% suggested the reliability of the ECG in both
body positions. In resting conditions, using the ECG is the method normally used to
measure HRV. It should be noted that the values obtained in the supine position (0.93) are
lower than the values obtained in the sitting position (0.99). Since both supine and seated
values are considered to have good reliability, both positions can be recommended to assess
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HRV in healthy sedentary people, with an emphasis on always using the same position.
Previous research in highly endurance-trained athletes and populations with low resting
HR has recommended the seated position, as with this position it is possible to avoid the
phenomenon called parasympathetic saturation which makes HRV trends more difficult to
interpret and affects measurements [50].

Previous studies have favoured the use of a chest strap to measure HRV as there is
no possibility of momentary disconnection between the skin and the electrodes [26]. In
addition, for those who are not familiarised with the use of current technology such as
photoplethysmography, there may be differences attributed to finger size, position, skin
characteristics and pressure exerted on the sensor [51–53].

The validation of the Selftraining UHM application will allow the collection of HRV
data within the time domain (rMSSD) in a sample of different age ranges to generalise and
compare them with other existing applications, being able to create reference values for
healthy sedentary people. Therefore, it will be possible to complete, update and extend
previously published databases and to define reference values for age groups under 20
years of age and over 60 years of age according to sex, which these databases do not
report or which have a low sample number [54–56]. Furthermore, it cannot be ruled
out that in the future the data obtained from the Selftraining UMH application will be
consistent with healthy people in other regions of the world. It should also be noted
that ECGs in many previous studies were performed at a sampling rate of 250 Hz or
lower, but now devices with higher sampling rates (≥1000 Hz) are available. Although
several studies have shown that the use of lower sampling rates could be used without
significantly affecting HRV indices [54,57,58], the accuracy of measurements at higher
sampling rates (1000 Hz) is perfect [59]. Furthermore, future research of the project thanks
to the validation of the Selftraining UMH application will aim to compare autonomously
HRV-guided training through this mobile application with HRV-guided training through
physical activity professionals and traditional training.

This study demonstrated that there was no apparent matching bias in the measure-
ment device (Selftraining UMH app) in the Bland–Altman plot results and the observed
relationship expressed through Pearson product-moment correlation was almost perfect
against the gold standard ECG method in both measurement conditions (supine and seated).
These results may encourage practitioners to implement these applications for long-term
HRV-based monitoring. The results shown in this study follow that the Selftraining UMH
app is valid for short and ultra-short HRV recordings using the heart rate monitor with
placement of a Bluetooth-connected chest strap. To the authors’ knowledge, this is the only
validated app that uses variability as a control using a guided day-to-day model based on
the HRV parameter (rMSSD) as current apps that measure HRV only indicate the rMSSD
value and whether or not the tested subject is in normal conditions.

Following recommendations from previous studies, a correction for artefacts and
ectopic beats was performed [25,27]. However, the Selftraining UMH application uses a
Software Development Kit (SDK) provided by Polar which they offer for free and with an
easy access to its API (Application Programming Interface). Therefore, it is possible that the
HRV signal analysis contributed to a bias by not being able to compare the signal correction
methods used by the different applications [24]. Future research can explore the impact of
the different artifacts and ectopic beat correction methods used by previously validated
smartphone apps to corroborate adequate signal analysis processing when measuring
HRV. Second, lifestyle factors (diet, sleep, smoking, alcohol intake, etc.) are known to
affect HRV [55] and were not controlled for. However, the focus of the study was not to
investigate the interaction between these variables and HRV.

5. Conclusions

To the authors’ knowledge, with respect to the smartphone app, this is the first study
to assess the validity and reliability of Selftraining UMH for measuring HRV within the
time domain (rMSSD). The results shown in this study presented similar levels of reliability
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to the ECG (gold standard) with excellent values of intraclass correlation coefficients and
all standard error values of the measurement were below 10%, the highest value being
4.66 (Table 4). Therefore, it appears that the Selftraining UMH smartphone app connected
via Bluetooth to the Polar H10 chest strap can be used to register daily HRV recordings in
healthy sedentary people.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph20021528/s1, Section S1: Physical exercise programme
from the Selftraining UMH app.
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