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Abstract: Heatwaves occur frequently in summer, severely harming the natural environment and human
society. While a few long-term spatiotemporal heatwave studies have been conducted in China at the
grid scale, their shortcomings involve their discrete distribution and poor spatiotemporal continuity. We
used daily data from 691 meteorological stations to obtain torridity index (TI) and heatwave index (HWI)
datasets (0.01◦) in order to evaluate the spatiotemporal distribution of heatwaves in the Chinese mainland
for the period of 1990–2019. The results were as follows: (1) The TI values rose but with fluctuations,
with the largest increase occurring in North China in July. The areas with hazard levels of medium and
above accounted for 22.16% of the total, mainly in the eastern and southern provinces of China, South
Tibet, East and South Xinjiang, and Chongqing. (2) The study areas were divided into four categories
according to the spatiotemporal distribution of hazards. The “high hazard and rapidly increasing” and
“low hazard and continually increasing” areas accounted for 8.71% and 41.33% of the total, respectively.
(3) The “ten furnaces” at the top of the provincial capitals were Zhengzhou, Nanchang, Wuhan, Changsha,
Shijiazhuang, Nanjing, Hangzhou, Haikou, Chongqing, and Hefei. While the urbanization level and
population aging in the developed areas were further increased, the continuously increasing heatwave
hazard should be fully considered.

Keywords: heatwave; hazard assessment; heatwave index; spatiotemporal distribution; Chinese mainland

1. Introduction

Global warming has contributed to the increasing frequency and intensity of extreme
climate disasters [1,2], and heatwaves account for the highest mortality rate among all extreme
disasters [3,4]. The 2003 European heatwave caused approximately 70,000 deaths [2,5,6], and
at least 5758 heat-related deaths were caused by the 2013 Chinese heatwave [7–9]. The 2019
Indo-Pakistani heatwave caused at least 400 deaths, accompanied by widespread drought and
water scarcity [10], and it was one of the factors that led to the Bihar encephalitis outbreak [11].
Furthermore, the 2021 heatwave in Western North America led to a record temperature of
49.6 ◦C in Canada [12], resulting in more than 1400 deaths [13,14]. Previous studies have
shown outdoor workers, the poor, and the vulnerable to be more vulnerable to the effects
of heatwaves, as well as the agricultural and forestry disasters caused by heatwaves [15–17].
Therefore, research on heatwaves is imperative in the context of global warming.

A heatwave is a weather process involving high temperatures, high humidity levels, and
long durations, which leads to bodily discomfort and may threaten public health and safety,
increase energy consumption, and affect social production activities [18]. At present, various
temperature indices are available to define heatwaves, such as the air temperature [19–21],
surface temperature [22], and dew point temperature [23]. There is a growing tendency for
analyzing heatwaves using apparent temperature indices such as the physiological equivalent
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temperature (PET) [24], standard effective temperature (SET) [25], temperature–humidity–
wind index (THW) [26], humidex [27], wet-bulb globe temperature (WBGT) [28], universal
thermal climate index (UTCI) [29,30], and heat index (HI) [31], which take into consideration
additional indicators such as the relative humidity, wind speed, and atmospheric precipitation.
Notably, no consistent definition exists regarding the temperature threshold and number of
days of a heatwave [32]. The results of a previous study showed that the HI is a valid index for
predicting heatwave weather [31], which has been used by many researchers in the study of
heatwaves in China [33–35]. Therefore, the HI was used to identify and define the heatwave
index (HWI) and heatwaves. Previous studies have shown that the adaptation of populations
to climates varies from region to region [36–39], which means it is rather unreasonable to
judge a heatwave in a complex climate region based on a single absolute threshold or a simple
relative temperature threshold.

In the Special Report on Managing the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation [40] and the Fifth Assessment Report (AR5) [41]
of the Intergovernmental Panel on Climate Change (IPCC), a risk-centered assessment
framework was presented, in which risk was expressed as a function of hazard, exposure,
and vulnerability [42]. Therefore, clarifying the spatiotemporal distribution of heatwave
hazards is a necessary prerequisite for judging the evolutionary trend of heatwave risks.
In the given framework, hazard was defined as the external factors of a system that pose
a serious threat to the system [43]. Some researchers have directly used the temperature
index to define hazards [29,42]. However, the scientific literature shows that a heatwave
hazard is a measure of the severity of heatwave events, usually determined by the intensity,
duration, frequency, and extent of heatwaves [32,44–49] and calculated using the graphic
overlay method [50–53].

China is a sensitive and significant area for the impacts of global climate change [54]. Since
the 21st century, heatwaves have frequently occurred in China, and heatwaves are expected
to form the new normal of the country’s summer weather in 2030 [55]. In addition, the results
of Sun’s study on Chinese heatwaves showed a linear increase in intensity and a significant
increase in frequency [56]. Early studies involving heatwave hazard assessments in China
used different definitions based on the meteorological stations considered and focused on
small areas and short time periods, resulting in the shortcomings of a discrete distribution and
poor spatiotemporal continuity. For instance, Zhao et al. used the weighted averages of the
surface temperature, air temperature, and air pressure to assess the hazard level in Ningxia
for the years 2014–2019 [57]. Wang defined heatwave hazards based on the interpolated data
from meteorological stations. The duration, intensity, accumulated heat days, and length and
intensity of the return period were used to analyze the heatwave hazard level of the Yangtze
River Delta region [58]. Zhan et al. used 35 ◦C as the temperature for a heatwave and analyzed
the heatwave characteristics, such as the intensity and duration, of the North China Plain on a
0.5◦ grid scale interpolated by the maximum temperature data. Relatively few long-term studies
of Chinese heatwave hazards have been conducted with a finer grid unit scale and without the
use of relative heat thresholds [59].

Since the 21st century, the intensity and extent of Chinese heatwaves have continued
to increase, causing serious impacts on residents. For the present study, heatwaves were
defined based on a HWI calculated using the torridity index (TI, ◦C) and HI, and an annual
heatwave hazard dataset with a spatial resolution of 0.01◦ was built based on the daily
monitoring data from 691 meteorological stations from May to September 1990–2019 in the
Chinese mainland (hereinafter referred to as China). The spatiotemporal distribution of
heatwave hazards in China was further evaluated for this period, and the average hazard
(AH) trends at the city and county levels were determined.

2. Materials and Methods
2.1. Study Area

Spanning almost 50 degrees in latitude, China has a wide variety of climate types.
The summer temperatures are consistently high across the country, and the temperatures



Int. J. Environ. Res. Public Health 2023, 20, 1532 3 of 23

gradually decrease as the latitude increases. Generally speaking, summer in China spans
the months of June–August. However, in some cities and regions, the temperature remains
high in May and September, affecting 18% of the total population, since China’s population
is very large compared to other countries [55,60,61].

2.2. Data Sources

Maximum temperature (MT, ◦C) and average relative humidity (RH, %) data from
699 meteorological stations in China (Figure 1) for the years 1990–2019, which were ob-
tained from the surface climate daily value dataset (V3.0) of the China Meteorological Data
Network (http://data.cma.cn/, accessed on 23 January 2021), were quality-controlled and
used to calculate the TI and HI. We focused on the extended summer period covering
the months of May–September to account for the impacts of early and late summer heat-
waves [62]. Four sets of random validation stations were selected to make their distribution
more uniform. Containing 10% of all stations (of a total of 69), each set randomly selects one
day of the month to apply, for a total of four days per month using only interpolation points
for interpolation. Some random validation stations overlap, so we obtained a validation set
of 241 points and a training set of 450 points.

Int. J. Environ. Res. Public Health 2023, 20, 1532 3 of 23 
 

 

of heatwave hazards in China was further evaluated for this period, and the average 
hazard (AH) trends at the city and county levels were determined. 

2. Materials and Methods 
2.1. Study Area 

Spanning almost 50 degrees in latitude, China has a wide variety of climate types. 
The summer temperatures are consistently high across the country, and the temperatures 
gradually decrease as the latitude increases. Generally speaking, summer in China spans 
the months of June–August. However, in some cities and regions, the temperature 
remains high in May and September, affecting 18% of the total population, since China’s 
population is very large compared to other countries [55,60,61]. 

2.2. Data Sources 
Maximum temperature (MT, °C) and average relative humidity (RH, %) data from 

699 meteorological stations in China (Figure 1) for the years 1990–2019, which were 
obtained from the surface climate daily value dataset (V3.0) of the China Meteorological 
Data Network (http://data.cma.cn/, accessed on 23 January 2021), were quality-
controlled and used to calculate the TI and HI. We focused on the extended summer 
period covering the months of May–September to account for the impacts of early and 
late summer heatwaves [62]. Four sets of random validation stations were selected to 
make their distribution more uniform. Containing 10% of all stations (of a total of 69), each 
set randomly selects one day of the month to apply, for a total of four days per month 
using only interpolation points for interpolation. Some random validation stations 
overlap, so we obtained a validation set of 241 points and a training set of 450 points. 

 
Figure 1. Domains of six geographical divisions—north (N), which consists of Beijing, Tianjin, 
Hebei, Shanxi, and Inner Mongolia; northwest (NW), which consists of Xinjiang, Qinghai, Gansu, 
Ningxia, and Shaanxi; northeast (NE), which consists of Heilongjiang, Jilin, and Liaoning; southwest 
(SW), which consists of Tibet, Yunnan, Sichuan, Chongqing, and Guizhou; south central (SC), which 
consists of Henan, Hubei, Hunan, Guangdong, and Guangxi; and east (E), which consists of 
Shandong, Anhui, Jiangsu, Shanghai, Zhejiang, Jiangxi, and Fujian—as well as meteorological 
stations. Four sets of random validation stations were selected to make their distribution more 
uniform. Containing 10% of all stations (of a total of 69), each set randomly selects one day of the 
month to apply, for a total of four days per month using only interpolation points for interpolation. 

Data on the elevation and geographical and administrative divisions were obtained 
from the Resource and Environmental Science and Data Center of the Chinese Academy 
of Sciences (https://www.resdc.cn/, accessed on 10 January 2021). The geographical 
divisions used in this study were as follows: north (N) consisted of Beijing, Tianjin, Hebei, 
Shanxi, and Inner Mongolia; northwest (NW) consisted of Xinjiang, Qinghai, Gansu, 
Ningxia, and Shaanxi; northeast (NE) consisted of Heilongjiang, Jilin, and Liaoning; 

Figure 1. Domains of six geographical divisions—north (N), which consists of Beijing, Tianjin, Hebei,
Shanxi, and Inner Mongolia; northwest (NW), which consists of Xinjiang, Qinghai, Gansu, Ningxia,
and Shaanxi; northeast (NE), which consists of Heilongjiang, Jilin, and Liaoning; southwest (SW),
which consists of Tibet, Yunnan, Sichuan, Chongqing, and Guizhou; south central (SC), which consists
of Henan, Hubei, Hunan, Guangdong, and Guangxi; and east (E), which consists of Shandong, Anhui,
Jiangsu, Shanghai, Zhejiang, Jiangxi, and Fujian—as well as meteorological stations. Four sets of
random validation stations were selected to make their distribution more uniform. Containing 10%
of all stations (of a total of 69), each set randomly selects one day of the month to apply, for a total of
four days per month using only interpolation points for interpolation.

Data on the elevation and geographical and administrative divisions were obtained
from the Resource and Environmental Science and Data Center of the Chinese Academy of
Sciences (https://www.resdc.cn/, accessed on 10 January 2021). The geographical divisions
used in this study were as follows: north (N) consisted of Beijing, Tianjin, Hebei, Shanxi,
and Inner Mongolia; northwest (NW) consisted of Xinjiang, Qinghai, Gansu, Ningxia,
and Shaanxi; northeast (NE) consisted of Heilongjiang, Jilin, and Liaoning; southwest
(SW) consisted of Tibet, Yunnan, Sichuan, Chongqing, and Guizhou; south central (SC)
consisted of Henan, Hubei, Hunan, Guangdong, and Guangxi; and east (E) consisted of
Shandong, Anhui, Jiangsu, Shanghai, Zhejiang, Jiangxi, and Fujian (Figure 1). The data on
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administrative divisions involved 34 provincial administrative units, 371 municipal units,
and 2902 county units.

Based on the commercial resource concentration, city hubs, city residents’ activities,
lifestyle diversity, and future plasticity, the RISING Lab constructed an index model of
cities’ business attractiveness and divided 337 cities into six categories: four first-tier cities,
15 new first-tier cities, 30 second-tier cities, 70 third-tier cities, 90 fourth-tier cities, and
128 fifth-tier cities [63]. To investigate the heatwave hazards in cities at different levels of
economic development, the city ranking data were used in this study.

2.3. Data Preparation
2.3.1. Spatial Interpolation of Meteorological Data

At present, the methods for obtaining meteorological data for a region based on the
spatial interpolation of discrete meteorological stations mainly include the inverse dis-
tance weighting (IDW) [64], Kriging [49], Parameter-Elevation Regressions on Independent
Slopes Model (PRISM), trend surface analysis (TSA), and thin plate smoothing spline
(TPS) [65] methods. Among them, Kriging and IDW are the most widely used in practical
applications. However, their interpolation accuracies are not high enough for unevenly
distributed meteorological data and complex terrains [66]. The TPS method based on the
principle of minimum curvature uses the characteristics of smoothly distributed meteoro-
logical elements in space to fit the surface, which is more reflective of the natural spatial
distribution of things [67]. The Australian National University Spline (ANUSPLIN) is a
special meteorological data space interpolation program based on TPS that can effectively
simulate terrain. It has been proven to be a reliable software program for meteorological
data interpolation [68,69], and its interpolation accuracy in complex terrain areas is better
than that of other methods [70,71]. It can complete the spatial interpolation of more than
two surfaces at the same time, so it is especially suitable for the interpolation of time series
meteorological data [72,73].

Thus, in this study, we used the ANUSPLIN to interpolate MT and RH with the help
of a one-dimensional independent covariate (the elevation data).

2.3.2. Interpolation Accuracy Validation

The accurate interpolation of MT and RH forms the premise for calculating heatwave
properties. Therefore, the cross-validation method was used to verify the MT and RH
datasets, and the process was as follows.

The mean absolute error (MAE), normalized mean absolute error (NMAE), root mean
square error (RMSE), and normalized root mean square error (NRMSE) values were calcu-
lated for the units of different timescales (day, month, year) using the validation set results
as the true values and the interpolated results as the predicted values.

The predicted values were fitted as independent variables and the true values as
dependent variables, while the slope, R2, and p values were calculated for the different
timescale units.

A total of 18 cross-validation results for the two variables—i.e., MT and RH—were
selected according to the descending order of R2 at the different timescales for presentation.
The numbers selected were for day 4, month 3, and year 2.

The results in Table 1 show that the minimum MAE values for the MT and RH
interpolations were 0.80 ◦C and 3.45%, respectively. The minimum RMSEs were 1.03 ◦C
and 4.76%, respectively. The minimum R2 value was 0.5318, but 98.08% of the results were
not lower than 0.7, indicating that the prediction values were highly correlated with the
true values (p < 0.001). The verification results showed that the interpolation results based
on ANUSPLIN were accurate and reliable. Therefore, the MT and RH datasets could be
used to calculate the TI and HI.
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Table 1. Interpolation verification results.

Date Variable Slope R2 P MAE NMAE RMSE NRMSE

22 May 1994 RH 0.9883 0.9585 1.2 × 10−47 3.6425 0 4.8385 0
5 May 2002 RH 0.9906 0.9393 8.9 × 10−43 4.4610 0.6736 5.6748 0.4558

22 May 2010 RH 0.9853 0.9390 1 × 10−42 4.4661 0.6777 5.8611 0.5574
22 May 2016 RH 0.9855 0.9427 5.25 × 10−43 3.9316 0.2379 5.3401 0.2734

May 1997 RH 0.9940 0.9078 4.58 × 10−142 4.8122 0.9625 6.3506 0.8241
May 1999 RH 1.0043 0.9064 3.53 × 10−141 4.6614 0.8384 6.4561 0.8816
May 2016 RH 0.9981 0.9156 8.96 × 10−148 4.6932 0.8646 6.5814 0.9499

1997 RH 0.9933 0.8652 0 4.8577 1 6.6733 1
1990 RH 0.9945 0.8645 0 4.6707 0.8461 6.4122 0.8577

17 August 1990 MT 1.0033 0.9717 4.19 × 10−53 0.8313 0 1.0669 0
10 May 1995 MT 1.0051 0.9654 2.98 × 10−50 0.9118 0.2746 1.3134 0.4205
31 July 2012 MT 1.0081 0.9664 2.17 × 10−51 0.9017 0.2399 1.1743 0.1831

27 September 2014 MT 0.9985 0.9659 3.55 × 10−51 1.0061 0.5960 1.3341 0.4559
September 1992 MT 0.9996 0.9532 6.97 × 10−182 1.0220 0.6503 1.4879 0.7182
September 2003 MT 1.0012 0.9544 4.55 × 10−184 1.0433 0.7229 1.5320 0.7934
September 2019 MT 1.0023 0.9486 1.24 × 10−177 0.9876 0.5330 1.4638 0.6772

1990 MT 0.9988 0.9409 0 1.1018 0.9227 1.6530 1
2003 MT 0.9994 0.9433 0 1.1245 1 1.6410 0.9796

Table 1 also presents the 18 cross-validation results obtained for the two variables, where
0.98 < slope < 1.0, R2 > 0.9, and the results passed the significance test (p < 0.01), as well as the
NMAE and NRMSE values calculated using the max–min normalization method.

2.4. Methods
2.4.1. Definitions of HWI and Heatwaves

The TI mainly considers the influence of the temperature and relative humidity on
human comfort [74], which is a heat stress metric similar to the commonly used heat
index [75–77]. The HI in this study uses the relative and absolute thresholds to define a heat
day and considers the cumulative effect of the adjacent days’ TI values [31]. Considering
the long durations of high-temperature heatwaves, in this study the HWI of a heatwave
was defined as the average value of the daily HI, while a heatwave was defined as an event
with TI ≥ TI′ for three consecutive days or more and HWI ≥ 2.8. The HWI threshold was
based on a comprehensive HI finding, indicating that the heat grade of the day reaches the
heatwave standard if HI ≥ 2.8. The calculation model is given below:{

TI = 1.8 × MT − 0.55 × (1.8 × MT − 26) × (1 − 0.6)+32, RH ≤ 60%
TI = 1.8 × MT − 0.55 × (1.8 × MT − 26) × (1 − RH)+32, RH > 60%

(1)

HI = 1.2 ×
(
TI − TI′

)
+0.35

N

∑
i=1

1/ndi
(
TIi − TI′

)
+0.15

N−1

∑
i=1

1/ndi+1 (2)

HWI =∑N
i=1 HIi (3)

TI′ is the threshold of the TI; TIi represents the TI of the i-th day before the current
day; ndi represents the number of days from the i-th day before the current day to the
current day; HIi represents the i-th day in a heatwave event; N represents the duration of
the heatwave event, measured is days (d).

The TI′ was calculated from the quantiles of the TI. First, samples (MT and RH) with
MT > 33 ◦C were selected from the daily meteorological data, and the TI sequence of the
samples was arranged in ascending order. The 50th quantile was selected as the local TI′.
The calculation method is given below:

ˆ
Qi
(p) = (1 − γ)X(j)+γX(j+1)

j = int(p × n + (1 + p)/3)
γ = p × n+(1 + p)/3 − j

(4)
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Here, ˆ
Qi
(p) is the i-th quantile value; X is the TI sequence in ascending order; p is the

quantile (0.50); n represents the total number of sequences; j is the j-th sequence number.
First, daily TI raster datasets were determined based on the interpolated MT and RH,

and then the TI′ raster was calculated based on Equation (4). Following this, TI′ was used
for the comparison data, and each TI was traversed. The obtained value was compared
with the value of the corresponding pixel in the comparison data. A pixel value greater
than the comparison data indicated heat and was marked as 1, while the opposite was
marked as 0, resulting in daily raster datasets of 0 and 1, for a total of 4590. The HI dataset
was calculated based on the judgment dataset. According to the definition of a heatwave,
the pixels with a single heat event (without interruption) comprising less than three heat
days or HWI < 2.8 were ignored to obtain the HWI dataset. Thus, the pixels in the heatwave
represented the HWI of the heatwave, the corresponding pixel of a single day with the
highest HI in a single heatwave was marked as the HI of that day, and the pixel marked as
0 represented no heatwave occurrence.

2.4.2. Heatwave Hazard Assessment and Classification

A heatwave hazard is usually defined based on the heatwave frequency, intensity,
and duration. In this study, the heatwave frequency (HWF), maximum HI of a heatwave
(HWMHI), and maximum heatwave duration (HWMD) in a year—representing the fre-
quency, intensity, and duration, respectively—were used to calculate the heatwave hazard.
To make the hazard values comparable from year to year, we calculated the maximum
value of each indicator for the 30-year period, used this value to normalize the data, and
then added the indicators with equal weights, as given in Equation (5):

Hazard = (HWF + HWMD + HWMHI)/3 (5)

Based on the HWI dataset, the data were calculated separately for each year and for
each pixel. The heatwaves were judged day-by-day, and the HWF value was increased by
1 in the case of a consecutive heatwave. If there was no value for HWMHI, the maximum
value in this heatwave was assigned to HWMHI. If a value already existed, the new
HWMHI value was compared with the existing value, and it was used if it was greater
than the existing value. If there was no value for HWMD, the number of days for which the
heatwave lasted was assigned to HWMD, and if a value already existed, it was compared
with the new value and replaced with the new value if the latter was greater than the
existing value. This process was followed to obtain the HWF, HWMHI, and HWMD
datasets for each year.

The natural breaks method was used to classify the spatial distribution and tempo-
ral trends of the AH values, and each was categorized as high, medium-high, middle,
medium-low, or low (red section in Figure 2), and as increasing, slightly increased, basically
unchanged, slightly decreased, or decreased (green section in Figure 2) [42,50]. Apart
from the above two classifications, the hazards in China were further divided into four
categories: high hazard and rapidly increasing, high hazard and slightly decreasing or
no significant change, low hazard and continually increasing, and others (blue section
in Figure 2). The spatiotemporal classification standards of the above four categories are
presented in Figure 2. In Figure 2, “or” relationships are present between bands of the
same color section, and “and” relationships are present between bands of different color
sections; for example, the “high hazard and rapidly increasing” category consisted of the
following four scenarios: high hazard and increased, high hazard and slightly increased,
medium-high hazard and increased, and medium-high hazard and slightly increased.
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sections represent the spatial distribution and temporal change classifications of heatwave hazards,
respectively, while the blue section represents the spatiotemporal classification of heatwave hazards.

The AH values were used to rank heatwave hazards in the Chinese administrative
divisions, and the zoning statistics methodology was used in this study. We first obtained
the AH means of each administrative division for the 30-year period and then ran a linear
regression over time for each administrative region. Following this, we selected first-tier,
new first-tier, and second-tier cities and counties and ranked them in descending order for
the AH and slope.

2.4.3. Analysis of the Relative Change of Indicators

A time period spanning 30 years was chosen for this study. To better compare the
changes in different indicators, the average values for the first five years (FY, 1990–1994)
and the last five years (LY, 2015–2019) were considered. In addition, the level of change
for each indicator was different for each geographical division. For average TI (ATI), the
change also differed each month. Therefore, the ATI was analyzed in terms of the different
geographical divisions and months, and each heatwave indicator was analyzed according
to the different geographical partitions. Then, the average values for FY and LY were
calculated. Moreover, the concept of relative change (RC, %) was introduced to avoid
the one-sidedness of the absolute change amount when comparing different months or
divisions [78]. The RC was calculated as follows:

RCi,g(,m)= (iLY,g(,m) − iFY,g(,m))/ig(,m) (6)
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Here, i, g, and m represent the different indicators (ATI, HWF, HWMHI, HWMD),
different geographical divisions (N, NW, NE, SW, S, E), and different months (May, June,
July, August, September), respectively; iLY,g(,m) and iFY,g(,m) represent the average values
of LY and FY for an indicator, respectively; ig(,m) represents the average indicator value
for the period 1990–2019. RCi,g(,m) > 0.8 means that the indicator increased sharply for the
geographical zone considered in a specific month (if the RC is calculated).

3. Results
3.1. Dynamic Changes in TI in Different Months

Figure 3 shows the ATI values for the five months considered over the 30-year period.
In terms of the TI, the high-value areas (HAs) in China were mostly located in the northwest,
east, and south, while the low-value areas (LAs) were located in the SW and NE. With the
northward movement of the direct sunlight region and the influence of topography, the
HAs expanded in East Xinjiang, Southeast Tibet, and Hainan in May (Figure 3a). After
various regions reached high levels with different coverage rates in June, July, and August
(Figure 3b–d), the HAs begun to move southward in September (Figure 3e). By this time,
apart from the HAs in East Xinjiang, Southeast Tibet, Guangdong, South Guangxi, and
Hainan, the TI values for the other areas greatly decreased. The TI in southern China
was low because of the rainy season in May and June, so HAs appeared in the north
(Figure 3a,b). In July and August, South China began heating up on a large scale.

1 
 

 

 

 

Figure 3. Spatial distribution of annual average TI (ATI) values for the years 1990–2019: (a) May,
(b) June, (c) July, (d) August, (e) September.

With the time series as the independent variable and the ATI of each month over
30 years as the dependent variable, linear regression was carried out and the change slope
was calculated, with a significance test performed. Figure 4 shows the ATI slopes for the
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different months and the monthly slope (p < 0.05). A slope higher than 0 indicates that the
TI had a linearly increasing trend, while a slope lower than 0 indicates that the TI had a
linearly decreasing trend. The proportions (slope > 0) were 99.99%, 99.43%, 100%, 99.03%,
98.00%, and 99.92% in the grids passing the significance test, indicating that the trend of
increasing TI was widespread and significant. In May, HAs were located in Beijing, Tianjin,
Shandong, Yunnan, Sichuan, and other areas (Figure 4a). In June, July, and August, HAs
appeared in the central and western provinces of China, East Tibet, West Yunnan, and Inner
Mongolia (Figure 4b–d), with a continuous distribution. HAs appeared in the southeastern
provinces of China in August and September, as well as in Liaoning, East Inner Mongolia,
and Central and West Tibet in September (Figure 4d,e), with relatively discrete distributions.
The ATI values dramatically increased in the regions where the slope was greater than 0.1.
The monthly slope was reduced by the effects of inter-year changes, but the increasing
areas passing the significance test were still consistent with the above results.
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Figure 5 shows the annual changes in the national ATI and the RC values of the ATI for
different regions and different months. From 1990 to 2019, the ATI was found to increase,
but with fluctuations. The minimum ATI value hovered around 110.5 in 1992–1994, while
the maximum value appeared in 2007 at about 113.5 ◦C. The total ATI increase was about
1.99 over 30 years (Figure 5a). The RC of the ATI was the largest (3.39%) in July, and from a
regional perspective, the RC values of the ATI in descending order were N > nation > NW >
NE > SW > SC > E. The RC values of the ATI in the SW and NE—which are regions sensitive
to climate change—were higher than the national average in June and September (Figure 5b).
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3.2. Assessment of Hazard Indicators

Figure 6 shows the annual averages and slopes for three hazard indicators, namely the
HWF, HWMHI, and HWMD, for the years 1990–2019 (p < 0.05). HAs for these indicators
were mostly found in the NW, E, and SC, followed by the N, while LAs were found in
the NE and SW. Extremely high values were found in the southeastern region of the SW
(Figure 6a,c,e), while a small number of extremely high values of HWF were found in
Southeast Tibet and East Xinjiang. Except for the extremely low values, the HWFs for
a large area of the country reached an average of 3–4 times per year and were widely
distributed in the eastern provinces of China, Chongqing, and Sichuan (Figure 6a). The
maximum HWMHI range in Southeast Tibet was 24–26, the highest values in the country,
followed by Chongqing and East Xinjiang at 17–23 and South Hebei, East Henan, Central
Zhejiang, South Hunan, Northwest Shandong, and South Shaanxi at 13–20 (Figure 6c). The
distribution pattern of the HWMD was the same as that of the HWF. The highest HWMD
range (11–16 days) was found in East Xinjiang and Southeast Tibet, with an average of
4–8 days, while the highest HWMD range was about 8–10 days (Figure 6e). In terms of
the temporal trend, the percentages of slopes > 0 in areas passing the significance tests for
the HWF, HWMHI, and HWMD were 99.84%, 99.98%, and 99.96%, respectively, indicating
that the heatwave frequency, intensity, and duration increased in most of the regions where
significant changes occurred, such as Southwest Xinjiang, West Inner Mongolia, Chongqing,
Henan, Shandong, Jiangsu, Zhejiang, and Hunan (Figure 6b,d,f).
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medium and above were mainly distributed in the eastern and southern provinces of 
China, Southeast Tibet, East and South Xinjiang, and Chongqing. The low-AH areas were 
mainly in the Qinghai–Tibet Plateau and the northeastern provinces of China due to their 
high altitudes and latitudes. Although the rates of increase in these regions were high, 
they could not reach the heatwave standard in the short term. Figure 8b shows the 
regression results of the AH values used to assess the annual changes in hazard levels. 
Except for a few regions, the hazard levels of the regions that passed the significance test 

Figure 6. Spatial distribution of the averages and slopes of the HWF (a,b), HWMHI (c,d), and HWMD
(e,f) for the years 1990–2019.

Figure 7 shows the RC levels of the HWF, HWMHI, and HWMD. It can be seen that
the RCs of the HWF descended in the order of N > SC > NE > 0.8 > nation > E > NW > SW;
the RCs of the HWMHI descended in the order of N > NE > NW > 0.8 > nation > E > SW >
SC; and the RCs of the HWMD descended in the order of NW > N > SC > 0.8 > NE > E >
SW > nation. All results were greater than 0, meaning the values of all indicators increased
in all regions, and each indicator sharply increased in some regions. Here, 2–3 sharply
increasing indicators were found in the N, NE, NW, and SC regions. Therefore, a sharper
increase occurred in northern China than in southern China. The largest RC was that of
the HWMD, which occurred in the NW. The smallest RC was also for the HWMD, which
occurred for the nation overall.

Int. J. Environ. Res. Public Health 2023, 20, 1532 11 of 23 
 

 

the HWMD, which occurred in the NW. The smallest RC was also for the HWMD, which 
occurred for the nation overall. 

 
Figure 6. Spatial distribution of the averages and slopes of the HWF (a,b), HWMHI (c,d), and 
HWMD (e,f) for the years 1990–2019. 

 
Figure 7. RC values of HWF, HWMHI, and HWMD. 

3.3. Spatiotemporal Distribution of Heatwave Hazard 
Figure 8a shows the AH spatial distribution in China for the years 1990–2019. The 

proportions of low, medium-low, medium, medium-high, and high AH values were 
61.07%, 16.77%, 13.07%, 7.06%, and 2.03%, respectively. The areas with AH levels of 
medium and above were mainly distributed in the eastern and southern provinces of 
China, Southeast Tibet, East and South Xinjiang, and Chongqing. The low-AH areas were 
mainly in the Qinghai–Tibet Plateau and the northeastern provinces of China due to their 
high altitudes and latitudes. Although the rates of increase in these regions were high, 
they could not reach the heatwave standard in the short term. Figure 8b shows the 
regression results of the AH values used to assess the annual changes in hazard levels. 
Except for a few regions, the hazard levels of the regions that passed the significance test 

Figure 7. RC values of HWF, HWMHI, and HWMD.



Int. J. Environ. Res. Public Health 2023, 20, 1532 12 of 23

3.3. Spatiotemporal Distribution of Heatwave Hazard

Figure 8a shows the AH spatial distribution in China for the years 1990–2019. The
proportions of low, medium-low, medium, medium-high, and high AH values were 61.07%,
16.77%, 13.07%, 7.06%, and 2.03%, respectively. The areas with AH levels of medium and
above were mainly distributed in the eastern and southern provinces of China, Southeast
Tibet, East and South Xinjiang, and Chongqing. The low-AH areas were mainly in the
Qinghai–Tibet Plateau and the northeastern provinces of China due to their high altitudes
and latitudes. Although the rates of increase in these regions were high, they could not
reach the heatwave standard in the short term. Figure 8b shows the regression results
of the AH values used to assess the annual changes in hazard levels. Except for a few
regions, the hazard levels of the regions that passed the significance test all increased to
varying degrees, including the eastern provinces of China, South Xinjiang, and Western
Inner Mongolia.
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Figure 8. Heatwave hazard assessment (a) and slope of the AH values (b).

The visualization results for the spatiotemporal distribution of heatwave hazards in
China are shown in Figure 9. The first category of areas accounted for 8.71% and included
Southeast Tibet, South Xinjiang, Chongqing, South Hebei, West Henan, Central Zhejiang,
Central and South Jiangxi, and East Hunan. The second category accounted for 0.38%, and
the distribution area was concentrated in Northwest Xinjiang, which means that the hazard
levels of almost all high hazard areas were increasing. The third category accounted for
41.33%, with a wide distribution area in East, South, and North China, which means that
most of the low hazard areas saw an increasing hazard trend that will continue to increase
in the future. The spatiotemporal hazard levels of other areas, such as the Qinghai–Tibet
Plateau, Yunnan–Guizhou Plateau, and parts of Northeast China, were low due to their
high altitudes and latitudes.
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3.4. Ranking the Heatwave Hazard Levels of Chinese Cities

We evaluated the AH values at the city and county levels and their slopes. The top
100 results at the city and county levels are shown in Tables A1 and A2, respectively, and the
10 cities and 10 counties with the fastest increases in hazard values are presented in bold.
Table A1 shows the AH values of the first-tier, new first-tier, and second-tier cities. Luohe
(Henan) was found to have the highest AH, while Suzhou (Jiangsu) had the highest slope
(Table A1). Shanghai and the Gulou, Shunhe Huizi, Yuwangtai, Longting, and Xiangfu
districts in Henan Kaifeng; the Wancheng District in Henan Nanyang; and the Xiangcheng
District in Jiangsu Suzhou were in the top ten cities and counties in terms of fastest increases
but not in the top 100 AH rankings, which means the AH values of these regions were
not high but their growth rates were at the forefront. The administrative districts that
passed the significance test are marked with “*” in the tables (p < 0.05), while the proportion
of units that significantly increased, as seen in Tables A1 and A2, equaled 57% and 68%,
respectively, at the city and county levels.

Beijing, Chongqing, Tianjin, and Shanghai had relatively low rankings overall (Table 2),
but some urban districts in Chongqing had higher rankings at the county level (Table A2).
The possible reason for this phenomenon is that the presence of suburbs reduced the
statistical significance of the mentioned cities. The top 10 first-tier, new first-tier, and second-
tier cities were Jinhua, Zhengzhou, Nanchang, Wuhan, Shaoxing, Changsha, Shijiazhuang,
Nanjing, Wuxi, and Changzhou. The top 10 provincial capitals were Zhengzhou, Nanchang,
Wuhan, Changsha, Shijiazhuang, Nanjing, Hangzhou, Haikou, Chongqing, and Hefei, and
these were termed the “ten furnaces” in this study.

Table 2. AH rankings of first-tier, new first-tier, and second-tier cities.

Index City Index City Index City Index City

1 Jinhua, Zhejiang 14 Chongqing 27 Zhongshan, Guangdong 40 City of Yantai
2 * Zhengzhou, Henan 15 Hefei, Anhui 28 * Nanning, Guangxi 41 Guiyang, Guizhou
3 Nanchang, Jiangxi 16 * Xuzhou, Jiangsu 29 * Nantong, Jiangsu 42 * Xiamen, Fujian
4 * Wuhan, Hubei 17 * Suzhou, Jiangsu 30 Taizhou, Zhejiang 43 Taiyuan, Shanxi
5 Shaoxing, Zhejiang 18 * Foshan, Guangdong 31 Beijing 44 Harbin, Heilongjiang
6 * Changsha, Hunan 19 Jinan, Shandong 32 * Huizhou, Guangdong 45 Dalian, Liaoning
7 Shijiazhuang, Hebei 20 Tianjin 33 Chengdu, Sichuan 46 Lanzhou, Gansu
8 * Nanjing, Jiangsu 21 * Yangzhou, Jiangsu 34 Fuzhou, Fujian 47 Changchun, Jilin
9 * Wuxi, Jiangsu 22 Dongguan, Guangdong 35 Wenzhou, Zhejiang 48 * Kunming, Yunnan

10 * Changzhou, Jiangsu 23 * Shanghai 36 Shenzhen, Guangdong 49 * Quanzhou, Fujian
11 * Jiaxing, Zhejiang 24 * Guangzhou, Guangdong 37 Shenyang, Liaoning
12 Hangzhou, Zhejiang 25 Ningbo, Zhejiang 38 Zhuhai, Guangdong
13 Haikou, Hainan 26 Xi’an, Shaanxi 39 Qingdao, Shandong

Note: * means that the city passed the significance test.
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4. Discussions
4.1. Heatwave Hazards in Chinese Mainland

In 2013, severely high temperatures occurred in South China, resulting in extreme
drought and food production reduction [79]. In the summer of 2018, heatwaves in Northeast
Asia and East Asia caused more than 43.13 thousand km2 of arable land to dry up, and
more than 4.6 million people faced shortages of drinking water [80]. Figure 10 shows the
heatwave indicators in 2013 and 2018. It can be seen that the present study successfully
detected these heatwave events. In 2013, 4–6 heatwaves were detected in the Yangtze River
Basin (1–4 in other years) (Figure 10a), the HWMHI values reached 18–30 (Figure 10c), the
longest heatwaves lasted 10–20 days, and a heatwave lasting 23 days occurred in Central
and North Hunan (Figure 10e). The heatwaves in Northeast China in 2018 mainly occurred
in two regions: the junction of Central South Heilongjiang and Northeast Jilin and the
junction of Liaoning and Southeast Jilin (Figure 10b,d,f).

 

2 

 
Figure 10. HWF, HWMHI, and HWMD values in 2013 (a,c,e) and 2018 (b,d,f).

The present study showed an obvious upward trend in the northeast and the Qinghai–
Tibet Plateau during TI, which aligns with the results of previous studies [81–84]. We further
verified the reliability of the results by comparing them with those of past research [49],
as shown in Figure 11. The results revealed good consistency in the eastern, northeastern,
and northwestern regions of China, and high-hazard areas, such as Southeast Tibet, East
Xinjiang, Chongqing, and other regions, were accurately identified. However, the results
obtained for South China, such as the Hainan and Guangxi regions, were quite different,
which means that Yin’s results may have overestimated the hazards in these areas. The
possible reason is that the definition in the past study only included the annual relative
temperature threshold and not the long-term changes. In addition, another possible reason
is that Yin’s study involved more tropical and arctic regions, which reduced the differences
within China. Third, to make the results comparable between years, it is also necessary
to normalize the annual indicators using a unified threshold. In contrast, the results of
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the heatwave hazard assessment in this study are more consistent with those of existing
studies. They are also more accurate and better reflect the hazard levels in China.
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Several studies have shown that urban heat islands and heatwaves synergistically
increase the overall risk levels of cities [85,86]. In 2017, the China Meteorological Adminis-
tration released the rankings for hot summer cities in China, which included Chongqing,
Fuzhou, Hangzhou, Nanchang, Changsha, Wuhan, Xi’an, Nanjing, Hefei, and Nanning.
Therefore, these are known as the “ten furnaces” [87]. A similar conclusion was drawn
in the present study about the new “ten furnaces”, as mentioned above. While the previ-
ously reported results differed slightly from ours, they were similar overall. Specifically,
seven of the originally reported cities, including Nanchang and Wuhan, remained in the
“ten furnaces” group identified in the present study, while Nanning, Xi’an, and Fuzhou
were replaced by Zhengzhou, Shijiazhuang, and Haikou. This may have been due to the
differences in the research scale (point scale and grid scale) and the calculated standards
(HI and heatwave hazard). Zhengzhou, Wuhan, Changsha, and Nanjing were found to
have experienced significant increases in hazard levels. Previous research has pointed out
that the North China Plain is threatened by deadly heatwaves [44], which provides another
explanation for the cities in North China becoming “furnace cities.” Notably, Jinhua (Zhe-
jiang) ranked first in terms of AH values, and this result was similar to past research [57].
The possible reason for this is that Jinhua is surrounded by mountains and experiences
rapid warming during the day and slow cooling at night [88]. Research shows that defining
city classes, which was the method used in this study, can help focus on cities that are easily
overlooked in heatwave research.

4.2. Strengths and Limitations of the Study

Previous studies have pointed out that extreme regional heatwaves will increase sig-
nificantly with global warming [89–91], while temporal or spatial compounding heatwave
events will further increase these heat-related hazards [62,92,93]. The traditional hazard
assessment method of heatwaves only considers temperature variables, which may lead to
inaccuracies in dry and wet areas. Compared to studies that only consider temperatures,
the present study can better reflect people’s feelings. In addition, the hazard assessment
of China’s heatwaves at the grid scale, particularly with a spatial resolution of 0.01◦, was
more refined than those of meteorological stations, and this method can help intuitively
describe the heatwave grades in different regions. Third, the heatwave research tends to
focus more on cities due to the impacts of urban heat islands [46,85,86]. However, a large
number of farmers and migrant workers in vast rural China, who are relatively poor and
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need to work in hot weather for long periods of time, also need to be considered. This
study’s results showed spatial continuity, as they relate to whole areas, and may be used to
provide assistance to the inhabitants of these areas from a heatwave perspective.

However, it should be noted that the relationship between heatwaves and human
health is extremely complex, so the apparent temperatures used in different studies are not
unique. In some cases, the adverse effects on humans may have been overestimated (such
as the narrow tube effect between large high-rise buildings) or underestimated (such as
strong solar radiation outdoors) [94], but the effects of radiation and wind speed on the
human body are relatively insignificant. Therefore, the indicators selected for this study
did not consider the effects of the wind speed or underlying surface. The effects of the
apparent temperature were relatively insignificant [47]. In addition, the importance of each
indicator was not differentiated, which is also a limitation of the study, because different
regions and different indicators have different effects on hazards.

4.3. Implications for Future Heatwave Research and Public Policy

Previous studies have shown the additional mortality caused by an initial heatwave
equals 5.04%, which is higher than the mortality rate afterwards (2.65%) [95]. Heatwaves
affect the thermoregulatory system of organisms through heat stress, causing harm to
organisms and the natural world [96]. Previous studies have shown that the faster the
temperature changes, the higher the heat stress [97,98]. Therefore, it is necessary to pay
extra attention to heatwave characteristics such as heatwave start and end dates and
different heatwave grades. These characteristics can also provide us with a heatwave’s
spatial and temporal information. In fact, the grid datasets for TI and HI values in China
are convenient for heatwave characteristics research.

Several areas highlighted in Figure 6 need our attention, including Southeast Tibet,
East Xinjiang, Chongqing, North Henan, and Central Zhejiang. The values of the heatwave
indicators in Chongqing and Central Zhejiang were much higher than the national averages,
and the populations in these areas are growing due to economic construction and tourism,
raising the need to pay more attention to these regions. The government should rationally
determine the schedules of outdoor workers (such as sanitation workers and construction
workers) based on the heatwave characteristics of the different regions, while other social
organizations should actively publicize relevant heatwave prevention knowledge to reduce
the possibility of residents being exposed to high temperatures and humidity levels for
extended durations, thereby reducing the possibility of heatwaves harming their health.
In addition, several areas with low spatiotemporal hazard levels were identified in this
study. Because their high sensitivity to climate change and high ecological vulnerability,
the ecological protection and construction of these areas should not be neglected.

By accurately forecasting heatwave weather, potential deaths due to heatwaves can
now be avoided via the joint efforts of the government, individuals, and caregivers of at-risk
people [99]. Previous studies have shown the success of heatwave warning systems, which
can result in a large amount of people being saved, as well as high profits [99,100]. However,
social heatwave handling systems need to be further researched. The demand for electric
power will be difficult to meet under the combined pressure of soaring electricity use and
drought, which is more prevalent in the southern regions of China during heatwaves, as
these areas rely more on hydropower. The present study’s results also highlighted some of
these regions. In addition, meteorological disasters, such as dry–hot winds and forest fires
caused by heatwaves, will also have impacts on agriculture and forestry, leading to the loss
of human society. In severe cases, these will threaten human health and even human lives.
If a more comprehensive assessment of heatwave hazards is required in the future, the
indicators that directly or indirectly pose health threats to humans should be focused on.

5. Conclusions

Based on the interpolated MT and RH data, we calculated the TI and HWI values.
Based on the HWI, the HWF, HWMHI, and HWMD datasets for Chinese mainland, cov-
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ering the years 1990–2019, were obtained with a spatial resolution of 0.01◦, and their
spatiotemporal distribution was analyzed. Then, the spatiotemporal distribution of the
heatwave hazards was evaluated. The results revealed the following points.

(1) The TI increased in 1990–2019, albeit with fluctuations, with the highest ATIRC value
found in North China, followed by Northwest China, in July (3.39%). Notably, there
was a clear trend of increasing TI values in climate-sensitive regions, such as Northeast
China and the Qinghai–Tibet Plateau, in June and September.

(2) The areas with medium hazard levels and above were mainly distributed in East and
South China, Southeast Tibet, East and South Xinjiang, and Chongqing, accounting
for 22.16% of the total. The areas with significantly increasing hazard levels were East
China, South Xinjiang, and Western Inner Mongolia. Through a comparative analysis,
the areas with “high and rapidly increasing” hazard levels, such as Southeast Tibet,
South Xinjiang, Chongqing, South Hebei, West Henan, Central Zhejiang, Central and
South Jiangxi, and East Hunan, accounted for 8.71% of the country, while the areas
with “low and continually increasing” hazard levels were widely distributed in the
eastern, southern, and northern regions of China, including Jiangsu, Inner Mongolia,
Hainan, Shandong, and Heilongjiang, which accounted for 41.33% of the total.

(3) The city with the highest AH value was Luohe (Henan), while the city with the fastest
growth was Suzhou (Jiangsu). The units of cities and counties were found to have
increased significantly by 57% and 68%, respectively. Among the 49 first-tier, new
first-tier, and second-tier cities, the top 10 were Jinhua, Zhengzhou, Nanchang, Wuhan,
Shaoxing, Changsha, Shijiazhuang, Nanjing, Wuxi, and Changzhou. Some of these
cities have low administrative or economic development levels, which have reduced
the attention paid to the mentioned cities. However, it is necessary to pay attention
to the internal infrastructure construction in these cities to reduce the harm of future
heatwaves. Upon ranking the provincial capitals, the “ten furnaces” were identified
as Zhengzhou, Nanchang, Wuhan, Changsha, Shijiazhuang, Nanjing, Hangzhou,
Haikou, Chongqing, and Hefei (sequentially).
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Appendix A

Table A1. Top 100 cities by average hazard (AH) values.

Index City MEAN Slope City-Class Index City MEAN Slope City-Class

1 * Luohe, Henan 0.6388 0.0106 fifth-tier 51 Jining City 0.4393 0.0073 third-tier
2 * Jiaozuo, Henan 0.6380 0.0104 fourth-tier 52 Quzhou, Zhejiang 0.4367 0.0063 fourth-tier
3 * Xuchang, Henan 0.6359 0.0119 fourth-tier 53 * Suzhou, Jiangsu 0.4322 0.0119 fourth-tier
4 Guang’an, Sichuan 0.6020 0.0155 fifth-tier 54 * Nanjing, Jiangsu 0.4314 0.0138 new first-tier
5 * Hebi, Henan 0.5985 0.0135 fifth-tier 55 * Wuxi, Jiangsu 0.4307 0.0145 second-tier
6 Karamay, Xinjiang 0.5931 −0.0043 fifth-tier 56 * Changzhou, Jiangsu 0.4307 0.0145 second-tier
7 * Turpan, Xinjiang 0.5922 0.0116 fifth-tier 57 * Jiaxing, Zhejiang 0.4293 0.0177 second-tier
8 * Xinxiang, Henan 0.5867 0.0163 third-tier 58 Xiaogan, Hubei 0.4243 0.0067 fourth-tier
9 * Puyang, Henan 0.5786 0.0128 fifth-tier 59 * Zhuzhou, Hunan 0.4236 0.0108 third-tier

10 Dezhou, Shandong 0.5607 0.0050 fourth-tier 60 Hangzhou, Zhejiang 0.4206 0.0091 new first-tier
11 * Pingdingshan, Henan 0.5603 0.0118 fourth-tier 61 Wuhu, Anhui 0.4180 0.0065 third-tier
12 Liaocheng, Shandong 0.5540 0.0083 fourth-tier 62 * Huainan, Anhui 0.4136 0.0100 fourth-tier
13 Hengyang, Hunan 0.5528 0.0134 third-tier 63 * Yueyang, Hunan 0.4082 0.0119 third-tier
14 * Kaifeng, Henan 0.5521 0.0177 fourth-tier 64 * Huzhou, Zhejiang 0.4056 0.0132 third-tier
15 Jinhua, Zhejiang 0.5459 0.0125 second-tier 65 * Dongying, Shandong 0.4042 0.0139 fourth-tier
16 * Ezhou, Hubei 0.5416 0.0145 fifth-tier 66 * Changde, Hunan 0.4038 0.0121 fourth-tier
17 * Anyang, Henan 0.5395 0.0108 fourth-tier 67 * Xinyang, Henan 0.4035 0.0088 third-tier
18 * Zhengzhou, Henan 0.5349 0.0129 new first-tier 68 Haikou, Hinan 0.3997 0.0055 second-tier
19 Xinyu, Jiangxi 0.5305 0.0064 fifth-tier 69 * Xianning, Hubei 0.3996 0.0090 fourth-tier
20 * Bozhou, Anhui 0.5252 0.0109 fourth-tier 70 * Bayingoleng, Xinjiang 0.3938 0.0088 fifth-tier
21 * Huaibei, Anhui 0.5243 0.0140 fifth-tier 71 Chongqing 0.3935 0.0096 new first-tier
22 Hengshui, Hebei 0.5238 0.0061 fifth-tier 72 * Zhenjiang, Jiangsu 0.3914 0.0149 third-tier
23 * Zhoukou, Henan 0.5234 0.0133 fourth-tier 73 * Sanya, Hainan 0.3859 0.0123 third-tier
24 * Shangqiu, Henan 0.5233 0.0097 third-tier 74 Hefei, Anhui 0.3848 0.0067 second-tier
25 * Zhumadian, Henan 0.5210 0.0137 fourth-tier 75 * Jingzhou, Hubei 0.3798 0.0107 third-tier
26 Handan, Hebei 0.5069 0.0072 third-tier 76 * Zaozhuang, Shandong 0.3767 0.0121 fourth-tier
27 Tacheng, Xinjiang 0.5051 −0.0033 fifth-tier 77 * Hami, Xinjiang 0.3720 0.0064 fifth-tier
28 * Heze, Shandong 0.5040 0.0100 fourth-tier 78 Dazhou, Sichuan 0.3717 0.0099 fifth-tier
29 * Yingtan, Jiangxi 0.5038 0.0095 fourth-tier 79 Pingxiang, Jiangxi 0.3707 0.0079 fifth-tier
30 Nanchang, Jiangxi 0.5019 0.0086 second-tier 80 Yibin, Sichuan 0.3698 0.0116 fourth-tier
31 Xingtai, Hebei 0.4968 0.0061 fourth-tier 81 * Chuzhou, Anhui 0.3698 0.0108 third-tier
32 * Wuhan, Hubei 0.4929 0.0103 new first-tier 82 * Yiyang, Hunan 0.3697 0.0128 fourth-tier
33 * Ji’an, Jiangxi 0.4922 0.0108 fourth-tier 83 * Huanggang, Hubei 0.3694 0.0091 fourth-tier
34 Binzhou, Shandong 0.4900 0.0101 fourth-tier 84 * Xuzhou, Jiangsu 0.3691 0.0129 second-tier
35 Shaoxing, Zhejiang 0.4861 0.0103 second-tier 85 Langfang, Hebei 0.3654 0.0083 third-tier
36 * Nanyang, Henan 0.4845 0.0133 third-tier 86 * Suizhou, Hubei 0.3585 0.0094 fifth-tier
37 * Changsha, Hunan 0.4837 0.0122 new first-tier 87 * Suzhou, Jiangsu 0.3577 0.0183 new first-tier
38 Nanchong, Jiangsu 0.4746 0.0130 fourth-tier 88 * Xiangyang, Hubei 0.3537 0.0067 third-tier
39 * Fuyang, Anhui 0.4727 0.0110 third-tier 89 Tongling, Anhui 0.3503 0.0062 fourth-tier
40 * Xiangtan, Hunan 0.4724 0.0152 third-tier 90 * Foshan, Guangdong 0.3474 0.0112 second-tier
41 * Danzhou, Hainan 0.4697 0.0154 fifth-tier 91 Zibo, Shandong 0.3453 0.0082 third-tier
42 Fuzhou, Fujian 0.4690 0.0085 fourth-tier 92 * Ganzhou, Jiangxi 0.3416 0.0101 third-tier
43 Cangzhou, Hebei 0.4667 0.0070 third-tier 93 Baoding, Hebei 0.3415 0.0050 third-tier
44 * Huangshi, Hubei 0.4641 0.0128 fourth-tier 94 Jingmen, Hubei 0.3397 0.0076 fifth-tier
45 Shijiazhuang, Hebei 0.4575 0.0079 second-tier 95 * Yongzhou, Hunan 0.3359 0.0109 fourth-tier
46 * Bengbu, Anhui 0.4463 0.0107 third-tier 96 Shiyan, Hubei 0.3331 0.0045 fourth-tier
47 Ma’anshan, Anhui 0.4413 0.0089 third-tier 97 Zigong, Sichuan 0.3308 0.0082 fifth-tier
48 Yichun, Jiangxi 0.4409 0.0063 fourth-tier 98 Jinan, Shandong 0.3306 0.0036 second-tier
49 Shangrao, Jiangxi 0.4401 0.0058 third-tier 99 Tai’an, Shandong 0.3278 0.0056 third-tier
50 Jingdezhen, Jiangxi 0.4396 0.0045 fourth-tier 100 Tianjin 0.3242 0.0098 new first-tier

Note: * means that the city passed the significance test; the top 10 cities in terms of heatwave hazard increases are
shown in bold.
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Table A2. Top 100 counties by AH values.

Index County MEAN Slope Index County MEAN Slope

1 Yuzhong District, Chongqing 0.8055 0.0169 51 * Shangjie District, Zhengzhou, Henan 0.6543 0.0117
2 Jiangbei District, Chongqing 0.7983 0.0170 52 * Xinhua District, Pingdingshan, Henan 0.6541 0.0138
3 * Dadukou District, Chongqing 0.7943 0.0179 53 Yanfeng District, Hengyang, Hunan 0.6532 0.0133
4 Nan’an District, Chongqing 0.7694 0.0169 54 * Yuanyang County, Xinxiang, Henan 0.6528 0.019
5 * Wen County, Jiaozuo, Henan 0.7407 0.0108 55 * Jiefang District, Jiaozuo, Henan 0.6506 0.0116
6 * Jiulongpo District, Chongqing 0.7403 0.0180 56 * Shancheng District, Hebi, Henan 0.6492 0.0120
7 * Macun District, Jiaozuo, Henan 0.7331 0.0146 57 * Wuyang County, Luohe, Henan 0.6488 0.0112
8 * Wuzhi County, Jiaozuo, Henan 0.7327 0.0143 58 * Yanjin County, Xinxiang, Henan 0.6488 0.019
9 * Yindu District, Anyang, Henan 0.7277 0.0130 59 Beibei District, Chongqing 0.6486 0.0157

10 * Jindong District, Jinhua, Zhejiang 0.7269 0.0163 60 Baijiantan District, Karamay, Xinjiang 0.6454 −0.0052
11 * Beiguan District, Anyang, Henan 0.7134 0.0114 61 * Jia County, Pingdingshan, Henan 0.6454 0.0125
12 * Huojia County, Xinxiang, Henan 0.7130 0.0169 62 * Ye County, Pingdingshan, Henan 0.6448 0.0127
13 * Linzhang County, Handan, Hebei 0.7081 0.0117 63 * Erqi District, Zhengzhou, Henan 0.6441 0.0163
14 Banan District, Chongqing 0.7065 0.0159 64 * Anyang County, Anyang, Henan 0.6431 0.0101
15 * Changshou District, Chongqing 0.7057 0.0175 65 Yancheng District, Luohe, Henan 0.6417 0.0106
16 Hanshan Distinct, Handan, Hebei 0.7027 0.0092 66 Yiwu, Jinhua, Zhejiang 0.6407 0.0147
17 * Wenfeng District, Anyang, Henan 0.7001 0.0122 67 * Furong District, Changsha, Hunan 0.6403 0.0146
18 * Cheng’an County, Handan, Hebei 0.6983 0.0103 68 * Baofeng County, Pingdingshan, Henan 0.6403 0.0126
19 * Shapingba District, Chongqing 0.6971 0.0169 69 * Xingyang, Zhengzhou, Henan 0.6401 0.0129
20 Yubei District, Chongqing 0.6946 0.0163 70 Luhe Hui District, Luoyang, Henan 0.6400 0.0081
21 * Shanyang District, Jiaozuo, Henan 0.6938 0.0124 71 Jili District, Luoyang, Henan 0.6384 0.0073
22 * Weidu District, Xuchang, Henan 0.6899 0.0111 72 * Weidong District, Pingdingshan, Henan 0.6379 0.0124
23 * Muye District, Xinxiang, Henan 0.6890 0.0186 73 Daming County, Handan, Hebei 0.6356 0.0108
24 Weibin District, Xinxiang, Henan 0.6882 0.0185 74 * Yuanhui District, Luohe, Henan 0.6352 0.0105
25 Fengquan District, Xinxiang, Henan 0.6879 0.0173 75 Karamay District, Karamay, Xinjiang 0.6348 −0.0052
26 Huiji District, Zhengzhou, Henan 0.6863 0.0178 76 Guantao County, Handan, Hebei 0.6328 0.0086
27 * Xinxiang County, Xinxiang, Henan 0.6822 0.0191 77 Hechuan District, Chongqing 0.6321 0.0155
28 * Zhongyuan District, Zhengzhou, Henan 0.6797 0.0172 78 * Zhengxiang District, Hengyang, Hunan 0.6315 0.0154
29 * Xiangcheng County, Xuchang, Henan 0.6775 0.0123 79 Yangling District, Xianyang, Shaanxi 0.6313 0.0090
30 * Jinshui District, Zhengzhou, Henan 0.6763 0.0185 80 Guang’an District, Guang’an, Sichuan 0.6289 0.0158
31 * Tangyin County, Anyang, Henan 0.6754 0.0121 81 Gaoyi County, Shijiazhuang, Hebei 0.6285 0.0089
32 * Long’an District, Anyang, Henan 0.6753 0.0118 82 * Zhongmu County, Zhengzhou, Henan 0.6277 0.0189
33 * Jiangjin District, Chongqing 0.6737 0.0164 83 Changning, Hengyang, Hunan 0.6264 0.0115
34 Jian’an District, Xuchang, Henan 0.6731 0.0116 84 * Xinzheng, Zhengzhou, Henan 0.6260 0.0153
35 * Weixian County, Handan, Hebei 0.6713 0.0105 85 * Zhong County, Chongqing 0.6253 0.0155
36 Guangping County, Handan, Hebei 0.6710 0.0091 86 Qinyang, Jiaozuo, Henan 0.6249 0.0070
37 Feixiang District, Handan, Hebei 0.6696 0.0089 87 Luancheng District, Shijiazhuang, Hebei 0.6246 0.0088
38 * Hongqi District, Xinxiang, Henan 0.6693 0.0202 88 * Yongchuan District, Chongqing 0.6246 0.0199
39 Lanxi, Jinhua, Zhejiang 0.6676 0.0128 89 Baixiang County, Xingtai, Hebei 0.6245 0.0084
40 Mengzhou, Jiaozuo, Henan 0.6651 0.0084 90 Wusheng County, Guang’an, Sichuan 0.6229 0.0142
41 * Guancheng District, Zhengzhou, Henan 0.6651 0.0174 91 Zhuhui District, Hengyang, Hunan 0.6226 0.0146
42 * Jizhou District, Ji’an, Jiangxi 0.6618 0.0143 92 Quzhou County, Handan, Hebei 0.6216 0.0084
43 * Xun County, Hebi, Henan 0.6614 0.0154 93 * Yuhua District, Changsha, Hunan 0.6204 0.0144
44 * Bishan District, Chongqing 0.6602 0.0183 94 * Yongkang, Jinhua, Zhejiang 0.6202 0.0146
45 * Neihuang County, Anyang, Henan 0.6594 0.0117 95 Qiaoxi District, Shijiazhuang, Hebei 0.6200 0.0102
46 * Zhanhe District, Pingdingshan, Henan 0.6591 0.0141 96 Hengnan County, Hengyang, Hunan 0.6199 0.0131
47 * Shanshan County, Turpan, Xinjiang 0.6577 0.0121 97 Congtai District, Handan, Hebei 0.6193 0.0081
48 * Dianjiang County, Chongqing 0.6563 0.0174 98 * Shilong District, Pingdingshan, Henan 0.6189 0.0121
49 Changge, Xuchang, Henan 0.6560 0.0134 99 * Shifeng District, Zhuzhou, Hunan 0.6154 0.0143
50 * Linying County, Luohe, Henan 0.6550 0.0108 100 * Binjiang District, Hangzhou, Zhejiang 0.6153 0.0169

Note: * means that the city passed the significance test; the top 10 cities in terms of heatwave hazard increases are
shown in bold.
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