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Abstract: Foodborne diseases are a critical public health problem worldwide and significantly impact
human health, economic losses, and social dynamics. Understanding the dynamic relationship
between the detection rate of bacterial foodborne diseases and a variety of meteorological factors
is crucial for predicting outbreaks of bacterial foodborne diseases. This study analyzed the spatio-
temporal patterns of vibriosis in Zhejiang Province from 2014 to 2018 at regional and weekly scales,
investigating the dynamic effects of various meteorological factors. Vibriosis had a significant
temporal and spatial pattern of aggregation, and a high incidence period occurred in the summer
seasons from June to August. The detection rate of Vibrio parahaemolyticus in foodborne diseases was
relatively high in the eastern coastal areas and northwestern Zhejiang Plain. Meteorological factors
had lagging effects on the detection rate of V. parahaemolyticus (3 weeks for temperature, 8 weeks
for relative humidity, 8 weeks for precipitation, and 2 weeks for sunlight hours), and the lag period
varied in different spatial agglomeration regions. Therefore, disease control departments should
launch vibriosis prevention and response programs that are two to eight weeks in advance of the
current climate characteristics at different spatio-temporal clustering regions.

Keywords: bacterial foodborne diseases; meteorological factors; principal component analysis;
spatio-temporal scanning statistics; vector autoregressive model

1. Introduction

Foodborne diseases are illnesses that result from eating food that has been contami-
nated with bacteria or other pathogens such as viruses or parasites [1]. Bacterial infection
is the most common type of foodborne disease, especially in the summer. Foodborne
diseases are a serious global health issue and cause substantial medical costs and pro-
ductivity losses worldwide [2–5]. According to data collected by the Foodborne Disease
Outbreaks Surveillance System during the years 2003–2017, there were 235,754 foodborne
illnesses and 1457 deaths reported to the Centers for Disease Control and Prevention (CDC),
China [6]. A total of 11.3% of the 13,307 outbreaks with known etiologies were caused
by Vibrio parahaemolyticus. This ranked second among foodborne disease outbreaks after
poisonous mushrooms. All types of food are potentially contaminated with bacteria. Con-
tamination can occur during food production, harvesting, processing, storage, shipping,
and preparation [7]. The source of contamination varies, and most bacteria that cause
food-poisoning prefer hot and humid environments [8]. Therefore, it is meaningful to study
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the contributing meteorological or environmental factors of bacterial foodborne diseases
for public health awareness.

Climatic factors such as temperature, humidity, and rainfall are significantly correlated
with the incidence of bacterial foodborne diseases [9–14], with a certain lag effect at different
time scales [15–17]. For example, an extreme heat wave in the high latitudes of the Arctic
leads to the emergence of vibriosis [18]. The risk of V. parahaemolyticus infection associated
with raw oyster consumption also changes with seasonal variation, time horizon, and the
climate scenario [19]. The log relative risk for Campylobacter increased by 4.5% with the
increase in weekly mean temperature in Canada [20]. There was a dynamic relationship
between the outbreak of foodborne diseases and the changes in temperature and relative
humidity in South Korea from 2003 to 2012, and the effects of climatic factors on eight
foodborne pathogens were identified [21]. The dynamic relationship between the detection
rate of bacterial foodborne diseases and climatic factors remains an important research
direction in this field.

Some scholars have used time series correlation methods to analyze the incidence trends
of foodborne diseases by taking into account the temporal effect in recent years [22–24].
Generalized autoregressive and moving average models (GSARIMA) were used to fit
the number of reports of Salmonella enterica serovar Enteritidis cases in Sydney, Australia
from 2014 to 2016 to alert future infectious outbreaks associated with high-risk foods [25].
A controlled interruption time series analysis was used to assess the impact of food
safety management systems (FSMS) on foodborne disease outbreaks and food hygiene
violations in Singapore [26]. The daily minimum temperature was significantly and
positively correlated with salmonellosis and campylobacteriosis in South Korea on a
monthly scale, with no lag period [27] found. However, these studies were usually
conducted at a temporal scale of the year or month; an analysis at a finer scale may
provide more information on disease control. In addition, the whole study area was
modeled and analyzed equally, ignoring the characteristics of the spatial aggregation of
bacterial foodborne diseases.

In contrast, spatial characteristics can help determine the epidemiological characteristics
and influencing factors of the disease [28,29]. There is growing research interest in applying
spatial statistical methods to identify the relationship between meteorological elements and
foodborne diseases in recent years. Spatio-temporal scanning statistics were used to detect
spatio-temporal clusters of bacillary dysentery in Beijing–Tianjin–Tangshan in 2011, and
spatial panel models were employed to identify potential meteorological risks [30]. The
geographically weighted regression method was used to determine the relationship between
V. parahaemolyticus infection and meteorological and socioeconomic factors in the Zhejiang
Province in 2018 [31]. an adaptive multigraph fusion method was used to model the effects
of spatial dependencies on the risk of foodborne diseases [32]. Although these methods
explored the influencing factors by considering the correlation between adjacent regions,
they ignored the lagging effects of covariables such as climate factors.

A spatio-temporal model based on foodborne disease incidence data may be useful
for assessing the prospective effects of climate change on food safety. Therefore, the aim
of this study was to analyze the spatio-temporal pattern of bacterial foodborne disease
(vibriosis) and examine the effects of meteorological factors. This study aggregated weekly
cases from 2014 to 2018 in Zhejiang Province, China. A spatio-temporal scanning statistical
method was used to divide the study area, and vector autoregression (VAR) models were
constructed to analyze the dynamic relationship between comprehensive meteorological
variables and vibriosis cases.

2. Methodology
2.1. Study Area and Data Sources

The Zhejiang Province is situated on the southeast coast of China and the southern
wing of the Yangtze River Delta (Figure 1). Zhejiang is a major marine and fishery
province in the country with a long history of fishing. It is located in a subtropical
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monsoon climate area with different types of topographies across the entire region. The
high temperatures and humidity in summer and autumn are suitable for the growth
and reproduction of pathogenic bacteria. The incidence of foodborne diseases in the
province has increased in recent years. V. parahaemolyticus was the first pathogen to
cause microbial foodborne disease outbreaks in Zhejiang and accounted for 58.41% of
the total bacterial outbreaks [33]. The database of bacterial foodborne diseases caused
by V. parahaemolyticus from January 2014 to December 2018 recorded the date of onset,
sex, occupation, and current address. The dataset source was the Foodborne Disease
Surveillance And Reporting System of Zhejiang Province, which collects case reports
from 101 sentinel hospitals covering 89 county-level jurisdictions in the province. There
is a high incidence of bacterial foodborne diseases in this region. However, there are
few studies analyzing the dynamic relationship between bacterial foodborne diseases
and meteorological factors in Zhejiang Province.
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Figure 1. Geographical location of the study area showing the distribution of meteorological stations
and hospitals.

Meteorological data were provided by the China Meteorological Data Network, in-
cluding county precipitation, average wind speed, average temperature, average relative
humidity, daily minimum temperature, daily maximum temperature, and sunlight hours.
In this study, the daily meteorological value of each station was interpolated by inverse
distance weighted interpolation (IDW) and then fitted with the centroid of each county.
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2.2. Methodological Framework

The methodological framework is illustrated in Figure 2. The spatio-temporal pattern
of bacterial foodborne diseases was initially identified using a multivariate time series
analysis and spatio-temporal scanning statistics. Then, the influence of high-order mul-
ticollinearity was reduced using a PCA analysis, and the effects of seven meteorological
factors on bacterial foodborne diseases were explored. Finally, the VAR model was es-
tablished to determine the relationship between climate variables, and the time series
of bacterial foodborne diseases was examined in the different regions identified in the
first step.
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2.3. Multivariate Time Series Analysis

A time series analysis describes the changing characteristics of time series in the past
and predicts the trends of the future time series; this is an important method for studying
the dynamic characteristics, periodic characteristics, and correlation of statistical indicators.
Scholars usually use historical data on the incidence rate of vibriosis to predict future
incidence rates. However, the incidence rate is related to historical values and also depends
on the values of other relevant variables in the same time series, such as temperature,
relative humidity, and other climate variables. The covariance and correlation coefficients
can be used to describe the degree of correlation between the two time series variables.
A correlation analysis determines the interdependence between two or more variables to
measure the degree and direction of the correlation between variables and the internal
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relationship between variables. Pearson’s correlation analysis is commonly used and is
calculated as follows given a data pair of two time series variables X and Y:

P = Cor(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)
(1)

Stronger correlations are represented by larger absolute values of the correlation coef-
ficient (correlation coefficients close to 1 or −1), while weaker correlations are represented
by correlation coefficient values that are closer to 0.

2.4. Spatio-Temporal Scanning Statistics

Spatio-temporal scanning statistics are a common method to detect epidemic patterns
of diseases at any time and space in the field of epidemiology [34]; they can be used to
detect an increase in the number of local bacterial foodborne diseases and to verify whether
the increase is due to random variation. The basic principle of spatio-temporal scanning
statistics is to establish a spatio-temporal two-dimensional cylinder activity window based
on geographical coordinates, where each cylinder reflects a possible aggregation area [35].
That is, the geographical area and time period of possible disease outbreaks. The bottom of
the cylinder represents the geographical area of detection, and the height of the cylinder
represents the detection time.

The expected number of cases in each scan window was calculated, and the log
likelihood ratio (LLR) was used to evaluate the abnormal degree of the number of cases in
the scan window based on the actual number of cases and population [36]. The relative risk
(RR) was used to evaluate the risk of bacterial foodborne diseases in the cluster area [37].
The maximum likelihood ratio of all windows corresponds to the most likely cluster. The
equation for determining the LLR is shown in Formula (2), and the RR of the cluster area is
estimated using Formula (3) under the assumption of a Poisson distribution.

LLR = log

[(
CA
µA

)CA
(

C − CA
C − µA

)(C−CA)
]

(2)

RR =
CA/µA

(C − CA)/(C − µA)
(3)

where C is the total number of cases, CA is the actual number of cases in the window, and
µA is the expected number of cases in the window.

2.5. Principal Component Analysis to Determine the Effects of Meteorological Factors

Many studies often use original meteorological data for modeling when explor-
ing the dynamic relationship between meteorological factors and dependent variables.
However, complex correlations could exist among meteorological factors, and high
multicollinearity may increase the uncertainty of the analysis results. A principal com-
ponent analysis is a multivariate statistical analysis method that reduces the dimension
of multiple related variables to several representative comprehensive variables using
linear transformations, and it contains information that is not duplicated [38]. The index
is obtained after a comprehensive analysis called the main component. The weight
determined by this method is based on the internal structural relationship between
the indicators obtained by the data analysis; therefore, it is unaffected by subjective
factors. The principal components are independent of each other, which helps reduce
the interaction of information.

2.6. Vector Autoregressive (VAR) Model

The vector autoregressive model is suitable for multivariable time series systems to
analyze the dynamic impact of random disturbances on variable systems and explain the
effects of various shocks on variables [39]. The model can determine the dynamic relation-
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ship between climatic variables and the detection rate of bacterial foodborne diseases in a
time series; it does not need to distinguish between exogenous and endogenous variables
or add constraints to the model. The basic principle is to consider each endogenous variable
in the system as a function of the lag value of all other endogenous variables in the system
and construct a model. The mathematical expression of the VAR model (p) is

yt = A1yt−1 + · · ·+ Apyt−p + Bxt + εt (t = 1, 2, · · · , T) (4)

where yt is the k-dimensional endogenous variable vector, xt is the d-dimensional exoge-
nous variable vector, εt is the random disturbance vector, p is the lag order, T is the number
of bacterial foodborne disease case samples, and A1 . . . Ap, and B represents the k × k
dimensional coefficient matrix that requires estimation.

The construction of the VAR model mainly includes the following steps:
Unit root test of sample data: It is necessary to test the unit root of the time series

before establishing the model to ensure the stationarity of the time series and avoid the
pseudo-regression phenomenon. The augmented Dickey–Fuller test (ADF test) was used
to evaluate the unit root [40], and the null hypothesis was that there was a unit root. There
is no unit root if the sequence is stable following this test. The t-statistic is under three
confidence levels (1%, 5%, and 10%), and the original hypothesis is rejected; otherwise,
there is a unit root.

The optimal lag order was determined and a VAR model was constructed: A greater
order represents a greater degree of freedom for the model. However, a larger order
indicated that more parameters required estimation. This partly affected the validity of the
model. Therefore, there should be enough lag terms and a sufficient number of degrees
of freedom when determining the optimal lag order. This is mainly based on Akaike
information criterion (AIC) and Schwarz Criterion (SC), which state that a model with
smaller statistics has a better fitting effect. The stationarity test and fitting effect of the
model are good if the eigenvalues of each variable calculated by the model fall in the
unit circle.

Granger causality test: The causal relationship between variables was examined by
testing whether the lagging term of one variable has an impact on the other variables.

Impulse response: The impulse response function is mainly used to analyze the
dynamic effects of the random disturbance of each endogenous variable on itself and all
other endogenous variables.

3. Results
3.1. Multivariate Time Series Correlation Analysis

A total of 182,473 samples of bacterial foodborne diseases were collected from 2014 to 2018
in the Zhejiang Province. There were 6430 (3.52%) positive cases due to V. parahaemolyticus
infection, and 6226 of 6430 positive cases occurred between the months of May and October
during these 4 years. Table 1 summarizes the descriptive statistics for the weekly detection
rate of V. parahaemolyticus and the ambient meteorological conditions on the detection
date. Time sequence diagrams were used to visually show temporal trends in pathogen
infection and meteorological variations (Figure 3). The V. parahaemolyticus infection showed
an annual peak during the summer that was consistent with the temperature changes.
Moreover, the correlation analysis showed that V. parahaemolyticus was closely correlated
with all seven climatic factors, but showed a time lag (Figure 4). Six climatic factors had
a positive lag effect on pathogen detection, with different lag periods. The duration of
sunlight was over two lag weeks, the temperature was over three lag weeks, and the
relative humidity and precipitation were over eight weeks. Meanwhile, wind speed (lag of
11 weeks) had a weak negative correlation (−0.171) with vibriosis.
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Table 1. Summary of the weekly detection rate of V. parahaemolyticus and weather conditions of
Zhejiang province, 2014–2018.

Variables Description n Minimum Maximum Median Mean S.D.

Dependent variable

DR Detection rate of V.
parahaemolyticus (%) 261 0.00 16.79 0.99 2.70 3.70

Meteorological characteristic
SunHour Sunshine hours (h) 261 0.34 11 4.22 4.44 2.33

MaxTemp Daily maximum
temperature (◦C) 261 4.63 37.24 23.62 22.48 8.08

MinTemp Daily minimum
temperature (◦C) 261 −1.13 27.71 15.22 15.05 7.94

MeanTemp Mean temperature (◦C) 261 1.44 31.91 18.68 18.2 7.94
MeanHum Mean relative humidity (%) 261 55.16 93.4 77.59 77.16 7.64
MeanWS Mean wind speed (m/s) 261 1.42 3.63 2.19 2.24 0.36

Precip Precipitation (mm) 261 0.00 20.77 3.61 4.48 4.08
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Figure 3. Time trend for V. parahaemolyticus infection and average daily precipitation, wind speed,
relative humidity, temperature (mean, maximum, and minimum), and sunlight duration in the
Zhejiang Province, 2014–2018.
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The PCA model was established based on the seven meteorological indicators X1, X2,
. . . , X7 to reduce the interference of multicollinearity. The cumulative variance contri-
bution rate of the three principal components (F1, F2, and F3) was 90.377%, which meets
the requirement of a cumulative variance of 0.85. A further quantitative analysis of the
climatic factors showed that the first principal component reflecting temperature-related
climate parameters (including mean temperature, daily maximum temperature, and daily
minimum temperature) had a variance contribution rate of 46.454%. The second principal
component reflects the climate parameters related to water (including average relative hu-
midity, precipitation, and sunlight hours) and had a variance contribution rate of 29.505%.
The third principal component was the wind-related climate parameters (including the
average wind speed), with a variance contribution rate of 14.418%. The relationships
between the principal components and original climate variables are shown in Table 2.

Table 2. Component matrix and interpretation of total variance.

Climate Index Variables F1 F2 F3

Precip X1 0.346 0.751 0.034
MeanWS X2 −0.042 −0.049 0.997

MeanHum X3 0.283 0.858 0.076
MeanTemp X4 0.993 −0.066 0.003
MaxTemp X5 0.980 −0.163 −0.055
MinTemp X6 0.988 0.026 0.040
SunHour X7 0.356 −0.855 0.061

Eigenvalue 3.252 2.065 1.009
% of variance 46.454 29.505 14.418

% of cumulative variance 46.454 75.959 90.377

3.2. Spatio-Temporal Scanning Statistics of the Detection Rate of the V. parahaemolyticus

Three significant spatio-temporal aggregation areas were detected using spatio-temporal
scanning statistics (Table 3). Vibriosis had an evident clustering tendency in time and space.
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The period from the 28th to the 37th week of 2016 (June–August 2016) had the highest
incidence of vibriosis. The detection rate of V. parahaemolyticus in the eastern coastal areas
and northwest Zhejiang Province was significantly higher than that in the southwest area
from a spatial perspective (Figure 5).

Table 3. Spatio-temporal aggregation characteristics of vibriosis in Zhejiang Province from 2014
to 2018.

Cluster Duration (Weeks) Number of Countries RR LLR

C1 *** 29th–40th, 2016 23 4.610 390.316
C2 *** 22nd, 2016–42nd, 2017 10 3.470 372.045
C3 *** 28th–37th, 2016 18 3.700 190.408

Non_C - 38 - -
Non_C, non-clustered area; *** p < 0.001; RR, relative risk; LLR, log likelihood ratio.
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3.3. VAR Model Fitting and Prediction

The study area was divided into four regions based on the three clustered areas
and one non-clustered area. Four VAR models were constructed to measure the internal
relationship between the detection rate of V. parahaemolyticus and the principal components
of the three meteorological factors. It is necessary to conduct unit root and cointegration
tests before establishing the model to ensure the stationarity of the time series and avoid
pseudo-regression. The unit root tests showed that the original sequences of the detection
rate of V. parahaemolyticus and the components of meteorological factors in the four regions
were a stationary series (Table 4). This was in accordance with the premise of establishing
the VAR model.
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Table 4. Unit root test results.

Types Variables Difference
Order

Exogenous ADF Test
t-Statistic

Test Critical Values
Conclusion

1% 5% 10%

Detection rate

C1_DR 0 None −2.922 −2.574 −1.942 −1.616 Steady
C2_DR 0 Constant −3.882 −3.456 −2.873 −2.573 Steady
C3_DR 0 Constant −4.048 −3.455 −2.872 −2.573 Steady

Non_C_DR 0 Constant −4.934 −3.455 −2.872 −2.573 Steady

Meteorological
component

C1_F1 0 None −7.378 −2.574 −1.942 −1.616 Steady
C1_F2 0 None −11.787 −2.574 −1.942 −1.616 Steady
C1_F3 0 Constant −14.374 −3.455 −2.872 −2.573 Steady
C2_F1 0 None −7.894 −2.574 −1.942 −1.616 Steady
C2_F2 0 None −11.980 −2.574 −1.942 −1.616 Steady
C2_F3 0 Constant −7.166 −3.455 −2.872 −2.573 Steady
C3_F1 0 None −5.296 −2.574 −1.942 −1.616 Steady
C3_F2 0 None −11.859 −2.574 −1.942 −1.616 Steady
C3_F3 0 Constant −14.696 −3.994 −3.427 −3.137 Steady

Non_C_F1 0 None −7.831 −2.574 −1.942 −1.616 Steady
Non_C_F2 0 None −11.811 −2.574 −1.942 −1.616 Steady
Non_C_F3 0 Constant −14.661 −3.455 −2.872 −2.573 Steady

The three meteorological principal components of the four regions were introduced
into the four VAR models as explanatory variables. The information of the AIC and SC
were combined to determine that the optimal lag periods of C1, C2, C3, and Non_C were 6,
2, 6, and 2 weeks, respectively.

There was a significant one-way Granger causal relationship between the detection
rate (C1_DR) and the first meteorological principal component (C1_F1) or meteorological
principal component 3 (C1_F3) for C1 (Table 5). This indicated that changes in climate-
related parameters of temperature and wind speed significantly changed the detection
rate of V. parahaemolyticus. Only the first meteorological principal component (C2_F1)
significantly increased the detection rate for C2, C3, or Non_C. This indicated that changes
in climate-related parameters of temperature could lead to corresponding changes in the
detection rate of V. parahaemolyticus in these areas.

Table 5. The result of variables in the Granger causality test.

Region Null Hypothesis F-Statistic p-Values Conclusion

C1

C1_F1 does not Granger Cause C1_DR *** 6.66244 2 × 10−6 Reject
C1_F2 does not Granger Cause C1_DR 0.73259 0.6238 Accept

C1_F3 does not Granger Cause C1_DR * 2.18704 0.0449 Reject

C2

C2_F1 does not Granger Cause C2_DR *** 29.2360 4 × 10−12 Reject
C2_F2 does not Granger Cause C2_DR 0.96566 0.3821 Accept
C2_F3 does not Granger Cause C2_DR 0.44662 0.6403 Accept

C3

C3_F1 does not Granger Cause C3_DR *** 5.10501 6 × 10−5 Reject
C3_F2 does not Granger Cause C3_DR 1.57484 0.1551 Accept
C3_F3 does not Granger Cause C3_DR 0.30514 0.9339 Accept

Non_C
Non_C_F1 does not Granger Cause Non_C_DR *** 19.4235 1 × 10−8 Reject

Non_C_F2 does not Granger Cause Non_C_DR 0.19730 0.8211 Accept
Non_C_F3 does not Granger Cause Non_C_DR 0.42030 0.6573 Accept

* p < 0.05; *** p < 0.001.

All four models treated the local detection rate of V. parahaemolyticus as the dependent
variable and the principal components of the three meteorological factors as the explanatory
variables to form the regression function. The formulae were as follows:
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C1_DR(6) = 0.0008C1_F1(−1) + 0.0017C1_F1(−2) + 0.0008C1_F1(−3) + 0.0022C1_F1(−4) + 0.004C1_F1(−5)
+0.0023C1_F1(−6)− 0.0024C1_F2(−1)− 0.0017C1_F2(−2) + 0.0016C1_F2(−3)− 0.0017C1_F2(−4)

−0.0018C1_F2(−5)− 6.3018e−6C1_F2(−6) + 0.0068C1_F3(−1)− 0.0005C1_F3(−2)− 0.0009C1_F3(−3)
+0.0063C1_F3(−4) + 0.0018C1_F3(−5)− 0.0057C1_F3(−6) + 0.33C1_DR(−1) + 0.2732C1_DR(−2)

+0.0606C1_DR(−3)− 0.0159C1_DR(−4) + 0.0020C1_DR(−5)− 0.1673C1_DR(−6) + 0.0155

(5)

C2_DR(2) = 0.0141C2_F1(−1) + 0.0073C2_F1(−2) + 0.0014C2_F2(−1)− 0.0026C2_F2(−2) + 0.0078C2_F3(−1)
+0.0016C2_F3(−2) + 0.2527C2_DR(−1) + 0.0787C2_DR(−2) + 0.0299

(6)

C3_DR(6) = 0.0084C3_F1(−1) + 0.0023C3_F1(−2)− 0.0059C3_F1(−3) + 0.0003C3_F1(−4) + 0.0005C3_F1(−5)
+0.0012C3_F1(−6) + 0.0006C3_F2(−1)− 0.0006C3_F2(−2) + 6.2861e−5C3_F2(−3)− 0.0028C3_F2(−4)
+0.0002C3_F2(−5)− 0.0003C3_F2(−6) + 0.0013C3_F3(−1)− 0.0015C3_F3(−2)− 0.002C3_F3(−3)

−0.0019C3_F3(−4)− 0.0039C3_F3(−5) + 0.0018C3_F3(−6) + 0.3676C3_DR(−1) + 0.2425C3_DR(−2)
+0.0215C3_DR(−3)− 0.0386C3_DR(−4) + 0.1947C3_DR(−5)− 0.1414C3_DR(−6) + 0.008

(7)

Non_C_DR(2) = 0.0027Non_C_F1(−1) + 0.0019Non_C_F1(−2) + 0.0011Non_C_F3(−1)− 0.0007Non_C_F3(−2)
+0.3699Non_C_DR(−1) + 0.1301Non_C_DR(−2)− 0.0013Non_C_F2 + 0.0074

(8)

In general, all four VAR models performed well, with adjusted R2 values ranging
from 0.573 to 0.727 (Table 6). All unit roots of the four models were in the unit circle. This
indicated that the structure of the model was stable.

Table 6. Model performance of the VAR analysis for four regions in the Zhejiang Province from 2014
to 2018.

Evaluation Index C1_DR (6) C2_DR (2) C3_DR (6) Non_C_DR (2)

R-squared 0.753 0.584 0.667 0.585
Adj. R-squared 0.727 0.571 0.632 0.573

AIC −4.278 −3.229 −4.253 −5.580
SC −3.931 −3.105 −3.905 −5.470

AIC, Akaike information criterion; SC, Schwarz criterion.

3.4. Impulse Response Analysis of V. parahaemolyticus Detection

The impulse response analysis provided insight into the dynamic reactions between
meteorological parameters and the detection rate of V. parahaemolyticus [41]. Figure 6
illustrated that the impulse response function amounts to one standard deviation of the
endogenous variable. In the first column, the response of detection rate to the temperature-
related principal component (F1) shock showed similar performance in the C1, C2, and C3
clusters, while the magnitude was slightly smaller in the Non_C region. The responses to
temperature-related component shocks were all positive, indicating that temperature sig-
nificantly increased the detection rate. This promoting effect showed a significant increase
in the first 3 weeks, then slowly increased and stabilized, and finally gradually weakened.
The positive effect of ambient temperature on the detection rate of V. parahaemolyticus was
more significant in the range of C1; the continuous growth time was longer (up to 7 weeks).
The detection rate of V. parahaemolyticus slightly decreased in C3 from 3 to 4 weeks, and
the overall trend was like that observed in C2. In other words, it gradually stabilized after
3 weeks.

The impulse responses to the moisture-related principal component (F2) shock slightly
fluctuated around 0 in C1, C2, and C3 in the first 7 weeks, which was consistent with the
results of the Granger causality test with lag 2 and 6 (Table 5); they exhibited a slightly
positive effect after 7 weeks. The moisture variable was exogenous in the model of the
Non_C region; therefore, it did not participate in the impulse response test.

Similarly, the magnitude of the responses to the wind-related principal component
(F3) shock was smaller than F1. To a shock of the wind-related principal component, the
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response of the detection rate of C1 positively fluctuated until the 6th week; however, the
persistence was the smallest among all meteorological principal components.
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4. Discussion

The risk of vibriosis in Zhejiang Province from 2014 to 2018 was significantly aggre-
gated in the spatial and temporal dimensions. The incidence was high from June to August,
and the detection rate of V. parahaemolyticus in the eastern coastal areas and northwest was
significantly higher than in the southwest. This may be related to the high-temperature and
humid environment in the Zhejiang Province during this period. This climate condition is
conducive to the growth and reproduction of microorganisms such as V. parahaemolyticus.
Thus, food is prone to spoilage. Differences in regional eating habits and economic condi-
tions may be the key factors leading to spatial differences in bacterial foodborne diseases.
The three high agglomeration areas of C1, C2, and C3 belong to areas with relatively high
per capita disposable income (typical representatives of Ningbo, Hangzhou, and Wenzhou).
The residents’ ability to consume food outside the home is relatively high. Aquatic products
and seafood were the first food species that were suspected to cause V. parahaemolyticus
infection [42]. The eastern region (C1 and C2) is close to the port and wharf and is rich in
aquatic products. Local residents live near the sea and enjoy eating seafood and aquatic
products. This greatly increases the infection rate of V. parahaemolyticus. Therefore, food
safety inspection departments in coastal areas need to standardize and strengthen the
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routine hygiene testing of aquatic products and seafood in the market, especially during the
high-incidence summer period. The market supervision department needs to strengthen
the hygiene supervision of various restaurants and the training of employees in standard
operations. In addition, residents in coastal areas require public awareness and education
on food hygiene and the prevention of bacterial foodborne diseases.

The detection rate of V. parahaemolyticus in Zhejiang Province may have resulted from
the comprehensive effect of climate components based on the PCA and VAR models in
this study. Specifically, the occurrence of this bacterial foodborne disease is directly and
critically affected by temperature. The influence of moisture variables such as precipitation,
relative humidity, and sunlight hours was more complex, and the effect on the model was
not prominent. In addition, the comprehensive effect of climate variables had a lagging
effect on the infection of bacterial foodborne diseases, and the lagging effect varied between
regions. These two findings are consistent with those of Lake et al. in England and
Wales [43] and Zhang et al. in Australia [14]. The impulse response function analysis
of the four VAR models showed that the temperature meteorological parameters had a
positive effect on vibriosis in all four areas of Zhejiang Province. The impact gradually
increased and stabilized over time. Previous studies showed a positive correlation between
temperature and the occurrence of bacterial foodborne diseases [44–46]. In other words,
a higher-temperature environment promotes the reproduction of V. parahaemolyticus and
increases the probability of food infection, resulting in a positive impact on the infection rate
of the disease. Therefore, the detection rate of V. parahaemolyticus significantly increased
in the early stage of temperature change. The impulse response results showed that
the linkage relationship between the temperature and detection rate varied in different
regions. In general, it is difficult for people to promptly respond to sudden changes in
temperature, which increases the risk of infection. However, it will raise their awareness
of bacterial foodborne diseases and food deterioration and may reduce the occurrence of
disease infection once people adapt to the environment, such as in the case of long-term
heat waves. The modeling showed that there were regional differences in the response
characteristics of bacterial foodborne diseases to temperature variables. The degree of
responses of the infection probability to temperature variables in the aggregation areas
were significantly higher than that of the non-cluster area, with a fast growth rate and
long duration. The impact of temperature on V. parahaemolyticus infection in C1 was
characterized by a long duration (approximately 7 weeks) and strong response intensity
(the maximum was approximately 0.011). C2 was characterized by a large response intensity
(the maximum was approximately 0.0125), whereas C3 was relatively weak (the maximum
was approximately 0.008). The response intensity of Non_C to temperature infection in
the non-clustered area of bacterial foodborne diseases was significantly lower than the
average value (the maximum value was approximately 0.004). These results showed that
the sub-regional model avoided the mutual interference of various factors between regions
and maximized the comprehensive effect of meteorological factors on the detection rate of
V. parahaemolyticus.

The positive response to wind-related principal component shock showed that wind
speed can affect the reproduction of V. parahaemolyticus, viability, and time in the envi-
ronment. Weather conditions with high wind speeds may be conducive to the spread of
bacterial pollutants and may indirectly affect the occurrence of Vibriosis; this is consistent
with previous findings [47]. The impulse response of detection rate of V. parahaemolyticus to
the moisture-related principal components was not obvious in the initial stage. The growth
trend of the impulse response curve showed that the moisture meteorological parameters
had a lagging effect on vibriosis after being influenced for a period of 7 weeks. Precipitation
in the time series diagram showed an obvious lag effect, and the lag response in different
regions was different (Figure 7). For example, the detection peak of V. parahaemolyticus in
Zhejiang Province corresponded to the detection peak of V. parahaemolyticus after 3–7 weeks.
This was consistent with the impulse response of the moisture meteorological parameters
in this model. However, it differs from previous studies. For example, there is a significant
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positive correlation between vibriosis and relative humidity in Korea [21]. Meanwhile,
changes in the meteorological conditions (such as humidity) may change the characteristics
of survival and transmission patterns of microorganisms such as V. parahaemolyticus, increas-
ing the number of cases of vibriosis [48]. This difference may be due to those studies failing
to consider the combined effects of meteorological factors and spatial heterogeneity. These
results indicated spatial differences in the effects of meteorological factors on the detection
rate of bacterial foodborne diseases. This reflected the effectiveness of the innovative idea
of dividing the study area with spatio-temporal scanning statistics to explore the dynamic
relationship between detection rates and meteorological factors.
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5. Conclusions

This study proposed a framework to evaluate the dynamic relationship between
different meteorological factors and the risk of bacterial foodborne diseases based on
the spatio-temporal heterogeneity of vibriosis in Zhejiang Province. A VAR model was
combined with foodborne diseases to analyze the spatio-temporal risk characteristics and
potential climate risk factors of bacterial foodborne diseases.

Vibriosis exhibited significant temporal and spatial aggregation and peaked in the
summer. The detection rate of V. parahaemolyticus was significantly higher in the eastern
coastal areas and northwest compared with the southwest. In addition, temperature, rela-
tive humidity, precipitation, sunlight hours, and wind speed were important meteorological
indexes affecting vibriosis that lag by 3, 8, 8, 2, and 11 weeks, respectively. The compre-
hensive dynamic influence of the meteorological factors showed regional variation. The
temperature-related principal component had a stronger promoting effect on the detection
rate in spatio-temporal cluster areas, while the influence in the non-clustered area was
relatively weak. The zoning modeling framework proposed in this study considered the
temporal aggregation effect of vibriosis and the spatial agglomeration characteristics of
epidemics from the spatial dimension compared with whole region modeling as conducted
in previous studies; this maximized the impact of reduced climate variables on regional
foodborne disease infection probability. This study provided guidance and geographical
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support for relevant government departments to prevent and control foodborne diseases in
Zhejiang Province. This research framework can be extended to other problems caused by
climate and environmental change.

The following limitations and future perspectives were proposed. First, the modeling
area in this study was based on the administrative region and was divided according
to the results of spatio-temporal scanning statistics. This method ignored differences in
social and economic conditions and may be inadequate. For example, the 2017 per capita
GDP in Haining City and Taishun County was CNY 103,220 and CNY 36,420, respectively.
The gross domestic product of the two places was quite different, but it was divided into
non-clustered areas (Non_C) in the spatio-temporal scanning results. An understanding of
regional divisions, conducted in a more reasonable manner, will play an important role
in future studies. Second, the evaluation framework for the drivers of foodborne disease
incidence must be further improved. This study only considered meteorological factors
in the modeling; thus, future studies should include indicators such as food consumption
structure, food exposure information, age structure, and financial and health expenditure
to explore the factors influencing the incidence of bacterial foodborne diseases under
spatio-temporal heterogeneity from a more comprehensive point of view.
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