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Abstract: It is highly uncertain as to the potential risk of toxic metal(loid)s in abandoned mine
soil. In this study, random forest was used to predict the risk of cadmium pollution in the soils
of an abandoned lead/zinc mine. The results showed that the random forest model is stable and
precise for the pollution risk prediction of toxic metal(loid)s. The mean of Cd, Cu, Tl, Zn, and Pb was
6.02, 1.30, 1.18, 2.03, and 2.08 times higher than the soil background values of China, respectively,
and their coefficients of variation were above 30%. As a case study, cadmium in the mine soil had
“slope” hazard characteristics while the ore sorting area was the major source area of cadmium. The
theoretical values of the random forest model are similar to the practical values for the ore sorting
area, metallogenic belt, riparian zone, smelting area, hazardous waste landfill, and mining area. The
potential risk of soil Cd in the ore sorting area, metallogenic belt, and riparian zone are extremely high.
The tendency of pollution risk migrates significantly both from the ore sorting area to the smelting
area and the mining area, and to the hazardous waste landfill. The correlation of soil pollution risk is
significant between the mining area, the smelting area, and the riparian zone. The results suggested
that the random forest model can effectively evaluate and predict the potential risk of the spatial
heterogeneity of toxic metal(loid)s in abandoned mine soils.

Keywords: abandoned lead/zinc mine; random forest model; toxic metal(loid)s; cadmium; potential
pollution risks

1. Introduction

Metal(loid) pollution exists in a variety of environmental mediums such as soil, water,
gas, etc. [1,2]. Public poisoning due to metal pollution in the soil has been occurring
worldwide [3]. The prevention of metal pollution in the soil is one of the most difficult
problems to solve, which is related to the fact that metal(loid) pollution in the soil is difficult
to detect and can accumulate over time [4,5]. The high accumulation of metal(loid)s within
the soil will result in soil pollution that is highly regional in nature [6]. Soil pollution
from mines is a typical case. Metal(loid) pollution from mines is caused by functional
activities such as mining, mineral processing, smelting, etc. The areas that undertake
these activities are called functional areas [7,8]. The functional area of the mine, as the
source of various pollution, is an important indicator of pollution prevention. The level
of pollution risk of metal(loid)s within functional areas is inconsistent, and the level of
pollution risk of metal(loid)s depends on the functional behavior of different functional
areas, which will lead to the spatial heterogeneity of functional areas [9,10]. In order to
prevent the harmful effects of metal pollution in mine soils on public health, it makes
sense to carry out risk prediction work, which is essential for the risk identification of
metal(loid) pollution sources in mines and for obtaining information on the characteristics
of metal(loid) pollution sources.

The phenomenon of cross-pollution between functional areas indicates that there
is a major source of pollution risk in the functional areas, which requires an urgent re-
sponse [11,12]. The accurate identification of pollution risk sources by classical statistical
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methods means using traditional full-scale sampling [13,14]. However, the disadvantage of
the traditional method is the long time it takes to complete and the high expense, which
is not an optimal choice for mining companies. The spatial heterogeneity of the pollution
distribution of metals in soils from mines usually leads to a lot of complex data that are
often difficult to interpret via traditional monitoring methods, such that metal(loid)s data
from functional areas are difficult to analyze accurately and are insufficient to reveal the po-
tential pollution risk of metal pollutants in complex environmental conditions (mines) [15].
The methods for pollution prediction, such as the human health risk assessment model [16],
UNMIX model [17], or geographic information system model [18], have been established.
However, compared with the above methods, random forest (RF) is considered as one of
the more effective methods to provide spatial assessment and prediction, which has the
advantages of requiring a small sample size, not being affected by a complex environment,
and allowing researchers to dig deeper into the underlying data [19]. Wang et al. (2023) [20]
applied a random forest model and land use regression model to compare the results of
concentration data of six metals (Pb, Cd, Cr, As, Hg, and Zn) in agricultural soils for their
advantages and disadvantages, and the validation results proved that the use of RF model is
more suitable for the prediction of metal contents in agricultural soils. Azizi et al. (2023) [21]
predicted the spatial distribution of some metals (Ni, Fe, Cu, and Mn) in western Iran using
environmental covariates and random forest. The results demonstrate that random forest
can use easily available environmental data to predict the large-scale areas under study,
which is essential for decision-making on the sustainable management of environmental
problems. However, to our knowledge, there are few studies that apply random forest to
complex areas such as mines. Therefore, based on the above study, a proposal based on
random forest for the prediction of the pollution risk of metal(loid)s in mine soils can be
further proposed.

Then, for complex soil pollution, such as mine soil pollution, the RF model will be
the key to obtain comprehensive information on the characteristics of toxic metal(loid)
pollution sources. Therefore, the study aims (1) to evaluate the feasibility of the random
forest model for the identification of the potential sources and risk characteristics of toxic
metal(loid)s in soil from an abandoned lead/zinc mine, and (2) using cadmium as a case,
extrapolate the potential pollution risk of various toxic metal(loid)s in the mine soil.

2. Materials and Methods
2.1. Study Area

The abandoned lead/zinc mine is located in central southern China, with a longitude
of 113◦18′ and latitude of 29◦24′, and is characterized by red soil formed from quaternary
laterite, slate, and shale. Due to the long-term direct discharge of industrial wastewater and
the disordered stacking of waste slag, the historical legacy of the lead/zinc mine sites is one
of serious pollution. There is a river running through the whole area of the mine. The flow
of the river is mainly influenced by the amount of rainfall, switching to flood or dry periods
with the change in seasons, and the river is the main surface runoff. Under the action of
long-term water flow migration, a large number of toxic metal(loid)s are deposited in the
soil and the riverbed in the vicinity of lead/zinc mine. There are seven functional areas in
the mine. The ore sorting area is the area where physical and chemical measures are applied
to the ore to obtain the needed ingredients for smelting or other industries. The riparian
zone is the area on either side of the river–land interface until the influence of the river
disappears. The hazardous waste landfill is the storage area for solid waste and industrial
waste. The mining area is an area engaged in ore mining. The smelting area is the industrial
area where ore calcination and refining are carried out. The tailings area is the area where
the tailings or other industrial wastes after ore sorting are deposited. The metallogenic belt
is a geological unit of mineral resources with potential for mineralization (Figure 1).
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2.2. Sampling and Analysis

Soil sampling in the abandoned lead/zinc mine was designed according to the strategy
of combining points, lines, and surfaces along with the river, and the screening results of
pollution identification. The soil sampling was carried out at sites at intervals of about
300 m on the side flowing through the lead/zinc mine, which had to be arranged according
to the direction of the mine hole and slope, combined with the flow direction of surface
runoff in the mine, and two control sites had to be set in each local area of blank control.
All of soil samples were collected via mechanical drilling or excavation with stainless steel
shovels. A total of 147 soil samples were collected and data for ten metal(loid)s (As, Cd, Cr,
Cu, Hg, Mn, Sb, Tl, Pb, and Zn) were determined, with 147 pieces of data for individual
metal(loid)s and a total of 1470 pieces of data obtained.

Each of the 147 soil samples was placed indoors for air-drying for 7 days. The samples
were ground and then filtered through a 2 mm sieve and prepared for use. Soil samples
were digested with mixed acid (HCl-HNO3-HClO4). The procedure was as follows: 1.0 g
of soil sample was mixed with 5.0 mL of concentrated nitric acid (HNO3), 3.0 mL of
concentrated hydrochloric acid (HCl), and 2.0 mL of concentrated perchloric acid (HClO4),
and digested using microwave at 160 ◦C for 2 h.

Inductively coupled plasma mass spectrometry (ICP, iCAP 7600, Thermo Scientific,
81 Wyman Street, Waltham, MA, USA) was used to determine the concentrations of As,
Cd, Cr, Cu, Hg, Mn, Sb, Tl, Pb, and Zn in the digested solution. The experiments were
carried out on the reagent blank group and repeated soil samples to check the accuracy
of the experimental method and data. The recovery rate was 100 ± 10%. The analytical
method was tested using the national first-class soil standard material (HJ 25.1-2019) of the
People’s Republic of China. The background values (As:13.6, Cd:0.081, Cr:71.4, Cu:25.4,
Hg:0.087, Sb:1.58, Tl:0.61, Pb:27.3, and Zn:88.6) for soil metal(loid)s were based on the
CNEMC (China National Environmental Monitoring Center), Beijing, China, 1990 [22].
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2.3. Modeling of Random Forest

A random forest is a non-parametric model that iteratively classifies or regresses data
to find the best split point, generates N decision trees, and finally uses a voting mechanism
in the forest to determine the output. Random forest are characterized by randomly selected
features and samples, allowing each tree in the forest to have similarities and differences.
The bootstrap method is used to randomly draw k new sets of self-help samples with put-
back from the original training dataset, and from this, k classification regression trees are
constructed, and each undrawn sample forms K out-of-bag data (OOB1, OOB2, . . . , OOBk).
Given n features, n features are randomly selected at each tree node. The feature with
the highest classification power is chosen for node splitting by calculating the amount of
information contained in each feature. The impact of each feature on the model’s accuracy
rate is directly measured during feature selection. The prediction accuracy OA1, OA2,
. . . , OAK for k out-of-bag datasets is obtained by inputting each out-of-bag dataset into
the corresponding decision tree. For the assessment index fi, the index values under this
assessment index are randomly replaced in all out-of-bag datasets, while the other index
values remain unchanged, resulting in the new out-of-bag datasets OOB1

i, OOB2
i, . . . ,

OOBk
i. After random replacement of the evaluation indicator fi, OA1

i, OA2
i, . . . , OAK

i,
they are input into the decision tree corresponding to step to determine the prediction
accuracy of the out-of-bag dataset.

The random forest model is based on the background of big data information and
is not affected by complex environments. In this work, 147 soil samples were randomly
divided into modeling set and validation set, this step was conducted to build and validate
the model in the same batch of data to improve its validity. A total of 130 samples were
used as the modeling set to build the model and 17 samples were used as the validation
set to illustrate the feasibility of the model after the validation of the data samples. With
toxic metal(loid) content in the soil as the dependent variable, the model was established
using random forest, and the prediction was made according to the validation set. By
referencing the sklearn library, it was possible to construct classifier objects, training sample
sets, predicted values, and complete evaluation, in four steps. The stability and accuracy of
the model were analyzed by the coefficient of determination (R2). When R2 was closer to
one, the fitting effect of the regression equation was better and the model was more stable.

3. Results and Discussion
3.1. Pollution Characteristics of Toxic Metal(loid)s in the Mine Soil

The difference between the minimum and maximum values of 10 metal(loid)s (As,
Cd, Cr, Cu, Hg, Mn, Sb, Tl, Zn, and Pb) in the soil of the abandoned lead/zinc mine is
too high and thus affects the mean values (Table 1). The median values for Cd, Cu, Tl,
Zn, and Pb were 6.02, 1.30, 1.18, 2.03, and 2.08 times higher than the background values,
respectively, indicating that five types of toxic metal(loid) (Cd, Cu, Tl, Zn, and Pb) pollution
exist in the soil [23]. The coefficient of variation of these data provides a better indication of
the degree of dispersion compared to standard deviation, and the coefficients of variation
for the 10 metals (As, Cd, Cr, Cu, Hg, Mn, Sb, Tl, Pb, and Zn) were above 15%, with Cd
being the highest value, indicating a higher level of risk for toxic metal(loid)s in the soil.
According to the above analysis, Cd is considered to be the main contaminant at risk in
abandoned mine [24].

The variability of cadmium pollution distribution in the lead/zinc mine soil is great,
with severe pollution in the ore sorting area and metallogenic belt. The degree of soil
pollution shows a decreasing trend centered on the ore sorting area and metallogenic belt
(Figure 2), and there is some correlation between the sources of pollution, which is related
to human activities such as early and unreasonable exploitation of mineral resources and
the random stacking of tailings [25,26]. Moreover, there may be some correlation between
the ore sorting area, metallogenic belt, and riparian zone, according to the division of the
water system; there is a high pollution area block in the upstream ore sorting area, while
the metallogenic belt and riparian zone are located downstream, and there is an obvious
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decreasing trend of the pollution block from the ore sorting area to the metallogenic belt and
riparian zone. Therefore, based on the flow direction of the water system and the gradually
decreasing spatial content, it is inferred that the ore sorting area and the metallogenic belt
and riparian zone may have mutual pollution [27]. This can be attributed to the activities
of mineral processing, smelting, and solid disposal, and the chaos of wastewater treatment
and drainage that severely pollutes the surrounding soil. The area heavily polluted by
cadmium is mainly situated in the ore sorting area, where cadmium in the soil is the
source of pollution, and the pollution from the ore sorting area to the mining area shows
a gradually decreasing trend, which is related to unreasonable exploitation of mineral
resources at an early stage and randomly stacking residues [28]. Secondly, cadmium
pollution from hazardous waste landfill and smelting areas has a more serious impact on
the soil, as well as in mining areas under the movement of surface water and groundwater.

Table 1. Characteristics of the content of toxic metal(loid)s in the soil of the abandoned mine.

Metal(loid)s Minimum Median Maximum Mean SD a CV b (%) BV c

As 1.31 10.00 37.5 11.23 6.61 58.89 13.6
Cd 0.039 0.49 5.98 0.91 1.22 133.32 0.081
Cr 29.8 70.00 220 72.37 17.47 24.13 71.4
Cu 4.9 33.00 204 40.91 28.13 68.76 25.4
Hg 0.012 0.082 0.52 0.11 0.09 79.97 0.087
Mn 148 484.00 2230 528.53 287.40 54.38 /
Sb 0.23 1.54 6.73 1.80 1.09 60.94 1.58
Tl 0.47 0.72 2.15 0.77 0.24 31.88 0.61
Zn 49.8 180.00 1320 269.69 241.52 89.56 88.6
Pb ND d 56.7 289.00 77.12 62.75 81.37 27.3

a SD: Standard deviation; b CV: coefficient of variation; c BV: background value d ND: not detected, and not
participating in validation.
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Figure 2. Spatial distribution of cadmium pollution in the soil from an abandoned lead/zinc mine.

3.2. Validation of Random Forest Model

In this study, based on the content of 10 elements in 130 groups, a total of 1300 pieces
of data was substituted into the random forest model, and the feature values were selected
according to a quarter of the total number of sample feature variables. Through the
feasibility check, R2 of the elements (As, Cd, Cr, Cu, Hg, Mn, Sb, Tl, Pb, and Zn) were
all found to exceed 0.95, the theoretical value of the model was very consistent with
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a practical value (Pearson’s r > 0.98), and the feasibility of constructing the model was
passed (Figure 3).
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Unconstructed groups of 17 pieces of data were selected as the validation of the
prediction model, and groups of 17 pieces of data were substituted into the random forest
model to obtain the theoretical values of cadmium and compare them with the practical
values. The R2 was as high as 0.81, and the pattern of similarity was essentially the same,
which demonstrated the superiority of the random forest model in the cadmium prediction
task. The mean error was less than 1%, indicating a high degree of coherence between
the two data sets [29], and the median error was below 10% (Table 2), indicating a strong
similarity between the two data sets. Results from all three indicators show that the random
forest model has an obvious recognition capability and high accuracy for predicting toxic
metal(loid)s [30,31]. When data cannot normally be obtained due to environmental and
geological factors in the regional soil, the random forest model can still achieve high
predictive precision [32,33]. The results show that the random forest model is effective
at predicting soil cadmium levels, confirming the science and the advance of the random
forest prediction model.

Table 2. Verification of model construction.

ID 1 2 3 4 5 6 7 8 9

Practical value 1.48 3.35 5.64 0.94 2.95 2.49 1.18 0.63 0.89
Theoretical value 1.47 3.63 4.34 1.2 2.4 2.41 1.8 1 1.18

ID 10 11 12 13 14 15 16 17

Practical value 2.37 1.67 1.72 1.07 3.49 0.64 5.54 0.53
Theoretical value 2.67 1.86 1.8 1.41 2.81 1.12 4.49 1.23
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3.3. Spatial Risk Prediction of Cadmium Pollution in the Mine Soil

Pollution risk assessment in soils is an important tool for environmental prevention
and control [34]. According to the theoretical values of cadmium, the high-risk area of the
mine for cadmium is the ore sorting area, which shows abnormally high values, and the
distribution of the surrounding soil shows a progressive decline in risk, which indicates
that production behavior has impacted the accumulation of cadmium in the mine soil, and
steps should be taken in advance to intercept and control it to avoid a progressive increase
in the environmental risk of the surrounding soil [35]. The metallogenic belt and riparian
zone are adjacent to the ore sorting area and have similar tendency of pollution risk for
cadmium, confirm that the ore sorting area is a significant potential soil pollution source in
the metallogenic belt and riparian zone. Therefore, effective soil control measures should
be taken from the sources of pollution in the ore sorting area in order to eliminate pollution
caused by the migration of soil pollution through the water stream, thus reducing the level
of pollution risk in the metallogenic belt and riparian zone. Furthermore, the variability of
cadmium in different functional areas confirms the spatial heterogeneity of the distribution
of cadmium pollution in the lead/zinc mine soil [36].

The mine pollution hazard is characterized by a “slope” from the ore sorting area to
the metallogenic belt (Figure 4). The strong correlation between the risk of soil pollution
in the mining area, smelting area, and the riparian zone means that cadmium in riparian
zone soils can migrate into the river and pollute the soils in mining and smelting areas. As
a result, the riparian zone should be blocked to mitigate the level of soil risk in the mining
area and smelting areas.
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3.4. Validation of Spatial Pollution Risk Prediction for Cadmium

The practical values of toxic metal(loid)s in 147 sets of soil samples were used as
modeling sets in a random forest model. Cadmium was used as an independent validation
set (a total data of 147), and the prediction model of the cadmium content in soil and
a spatial prediction model was constructed based on the modeling set. Finally, based on
the measured cadmium content, the content and spatial prediction were verified [37].

The optimum precision in inversion modelling was high, where the cadmium R2 was
0.75, and the pattern of adjustment was essentially the same. Of these, both groups of data
with mean and median error exhibited a high degree of coincidence, and the errors in the
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two data sets were less than 5% (Figure 5), which indicates that the similarity between the
two data sets was extremely high [38,39]. It has been demonstrated that the random forest
model has good stability and high inversion accuracy in the cadmium forecasting task. In
conclusion, the random forest model has a clear recognition capability and a high precision
in the prediction of cadmium from toxic metal(loid)s.
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The theoretical values of the spatial risk distribution of cadmium in soil are similar
to the practical values. According to a cadmium spatial pollution risk in soil comparison
between Figure 6a,b, the risks for the ore sorting area (Focus 1), metallogenic belt (Focus 2),
and riparian zone (Focus 3) are high. The risk for the smelting area, mining area, and
hazardous waste landfill (Focus 4) are low. The similarity between Focus 1 to 4 is very
high, and the ore sorting area is still the highest risk area among them, indicating that the
functional behavior of the ore sorting area has a serious impact on the spatial distribution
of cadmium in soil. The diffusion trend of cadmium pollution risk is similar and migrates
obviously from the ore sorting area to the smelting area and mining area, and hazardous
waste landfill, which proves that the ore sorting area has caused serious pollution to the
downstream soil of the lead/zinc mine. The results suggest that the random forest model
has shown great stability in cross-validation and a strong capacity for generalization and
a high predictive precision in independent validation. The predictive model was very
precise and stable, and the theoretical values were valid. The high-risk area of cadmium in
the soil is located in the ore sorting area and should be carried out to prevent the pollution
from migrating with surface water and groundwater.

In the future, soil risk prediction for complex areas such as mines can be predicted
using random forest at a large scale. From an effectiveness point of view, the current results
basically meet the needs, which will help the government and enterprises to carry out
the identification of risk sources. Based on this work, the ore sorting area is a high-risk
area for cadmium in abandoned lead/zinc mines. Therefore, the risk prediction of priority
polluting metals can be conducted separately from the risk prediction of lead/zinc mines,
and, finally, the high-risk areas of metals can be integrated to obtain the prevention and
control areas that should be given priority.
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4. Conclusions

(1) A random forest model can identify the unequal distribution of toxic metal(loid)
data in soil, and effectively predict the spatial heterogeneity and the potential pollution
risk of soil cadmium in a heavily polluted area from an abandoned mine.

(2) According to random forest model, the theoretical values of As, Cd, Cr, Cu, Hg,
Mn, Sb, Tl, Pb, and Zn in the mine soil corresponded perfectly to the practical values and
may be used to predict the contents of toxic metal(loid)s (As, Cd, Cr, Cu, Hg, Mn, Sb, Tl,
Pb, and Zn).

(3) The random forest model is universal for the spatial prediction of toxic metal(loid)
pollutants under complex environmental conditions. The ore sorting area is the source of
the pollution risk for cadmium, and the level of risk shows a downward trend from the ore
sorting area to the smelting area, mining area, and hazardous waste landfill.
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