
Int. J. Environ. Res. Public Health 2008, 5(5) 394-398 

International Journal of 
Environmental Research and Public Health 

ISSN 1661-7827  
www.ijerph.org 

© 2008 by MDPI 

© 2008 MDPI. All rights reserved.  

A Method to Compute Multiplicity Corrected Confidence Intervals for 
Odds Ratios and Other Relative Effect Estimates 
 
 Jimmy Thomas Efird1* and Susan Searles Nielsen2  
 
1Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, S.9.548 
(MLC 7000), Cincinnati, Ohio 45229-3039, USA 
2Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Cancer Epidemiology Research Cooperative, POB 
19024, 1100 Fairview Ave, North, MS M4-C308, Seattle, Washington  98109-1024, USA 
*Correspondence to Dr.  Jimmy Thomas Efird.  E-mail: jimmy.efird@stanfordalumni.org 
 
Received:  22 September 2008 / Accepted: 24 November 2008 / Published: 31 December 2008 
 
 

Abstract: Epidemiological studies commonly test multiple null hypotheses.  In some situations it may be appropriate 
to account for multiplicity using statistical methodology rather than simply interpreting results with greater caution as 
the number of comparisons increases.  Given the one-to-one relationship that exists between confidence intervals and 
hypothesis tests, we derive a method based upon the Hochberg step-up procedure to obtain multiplicity corrected 
confidence intervals (CI) for odds ratios (OR) and by analogy for other relative effect estimates.  In contrast to 
previously published methods that explicitly assume knowledge of P values, this method only requires that relative 
effect estimates and corresponding CI be known for each comparison to obtain multiplicity corrected CI.  
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Abbreviations:  CI = confidence intervals; FWER = familywise error rate; HR = hazard ratios; LCI = lower 
confidence interval; OR = odds ratios; PFER = per family error rate; RR = relative risks; SE = standard error 
 

Introduction 
 
Testing the statistical significance of multiple null 

hypotheses is a routine practice in epidemiologic and other 
types of biomedical research.  By chance, the probability 
of wrongly rejecting one or more null hypotheses 
increases in proportion to the number of comparisons 
tested [1].  This is referred to as "multiplicity bias."    

Various methods have been presented in the literature 
for controlling the type I error in the context of multiple 
hypothesis testing.  The classic Bonferroni inequality [2] 
provides a simple distribution-free method for multiplicity 
P value correction.  Letting αi denote the probability that 
hypothesis Si is incorrect, the Bonferroni probability for 
the joint null hypothesis may be written as: 
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for at least one i, where pi 

denotes the P value corresponding to the ith null 
hypothesis.  In the simple case, α is apportioned evenly 
among the tests.  Although the family-wise (FWER) and 
per family (PFER) error rates are preserved at the α level 
of significance, the Bonferroni procedure is known to be 
conservative, especially for highly correlated test statistics 
(i.e., type I error probability is less than the nominal level 
of α).  For example, in the case of a study of multiple 
genetic polymorphisms, the assumption is that all variants 
being tested have equal probability of being truly 
associated with the outcome of interest and leads to 
overcorrection.[3]  The first order Bonferroni inequality 
may be improved upon given knowledge of the joint 
bivariate probabilities [2, 4, 5] or when the absolute value 
of the correlation coefficient is greater than 50% [2, 6].  
However, these improvements have been limited in 
applied practice due to their restrictive nature. Several 
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multiple testing procedures [7-9] based upon the "closure 
method"[10] and "Simes equality"[11] have been 
introduced and shown to be more powerful than the 
Bonferroni method for testing the intersection hypothesis 
[12-13]. Of the closure method based options, the 
Hochberg step-up multiple comparisons procedure [7] has 
gained popularity as being "easier to apply" than the more 
powerful procedures of Hommel [9] and Rom.  The 
procedure also is uniformly more powerful than the 
Bonferroni-based, sequentially-rejective method of Holm 
[14] in many applied situations, e.g., when test statistics 
are uncorrelated, follow a multivariate normal or T2 
distribution, or are model independent [15-17].  Given an 
ordered set of P values, i.e., p(1)≤p(2)≤…≤p(n), the 
Hochberg procedure rejects all hypothesis Hi≤j if p(j)<α/(n-
j+1) for any j=1, … , n.  P values are incrementally 
corrected in order from smallest to largest by multiplying 
p(j) by (n-j+1), wherein the multiplicative factor for the 
largest P value is unity and thus remains the same after 
multiplicity correction. 

Many researchers and journal editors increasingly 
recognize confidence intervals (CI) as the preferred 
measure for conveying statistical uncertainty of effect size 
estimates such as odds ratios (OR), relative risks (RR), 
and hazard ratios (HR), as P values have been commonly 
misunderstood and misinterpreted in the literature [18-22].  
Similar to hypothesis testing by way of P values, CI also 
may be corrected for multiplicity to minimize the risk of 
making false-positive inferences.  Several authors have 
provided techniques to correct CI for multiple hypothesis 
testing [23-26]. However, most of the methods are 
computationally intensive or mathematically complex, and 
more importantly, none provide a way to correct CI when 
corresponding P values are not provided for the individual 
hypothesis tests. 

Below, we present a method to compute multiplicity 
corrected CI for OR and by analogy for other measures of 
relative risk, when no P values have been explicitly 
provided.  This computationally simple method based 
upon the Hochberg step-up procedure only requires 
knowledge of individual test OR and CI, and the number 
of comparisons being tested.       

 
Methodology 

 
The derivation of multiplicity corrected confidence 

intervals for a set of n OR involves expressing the 
standard error (SE) for the logarithm of ORi (i=1 to n) in 
terms of the lower confidence interval (LCI) for ORi.  
Letting: 

  

 
 
where z(1-α/2) is the 100% x (1-α/2) percentile of a 

standard normal distribution, and solving for SE[log(ORi)] 
we see that: 
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Substituting the right hand side of (3) into the 

equation for the 2-tailed z test statistic 
gives:
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The corresponding P value is computed as: 
 

Where:             

 
Ordering the P values (pi's) from the lowest to highest 
values i.e., ( ) ( ) ( )p p p...1 2 n≤ ≤ ≤ (with arbitrary ordering 

in the case of ties), the Hochberg multiplicity corrected P 
values denoted by "*" are computed as: 
 

            
where j ranges from 1 to n in a 1:1 identity mapping 

with the i values and ( )
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Rearranging (5) and solving for ( )* logSE ORi⎡ ⎤⎣ ⎦  in the 
equation:  
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gives the Hochberg corrected standard error for the 
logarithm of ORi, i.e.:    
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The multiplicity corrected (1-α/2) x 100% CI for OR(i) 
based upon the Hochberg step-up procedure can then be 
computed by substituting the above standard error from 
eq. 9 into the following basic equation:      

 
 

By analogy, replacing OR in the above equations with 
other relative effect estimates such as RR or HR gives the 
corresponding multiplicity corrected CI for these 
measures.  When P values are directly available for the 
individual hypothesis tests, the Hochberg multiplicity 
corrected CI may be computed directly beginning with eq. 
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7.  Furthermore, if the hypothesis test is 1-sided, then α 
must be multiplied by 2 in the above equations. 

  
Example 

 
Table 1 below presents OR from a case-control study 

for a hypothetical disease (D) and exposure to 3 
dichotomously coded environmental risk factors.  The OR 
and 95% CI for (D) uncorrected for multiplicity (n=3 
factors) are shown in Columns 3 and 4: Factor 1 
(OR=1.652, 95% CI=0.551-4.953); Factor 2 (OR=1.151, 
95% CI=0.142-9.324); and Factor 3 (OR=6.509, 95% 
CI=1.646-25.743).  Applying equations 7, 9 and 10 gives 
the corresponding multiplicity corrected P values (0.740, 
0.895, 0.024; not shown in table), standard errors for the 
logarithm of the OR (1.513, 1.068, 0.830), and 95% CI 
(0.09-32, 0.14-9.3, 1.3-33).  The multiplicity corrected CI 
for Factor 1 and Factor 3 are considerably wider than the 
corresponding uncorrected intervals, thus indicating a 
greater degree of variability for the estimated OR.  In the 
case of Factor 2, the uncorrected and corrected CI is the 
same since Factor 2 had the highest P value of the 3 
comparisons when applying the Hochberg algorithm. 

In this example, the conclusions regarding the 
association (or lack thereof) of (D) and the exposure do 
not substantively change after correction for multiplicity, 
thus lending weight to what otherwise might be only 
cautious interpretation referencing the possibility of a 
chance observation due to multiple comparisons.   
However, in other situations where CI is close to 
containing unity, a null hypothesis might no longer be 

rejected at least in strict statistical terms after correction 
for multiplicity.   

 
Discussion 

 
Confidence intervals for OR, RR and other relative 

effect estimates are commonly reported in epidemiologic 
and public health literature without correction for multiple 
hypothesis testing.  The failure to account for multiplicity 
may lead to inflation of type I error and over interpretation 
of any apparently "positive" findings.  In the current 
paper, we show how CI for relative effect size estimates 
such as OR may be corrected for multiplicity by use of the 
Hochberg step-up procedure, a "closed-testing" method 
for protecting against making excessive false-positive 
inferences due to multiple comparisons.   

Our method has several strengths.  The corrected CI 
are simple to compute in standard statistical software 
packages that have function routines for determining 
percentiles and areas under a curve for a normal 
distribution.  Since P values are not required for the 
original hypothesis tests, multiplicity corrected CI may be 
computed post hoc (when estimates are reported with 
sufficient precision) from publications that only report 
values for effect size estimates and corresponding CI.  
When the test statistics are uncorrelated, the family-wise 
type I error probability is theoretically guaranteed by the 
Hochberg step-up procedure.  Simulation results also 
show that the Hochberg step-up procedure holds for many 
commonly encountered dependent test statistics [27]. 

 

Table 1: Odds ratios (OR) and 95% confidence intervals (CI) for a hypothetical disease (D) and exposure to 3 dichotomously 
coded environmental risk factors, uncorrected and corrected for multiplicity  
 

Variable Cases/Control Odds Ratioa 
Uncorrected for Multiplicity Corrected for Multiplicityb

95% CI (OR) SE* [log(OR)] 95% CI* (OR)
Factor 1     

Non-Exposed 587 / 2143 1.0 Referent 1.513 Referent
Exposed 5 / 10 1.652 [0.551-4.953]  [0.09-32]

Factor 2     
Non-Exposed 246 / 2143 1.0 Referent 1.068 Referent
Exposed 1 / 10 1.151 [0.142-9.324]  [0.14-9.3]c

Factor 3     
Non-Exposed 141 / 2143 1.0 Referent 0.830 Referent
Exposed 3 / 10 6.509 [1.646-25.743]  [1.3-33]

aAdjusted for age and sex. 
bUsing Hochberg step-up procedure. 
cNote: The multiplicity adjusted and unadjusted 95% CI will be equal in this case since the corresponding unadjusted P value for 
the Factor 2 comparison was the highest of the 3 comparisons and thus the multiplicative factor for p(j) in equation (7) will be 
equal to 1.  
*Multiplicity adjusted estimates. 
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Several limitations must be observed when applying 
our procedure for computing CI.  The technique is not 
applicable when "exact sampling distribution" methods 
have been used to make statistical inferences.  The 
Hochberg multiplicity correction also will inflate P values 
and related CI when one or more of the hypothesis tests 
involve a multi-level, logically related categorical variable 
(e.g., current smoker, former smoker, never smoker).  In 
this case, it is unnecessary to correct CI for multiplicity for 
a logically related variable in multivariate space.  The 
computed multiplicity corrected CI will be an approximate 
solution when the decimal accuracy is limited for the 
original OR and CI values.  Accordingly, it is generally 
recommended that at least 2 or 3 significant digits of 
accuracy are available for published estimates when using 
this method in a post hoc manner to compute multiplicity 
corrected confidence intervals.  Additionally, the rule for 

computing ( )
*p j  (eq. 7) in rare cases may lead to an 

anomaly wherein ( )
*p j but not ( )

*p 1j−  will achieve 
statistical significance.  In this situation, one might apply 
the de facto variation of multiplying p(j) and lesser ranked 
P values by j to obtain the corresponding Hochberg 
corrected P values.[28]  And finally, the method should 
not be used if the logarithm of the effect estimate does not 
follow a normal distribution, or if the underlying 
observations are not independent and identically 
distributed. 

It also is important to note that correction for 
multiplicity may not be necessary or even desirable in 
some situations [29-33]. For example, correction for 
multiplicity may be unnecessary when an a priori biologic 
mechanism of action exists for an independent variable 
that manifests a linear dose response in relationship to the 
outcome variable.   Similarly, multiplicity correction may 
not be desirable when attempting to control type II errors 
as the latter will be inflated by virtue of decreasing type I 
errors [31].  Furthermore, multiplicity correction based 
upon the  "universal null hypothesis," which tests that two 
groups are identical for all comparisons between variables, 
fails to take into account which and how many variables 
differ if the joint hypothesis is rejected [31].  Methods to 
correct for multiplicity also do not account for the 
inclusion of hypotheses that are biologically improbable or 
otherwise indefensible, which unnecessarily inflate the 
probability of incorrectly rejecting the joint null 
hypotheses [18, 29].  Philosophically, some researchers 
believe that the “primary” purpose for CI are to indicate a 
range of parameter values consistent with the data rather 
than for de facto hypothesis testing based on whether or 
not they include 1.0.  Another salient concern regarding 
the appropriateness of multiplicity correction techniques is 
“how does one choose the universe for the number of 
comparisons.”  Clearly, multiplicity adjustment remains a 
debated topic with diverse opinions presented in the 
literature [34-35].  

In the early days of the development of stepwise and 
closed tests for the control of type I error in multiple 

hypothesis testing, epidemiologists and statisticians 
commonly believed that joint CI could not be constructed 
for these procedures.  However, it has been shown since 
that standard methods for constructing CI also readily 
apply to common stepwise multiplicity procedures.[23-24]  
Here, we have expanded on the seminal work of these 
researchers to develop a simple method for computing 
multiplicity corrected CI for standard estimates of effect 
size.  Although our derivation has focused on the case of 
binary predictor variables, it is possible that similar 
principles might be developed and applied to obtain joint 
confidence sets in the more complex case of multilevel 
categorical variables.   

 
Conclusions 

 
Although the most effective strategy to minimize type 

I error related to multiple comparisons is to simply reduce 
the number of comparisons, this in effect penalizes the 
researcher for conducting a more informative 
multivariable study [32].  Statistical correction for 
multiple comparisons is not a substitution for the 
parsimonious and epidemiologically prudent selection - 
during the design phase of a study - of hypotheses to test. 
Nor should it be used in lieu of careful and informed 
interpretation of the results, taking into account biological 
plausibility (or lack thereof) and the results of prior 
studies.  However, when statistical correction for multiple 
comparisons is appropriate, as is the case in many but not 
all situations, the method we present may have application 
as a supportive measure.  A key advantage of this method 
is its correspondence with CI, which are typically more 
informative, and potentially more readily available, than P 
values.   
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