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Abstract: Mine tailings from an abandoned metal mine in Korea contained high 

concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, 

Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for 

analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings 

showed a high residual fraction of 89% by a sequential extraction. In Toxicity 

Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), 

leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 

for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. 

Keywords: mine tailings; abandoned mines; arsenic (As); heavy metals; sequential 

extraction; EPA method 6010; Toxicity Characteristic Leaching Procedure (TCLP) 

 

 

1. Introduction  

 

Mining operations generally produce many types of mine wastes, including mine tailings, waste 

rock and slag. Mine tailings out of those, in particular, act as a main source of environmental  

contamination [1]. Arsenic (As) and heavy metals may be released from the mine wastes to the ground 
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and surface water systems, as well as the geological environment due to their solubility and  

mobility [2].  

Mine tailings often contain sulfide minerals such as pyrite (FeS2), arsenopyrite (FeAsS), galena 

(PbS), chalcopyrite (CuFeS2), and sphalerite ((Fe, Zn)S). Oxidation, dissolution, precipitation, 

adsorption, and desorption mainly occur in mine tailings exposed to the air. Oxidation of sulfide 

minerals results in contamination of the surrounding soil and groundwater by allowing release of As 

and heavy metals in sulfide-bearing minerals [3-5]. Furthermore, As and heavy metals from mine 

tailings may cause fatal diseases in humans through crops and water due to the characteristic easy 

accumulation in internal organs [6].  

Most of the mines in Korea have been closed since the 1970s due to various changes in the structure 

of the domestic industry. In investigations on actual conditions of 219 abandoned metal mines until 

2006 among 936 ones nationwide, it has been revealed that As and heavy metals (e.g., Cu, Pb and Cd) 

concentrations in mine wastes at 139 abandoned metal mines (about 63%) are higher than the current 

Korean soil contamination criteria [7]. The criteria include both warning and acting criteria. In 

particular, the acting criteria express a serious pollution state needing control action such as the 

suspension of land development, owing to concerns on human health and growth of animals and plants. 

On the other hand, the warning criteria are 40% values of the action criteria and its objective is to 

prevent more serious soil contamination than the current state.  

Based on the national investigation, among several abandoned mines it is well known that the 

wastes of the Kumho mine, located in Bonghwa, Kyoungbuk province, Korea, contain high 

concentrations of both As and heavy metals. The mine had generally produced Au, Ag, Cu, Pb, Zn, 

and Mn, and in particular produced about 140,000 tons of Mn until 1990s and 10,000–20,000 tons of 

Zn ore until early 2000s, but it was closed in 2001. A large amount of mine wastes including mine 

tailings, slag, and waste rock was also produced by the mining operation. Also, flood damages and 

ground subsidence have occurred at the mine several times because it was not equipped with any 

facility for the prevention of the damage (Figure 1). Therefore, the government recently started out to 

restore nearby water and soil environment of the mine. This abandoned mine, in this study, was 

selected for a sampling site to understand their characteristics and to estimate the application 

possibility of our technology, which will be explained below, to the ongoing restoration site. 

Figure 1. Kumho mine located in Bonghwa, Korea. 

 
(a) Flood damage site (b) Ground subsidence site 
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In order to treat and prevent environmental pollution by mine wastes from abandoned metal mines, 

various treatment technologies such as soil washing [8], chemical reduction/oxidation [9], 

solidification/stabilization [10], bioremediation [11], etc. have been applied to contaminated sites. Our 

future research will be, in particular, focused on solidification/stabilization of heavy metals in the mine 

wastes and the soil by carbonation technology using Ca material and CO2 gas, which is our ultimate 

research goal [12-14]. For the future study, current investigation on contamination level and leaching 

potential of arsenic and heavy metals from the mine tailings would be a preliminary work for 

determining whether we can apply the carbonation to the specific mine tailings treatment. 

In this study, three standard methods were used for determining total concentrations of As and 

heavy metals (Fe, Cu, Pb, Mn, Cr, Cd, and Zn) in mine tailings as follows: US EPA Standard Method 

(EPA method 6010), Korean Soil Environment Standard Test (KST for soil), and Korean Waste 

Standard Test (KST for waste). In addition, chemical combination characteristic of As in the mine 

tailings was analyzed by chemical extraction method of six steps. Leaching potential of As and heavy 

metals from the mine tailings was examined by both Toxicity Characteristic Leaching Procedure 

(TCLP; EPA method 1311) and Korean Standard Leaching Test (KSLT). 

 

2. Experimental  

 

A sampling of mine tailings was performed at the Kumho mine in April 2009. A small pile of the 

mine tailings was placed near a mine-head without any cover for the prevention of their loss. About  

20 kg of the mine tailings were collected from the surface of the pile using a shovel. Mine tailings 

characteristics according to the pile depth was not considered in this study. The sample was put into 

plastic bags in the field. After transferring to our laboratory, the sample was sieved through a  

5 mm-sieve, homogenized, and dried at 40 °C for two days. The sample was then stored in desiccators 

during the whole experimental period. 

Several tests were performed to investigate the characteristics of the sample. All tests were repeated 

on two different days. Firstly, pH (520A, Orion) of the sample was measured after shaking at 100 rpm 

for an hour [wet sample: water = 1:10 (wt:wt)]. Water content, loss on ignition (LOI), and organic 

carbon content were also examined as methods that form part of the KST for waste [15]. 

Concentrations of anions in the mine tailings were analyzed using ion chromatography (IC; ICS 2000). 

The solution used in anion analysis was same as that in pH analysis. Chemical composition of the mine 

tailings was analyzed using an X-ray diffraction analyzer (XRD; X’pert, Phillips). 

Total concentrations of As and heavy metals (Fe, Cu, Pb, Mn, Cr, Cd, and Zn) in the sample were 

determined. Based on results of previous researches indicating that concentrations of heavy metals can 

be different according to the testing methods used, we also applied three methods to our experiments: 

EPA method 6010, KST for soil, and KST for waste [15-17]. Both EPA method 6010 and KST for 

waste are methods involving digestion of soil, sediment, and sludge with HNO3, HCl, and H2O2 (no 

addition in KST for waste) on a hot plate, but the specific details of the two methods are somewhat 

different, as shown in Table 1. KST for soil is, on the other hand, a leaching method with 0.1 N HCl 

(for Cd, Cu, and Pb) or 1 N HCl (for As) at 100 rpm for an hour. In the three methods, final suspended 

solution was filtrated with 0.45 µm-membrane filter. Each filtrated solution was acidified (pH < 2) 
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with two drops of 60% HNO3 and was analyzed using an atomic absorption spectrometer (AAS;  

AA-6800, Shimadzu).  

 

Table 1. Comparison of US EPA method 6010 and Korean Standard Test (KST) for soil 

and waste. 

 EPA method 6010 KST for soil KST for waste 
Definition and 
purpose 

To determine 
concentrations of trace 
elements, including 
metals, in groundwater, 
soils, sludges, sediments 
and other solid wastes 

To determine if the soil is 
contaminated by either 
inorganic or organic 
environmental contaminants 
over the regulation level by 
Korean soil preservation act 

To determine if a waste is 
hazardous over the regulation 
level by Korean waste 
management act and to 
determine concentrations of 
contaminants in a waste 

Target samples Sediment, sludge, and soil  Soil Wastes including low content 
of organic matter and metallic 
oxide, hydroxide, and sulfide 

Target elements  As, Ag, Al, Ba, Be, Ca, 
Co, Cr, Cu, Fe, K, Mg, 
Mn, Mo, Na, Ni, Pb, Se, 
Zn, Tl, V 

Cd, Cu, Pb, As As, Pb, Cd, Cu, Cr 

Sample amount 2 g 10 g Unspecified 

Reagents 1:1 HNO3, 30% H2O2, and 
concentrated HCl  

0.1 N HCl (for Cd, Cu, and 
Pb)  
1 N HCl (for As) 

HNO3 and HCl (1 + 1) 

Reaction Heating (under boiling 
point) 

Shaking (100 rpm for 1 hr at 
30 °C) 

Heating (under boiling point) 

Total reaction 
time 

About 3.5 hr 1 hr About 2 hr 

Final solution 
volume (with 
water addition) 

100 mL 50 mL 100 mL 

 
A sequential extraction was also performed to operationally fractionate As in the solid materials to 

evaluate its potential effects [18]. A method developed by Herreweghe et al. [19] was applied in this 

study and it involves the following six steps: (1) easily soluble fraction by 1 M-NH4Cl 30 mL (2 hr 

shaking), (2) extractable fraction by 0.5 M-NH4F 30 mL (15 hr shaking), (3) extractable fraction by  

0.1 M-NaOH 30 mL (17 hr shaking), (4) reducible fraction by 0.5 M-sodium citrate 30 mL and  

1 M-NaHCO3 2.5 mL while adding 0.5g-Na2S2O4·2H2O (15 min heating), (5) acid soluble fraction by 

0.25 M-H2SO4 30 mL (12 hr shaking), and 6) residual fraction by concentrated HCl 4 mL, HNO3 2 mL 

and HF 2 mL (heating until half dry). In this test, 0.5 g of the mine tailings was placed in a 100 mL 

beaker. At each step, the suspension was filtrated with a 0.45 μm-membrane filter. The filtrate was 

used for arsenic analysis and the solid on the filter paper was used in the next step after washing with 

20 mL of ultra-pure water. Then, the water used in washing was discharged.  

Lastly, leaching concentrations of arsenic and heavy metals from the mine tailings were evaluated 

by both TCLP and KSLT [15,20]. The purpose of TCLP is to determine if a waste meets a hazardous 
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waste code listed in 40CFR (Code of Federal Regulations) Part 26 under Resource Conservation and 

Recovery Act (RCRA), and that of KSLT is to determine if a waste is a hazardous matter specified 

over the regulation level of Korean waste management act or which landfill method is proper for a 

waste. The comparison between the two methods is shown in Table 2. In TCLP, fluid #1 was prepared 

by adding 5.7 mL of glacial acetic acid and 64.3 mL of 1 N NaOH to 500 mL of ultra-pure water and 

diluting total volume into 1 L with water, and fluid #2 was prepared by the same method as fluid #1 

but without adding 1 N NaOH. To select a solution between #1 and #2, pH of the mine tailings was 

measured by shaking 5g of mine tailings with 96.5 mL for 5 min. Then, if pH of the solution is <5.0, 

fluid #1 is selected, otherwise following additional step is needed: the solution is acidified with 3.5 mL 

of 1 N HCl and heated at 50°C for 10 min. After cooling, if pH of the acidified solution is <5.0, fluid 

#1 is selected, otherwise fluid #2. 

Table 2. Comparison of Toxicity Characteristic Leaching Procedure (TCLP; EPA method 

1311) and Korean Standard Leaching Test (KSLT) [16,20,21]. 

 TCLP KSLT 

Definition 

An analysis method to determine the 
mobility of both organic and inorganic 
analytes present in liquid, solid, and 
multiphasic wastes 

A analysis method to predict 
potential leaching level of 
environmental contaminants from 
industrial wastes after landfill 

Purpose 

To determine if a waste may meet the 
definition of EP (Extraction 
Procedure) Toxicity, that is, carrying a 
hazardous waste code (40CFR Part 
261) under Resource Conservation and 
Recovery Act (RCRA)  

To determine if a waste is specified 
over the regulation level of Korean 
waste management act or which 
landfill method is proper for a waste 

Target solid materials 

Materials are solid waste if they are 
abandoned by being: (1) Disposed of; 
or (2) Burned or incinerated; or (3) 
Accumulated, stored, or treated (but 
not recycled) before or in lieu of being 
abandoned by being disposed of, 
burned, or incinerated  

Slag, dust, sand blast, waste 
refractory, incineration waste residue, 
solidified/stabilized waste, waste 
catalyst, waste absorbent/adsorbent, 
wastewater sludge, etc. 

Sample treatment Sieving into 9.5 mm Sieving into 5.0–5.5 mm 

Extraction device Rotary extraction device (30 rpm) 
Horizontal back-and-forth shaker 
(200 rpm) 

Extraction time 18 hr 6 hr 

pH of extractant 
Fluid #1: pH 4.93 ± 0.05 
Fluid #2: pH 2.88 ± 0.05 

pH 5.8–6.3 adding HCl to distilled 
water 

Sample (g): Extractant (mL) 1:20 1:10 

Separation of solid and 
liquid 

0.6–0.8 ㎛-membrane filter or 
centrifuge 

1 μm-membrane filter or centrifuge 
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3. Results and Discussion  

 

3.1. Physical and Chemical Characteristics of the Mine Tailings 

 

The mine tailings showed dark-gray coloration. The sample was in a slightly wet state containing 

9.6% water and its pH value was 7.5. The value of loss on ignition (LOI), which indicates the 

proportion of total organic matters, was 9.3% and organic carbon content among all organic matters 

was 3.9%. Concentrations of anions in the mine tailings analyzed using IC are shown in Table 3. Then, 

the concentrations of most anions (F–, Cl–, NO2
–, NO3

–, Br–, and PO4
2–) were very low, whereas the 

concentration of SO4
2– (sulfate: 224 mg/L) was much higher than others. The high concentration of 

sulfate indicates that the oxidation of sulfide minerals had occurred in the mine tailings, so that sulfate 

had been produced. According to XRD analysis, the mine tailings mostly consist of quartz (SiO2), 

kaolinite (Al2Si2O5(OH)4), jarosite (KFe3(OH)6(SO4)2), pyrite (FeS2) and ferric hydroxide (Fe(OH)3).  

Table 3. Physical and chemical properties of the mine tailings. 

Property Unit Value 

pH 7.5 ± 0.14 
Water content  % 9.6 ± 0.42 

Loss on ignition (LOI)  % 9.3 ± 0.33 

Organic carbon content  % 3.9 ± 0.15 

Anions 

F– mg/L 0.11 

Cl– mg/L 20 

NO2
– mg/L ND 

NO3
– mg/L 1.9 

Br– mg/L 0.71 

PO4
2– mg/L 9.6 

SO4
2– mg/L 224 

ND = Not Detected 
 

3.2. Total Concentrations of As and Heavy Metals in the Mine Tailings 

 

In order to measure total concentrations of As and heavy metals in the mine tailings, three standard 

USA and Korean methods were used: EPA method 6010, KST for soil, and KST for waste, as shown 

in Table 4 [15-17]. Total concentrations of As and heavy metals were significantly higher than Korean 

soil contamination criteria. This result indicates that the mine tailings were greatly contaminated and 

need appropriate treatments to prevent secondary contamination. 

Total concentrations of As and heavy metals evaluated by EPA method 6010 and KST for waste 

were much higher than those evaluated by KST for soil. This result was consistent with that reported 

by Jung et al. [22]. In their study, extraction tests by 0.1N HCl solution (a similar method to KST for 

soil) and aqua regia (concentrated HCl and HNO3; a similar method to EPA method 6010 and KST for 

waste) were applied for determining total concentrations of heavy metals in mine wastes from several 

abandoned metalliferous mines in Korea. Then the concentrations of most heavy metals extracted by 
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aqua regia were much higher than those by 0.1 N HCl, showing the similar tendency to our results. 

Another remarkable point observed in Table 4 is that, in particular, concentrations of As, Cu, Pb, and 

Cd obtained by EPA method 6010 are very similar to those by KST for waste (e.g., As: 67,336 mg/kg 

by EPA method 6010 and 66,155 mg/kg by KST for waste). However, As concentration extracted by 

KST for soil was only 5% of those by other methods.  

These results are attributed to methodological differences between the three standard methods as 

shown in Table 1 in “Experimental” section. In other words, both EPA method 6010 and KST for 

waste are to digest all metals in a sample with very strong acids by heating under boiling point. 

Whereas KST for soil is to just extract metals by shaking at 30 °C with acidic solutions and is 

appropriate to the determination of only available (extractable) metal concentrations in a sample. Our 

suggestion for the analysis of metal concentration by the KST for soil is, therefore, that it should be 

either defined as a method to determine only available (extractable) metal concentrations in the soil, or 

modified as the other two methods to determine total metal concentration in the soil. 

Table 4. Total concentrations (mg/L) of arsenic (As) and heavy metals in the mine tailings 

compared to Korea soil contamination criteria (both acting and warning criteria). 

Metal  
(mg/kg) 

Standard method 
Korean soil contamination criteria 

Acting Warning 

EPA method 6010 KST for soil KST for waste A area B area A area B area

As 67,336 ± 104 3,068 ± 22 66,155 ± 710 15 50 6 20 

Fe 137,180 ± 756  NE NE  NE  NE 

Cu 764 ± 0.83 233 ± 1.67 745 ± 2 125 500 50 200 

Pb 3,421 ± 20 875 ± 3.1 3,572 ± 51 300 1,000 100 400 

Mn 24,256 ± 31   NE  NE  NE  NE 

Cr(VI) 71.7 ± 0.67 65 ± 1.35 10 30 4 12 

Cd 54.4 ± 0.09 7.2 ± 0.5 56.3 ± 0.3 4 30 1.5 12 

Zn 12,420 ± 4.0 NE NE NE NE 

A area: farmland, ranch lot, school lot, park, etc. 
B area: factory lot, railway, highway, etc. 

NE = Not Established. 

 

3.3. Chemical Distribution of As in the Mine Tailings by Sequential Extraction  

 

Table 5 includes As contents, given in mg/L leachate, mg/Kg tailings, and % of total content, 

obtained from each step and As minerals (both name and formula) which may be extractable at each 

step for the mine tailings extracted in the six step sequence developed by Herrewghe et al. [19].  

Figure 2 shows the proportion of each As fraction for total 100%. It is observed that most As in the 

mine tailings consists of the residual fraction (89%; 44,023 mg/kg), which is assumed to represent As 

hosted by silicate or sulfide minerals and extracted by heating with concentrated strong acids.  

NH4F-extractable fraction, As bound to aluminum (Al), was then 1.4% (716 mg/kg) and  
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NaOH-extractable fraction, As bound to iron (Fe), was 8.7% (4,343 mg/kg), whereas the easily soluble 

fraction, weakly sorbed non-ionic As fraction, was only 0.096% (48 mg/kg). In this step, As2O3 (+III) 

and As2O5 (+V) in the mine tailings, which are hygroscopic, dissolve readily in the extractant; in 

particular they ionize into the forms of H2AsO3
– and HAsO4

2– at the neutral or weak alkaline pH, due 

to their ionization characteristic depending on pH as below equations 1–5 [23]. Also, Figure 3 

illustrates that speciation characteristic of As depending on pH is associated with its Eh values [23]. 

As(III): H3AsO3 → H+ + H2AsO3
–                                     pKa = 9.22 (1) 

                                         H2AsO3
– → H+ + HAsO3

2–                                    pKa = 12.3 (2) 

As(V):  H3AsO4 → H+ + H2AsO4
–                                     pKa = 2.2 (3) 

H2AsO4
– → H+ + HAsO4

2–                                                       pKa = 7.08 (4) 

HAsO4
2– → H+ + AsO4

3–                                        pKa = 11.5 (5) 

where, pKa is the pH at which the dissociation of the reactant reaches 50%. 

In terms of methodology of the As sequential extraction, results are representative of As only in a 

qualitative sense and may determine the amount of surface-bound As. It, however, does not indicate 

either the information on As species in relatively insoluble precipitates or the composition and 

geometry of adsorbed As complexes [18]. Based on the knowledge, these results shown in Table 5 

should be considered as data for estimating the distribution of As fractions which can be extractable by 

the specified acidic and alkaline solutions. 

On the other hand, it is observed that an order in the contents of the extractable fractions is  

NaOH (Step 3) >> NH4F (Step 2) > H2SO4 (Step 5) > NH4Cl (Step 1). This order is consistent with 

that from the sequential extraction of Montana soil (SRM 2710), a certified reference material [19]. 

For another discovery, Johnston and Barnard (1979) [24] found that As and phosphorous (P) react 

similarly when treated by solutions containing sulfate, fluoride, bicarbonate, hydroxide and hydrogen 

ions (the same solutions as those in our test), and demonstrated the same order between As and P 

extractions for test soils (western New York soils): NaOH >> H2SO4 > NH4F > NH4Cl [19]. However, 

the order of As concentration extracted by NH4F and H2SO4 found in our study does not fit with that in 

the study of Johnston and Barnard [24]. For this issue, we can suggest the following reasons related to 

characteristics of As bound to Ca (H2SO4-extractable). Even though As and P are chemically very 

similar elements, As bound to Ca is far more soluble than P bound to Ca, so it may not be always 

accurate to apply the same sequential extraction protocol for both As and P as Johnston and Barnard’s 

study. Also, As bound to Ca is much more unstable than As bound to Al or Fe, so can be more soluble 

at pH ≤ 10. Consequently, As bound to Ca may already dissolve in one of easily soluble (pH 7) or 

NH4F extraction (pH 8) due to redistribution phenomena, and it probably also arises from As bound to 

Fe oxides, which is dissolved by sodium citrate + NaHCO3 + Na2S2O4·2H2O treatment [19]. For those 

reasons, Herrewghe et al. have been replaced the acid “H2SO4” extraction step by an oxidizing 

extraction using 8.8 mol/L H2O2 [19]. 
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Table 5. Results of arsenic (As) sequential extraction of the mine tailings, given in mg/L 

leachate, mg/kg tailings and % of total content, according to As chemical fractions in 

specific six steps. 

Step [19] Extractant [19] As chemical 
fraction [19] 
 

Mineral (Formula)  
[25] 

As concentration 
(Average) 

Proportion 
(%) 

mg/L 
leachate 

mg/kg 
tailings 

1. Easily 
soluble 

1M NH4Cl  
(pH 7) 

Neutral (non-ionic) 
As 

Arsenolite (As2O3) 
Claudetite (As2O3) 

0.80 48 0.096 

2. NH4F-
extractable 

0.5M NH4F  
(pH 8) 

As bound to Al 
 

Mansfieldite 
(AlAsO4·2H2O) 

12 716 1.4 

3. NaOH-
extractable 

0.1M NaOH  
(pH 12) 

As bound to Fe 
(non-occluded As) 

 

Scorodite (FeAsO4·2H2O) 
Symplesite 
(Fe3(AsO4)2·8H2O) 

89 4,343 8.7 

4. Reducible 0.5M sodium 
citrate + 1M 
NaHCO3 + 0.5g 
Na2S2O4·2H2O 

As bound to Fe 
oxide 
(Occluded As) 

Kalfanite 
(Ca2Fe3O2(AsO4)·2H2O) 

3.1 183 0.37 

5. Acid 
soluble 

0.25M H2SO4 

(pH 1) 
As bound to Ca Rauenthalite 

(Ca3(AsO4)2·10H2O) 
Pharmacolite 
(Ca(HAsO4)·2H2O) 

7.3 435 0.87 

6. Residual HClconc + 
HNO3conc  

+HFconc 

As bound to silicate 
and sulfide minerals 

Arsenopyrite (FeAsS) 440 44,023 89 

Figure 2. Chemical distribution of arsenic (As) in the mine tailings (Fraction 1 < Fraction 

4 < Fraction 5 < Fraction 2 < Fraction 3 < Fraction 6). 
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Figure 3. Speciation of arsenic (As) in water depending on pH (Eh: the 

oxidation/reduction potential (ORP) of the water) (modified from [23]). 

 
 

3.4. Leaching of As and Heavy Metals from the Mine Tailings  

 

Leaching tests (TCLP and KSLT) of the mine tailings were performed to indirectly evaluate release 

and mobility of contaminants to the surrounding environment by normal rain (approx. pH 5.6) or 

acidic rain (under pH 5.6) [15,20]. According to TCLP, the pH of the solution produced by shaking the 

mine tailings with ultra-pure water was 7.21 and that of the solution acidified with HCl was 1.14, thus 

fluid #1 (pH 4.93 ± 0.05) was selected for the leaching test.  

Table 6 shows leaching concentrations of As and heavy metals by TCLP and KSLT, compared with 

their criteria. Leaching concentrations (mg/L) of As and heavy metals were much lower than the 

criteria [e.g., As (mg/L): 0.43 for TCLP and 0.24 for KSLT (cf. criteria (mg/L): 5.0 for TCLP and 1.5 

for KSLT), Pb (mg/L): 0.15 for TCLP and 0.10 for KSLT (cf. criteria (mg/L): 5.0 for TCLP and 3.0 

for KSLT), Cr(VI) (mg/L): 0.42 for TCLP and 0.36 for KSLT (cf. criteria (mg/L): 5.0 for TCLP and 

1.5 for KSLT)]. Especially, the leaching levels of As were in the range of 0.014–0.026%, presenting 

only meager proportions for the total arsenic content in the mine tailings. Kim et al. [26] also reported 

a similar result on leaching of As from mine tailings. In their study, As leaching levels were in the 

range of 0.0017–0.37%, when mine tailings of six types were mixed with water for 1 hr at a ratio of 

1:5 as mass [26]. Even though the test conditions such as leaching solution and shaking time do not 

correspond to those in our study, the result also satisfies that soluble As in water occupied only minor 

fraction of the total As in mine tailings.  

In terms of only the leaching levels, current state of the mine tailings can be regarded as stable for 

release risk of As and heavy metals by acidic rain. Further, this sample can be classified into a non-

hazardous waste group for landfill treatment. It is, however, suggested that the mine tailings need to be 

treated to meet Korean soil contamination criteria (see Table 4), if it is expected to return them to the 

environment as a part of the soil.  
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The leaching concentrations of As in the both leaching tests (0.43 mg/L for TCLP and 0.24 mg/L 

for KSLT) were lower than those of fraction 1 and 2 in the sequential extraction (0.80 mg/L for 

fraction 1 and 12 mg/L for fraction 2) as shown in Table 7. For this result, we consider that the pH of 

each extractant presumably affected most greatly the As extraction reaction. Ghosh et al. [27] also 

reported that As leaching concentrations by TCLP was much less (10 times) than those by Landfill 

leachate (LL), and considered that the higher leachate pH (6.8) than that of TCLP (4.9) contributed to 

the result since As mobilization increases with pH increase. In addition, they commented that the 

TCLP is focused on only acidic conditions and poorly simulates alkaline pH, low redox potential, 

biological activity, long retention time, and organic composition of mature landfills [27]. It is therefore 

concluded that leaching concentrations of As in the fraction 1 and 2 by the sequential extraction (weak 

alkaline pH) were higher than those by TCLP and KSLT (weak acidic pH) because more As leaches 

with higher pH. Though, in the comparison of As leaching by TCLP and KSLT, TCLP with lower pH 

than KSLT showed very slightly higher As leaching and this result is attributed to other conditions 

such as the extraction time and the ratio of solid and liquid rather than the pH of extractant. 

On the other hand, the possibility of As and heavy metals releases from the mine tailings at the 

natural site can be explained by comparing our study to those suggested by other studies [3,28,29]. The 

mine tailings used in this study were sampled from the surface of the tailings pile at the abandoned 

mine. Because mine tailings deposition had been ended before abandoning mining operation in 2001, 

the surface of uncovered mine tailings pile had been allowed to be in contact with oxygen. Those 

conditions resulted in the oxidation of sulfide minerals in the mine tailings, as shown in Figure 4 [28]. 

The oxidation of sulfide minerals which combine with As or heavy metals can also result in the 

dissolution of As and heavy metals by water [3]. Based on the presence of sulfide minerals, high 

contents of As and heavy metals, potential of oxygen contact, and high sulfate concentration in the 

mine tailings, the equations 6–8 related to dissolution of iron and arsenic, as an example, could have 

occurred in the mine tailings [3-5,29]: 

FeS2 + 7/2O2 + H2O →  Fe2+ + 2SO4
2– + 2H+ (6) 

Fe(1–x)S + (2 – x/2)O2 + xH2O →  (1-x)Fe2+ + SO4
2- + 2xH+ (7) 

4FeAsS + 13O2 + 6H2O →  4Fe2+ + 4H2AsO4
– + 4SO4

2- + 4H+ (8) 

Here, ferrous ions precipitate in the form of ferric hydroxide by oxidizing or hydrating, as shown 

in the equation (9): 

Fe2+ + 1/4O2 + 5/2H2O →  Fe(OH)3 + 2H+ (9) 

Heavy metals released by oxidation can be re-adsorbed onto the surface of ferric hydroxide, and 

also adsorbed heavy metals can be separated from the surface of ferric hydroxide by water [30]. The 

low leaching concentration in the test indicates that easily soluble fraction of As and heavy metals 

might be already released by the oxidation of sulfide minerals with air and water for a long period at 

the tailings deposition site. Based on the potential that As and heavy metals could be already released 

from the mine tailing, investigations on the status of contaminants in nearby lands and groundwater  

are needed. 
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Figure 4. Schematic of an uncovered tailings impoundment (modified from [28]). 

 
 

Table 6. Leaching concentrations (mg/L) of arsenic (As) and heavy metals from the mine 

tailings tested by Toxicity Characteristic Leaching Procedure (TCLP) and Korean 

Standard Leaching Test (KSLT). 

Metal Leaching level (mg/L) Criteria (mg/L) 

TCLP (US EPA) KSLT (Korea) TCLP (US EPA) KSLT (Korea) 
As 0.43 0.24 5.0 1.5 
Pb 0.15 0.10 5.0 3.0 
Cr(VI) 0.42 0.36 5.0 1.5 
Cu 0.29 0.08 NE 3.0 
Cd 0.20 0.19 1.0 0.3 

NE = Not Established 

Table 7. Comparison of Arsenic (As) concentrations between Toxicity Characteristic 

Leaching Procedure (TCLP), Korean Standard Leaching Test (KSLT), and extractable 

fractions (fraction 1 and 2) in the As sequential extraction. 

Parameter Unit TCLP KSLT 
Sequential extraction 

Fraction 1 Fraction 2 

pH of extractant  pH           5 6 7 8 

Extraction time  hr 18        6 2 15 

Solid (g):liquid (mL)  1:20 1:10 1:60 1:60 

As concentration in 

leachant  

mg/L 0.43 0.24 0.80 12 
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4. Conclusions 

 

The mine tailings were contaminated with much higher concentrations of As and heavy metals than 

the Korean soil contamination criteria. The measured concentrations were different depending on the 

test methods used. EPA method 6010 and KST for waste, digestion methods using strong acids and 

high temperature were more effective for total concentration analysis of As and heavy metals than 

KST for soil. In the mine tailings, As mostly consists of the residual fraction and the fractions 

extracted by alkaline extractants (NH4Cl and NH4F) were meager. In TCLP and KSLT, concentrations 

of As and heavy metals released from the mine tailings were far lower than their criteria, indicating a  

non-hazardous waste. The leaching levels of As by TCLP and KSLP were lower than those of soluble 

fractions by the sequential extraction because of the difference of pH among the extractants in each 

test. In the further study, it is necessary to investigate contamination status of nearby soil and 

groundwater. In addition, mine tailings treatment is needed to prevent additional oxidation of sulfide 

minerals in mine tailings by oxygen contact and release of As and heavy metals by water.  
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