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Abstract: This paper illustrates how to estimate cumulative and non-cumulative treatment 
effects in a complex school-based smoking intervention study. The Instrumental Variable 
method is used to tackle non-compliance and measurement error for a range of treatment 
exposure measures (binary, ordinal and continuous) in the presence of clustering and drop-
out. The results are compared to more routine analyses. The empirical findings from this 
study provide little encouragement for believing that poorly resourced school-based 
interventions can bring about substantial long-lasting reductions in smoking behaviour but 
that novel components such as a computer game might have some short-term effect. 

Keywords: Instrumental variables; multi-level intervention study; non-compliance; 
treatment effect. 

 

1. Introduction 

This paper presents an analysis of the UK component of the European Smoking Prevention 
Framework Approach (ESFA) study, illustrating and explaining how several difficulties that are 
commonly encountered in intervention studies may be tackled.  
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The ESFA study was a large cluster-randomised study aiming to reduce smoking among 
adolescents. In such studies clusters of observations (in our case, pupils in schools) are sampled and 
randomly assigned to a control or an experimental group and only the subjects belonging to the latter 
receive the new treatment. Any difference in the outcome variable between the two groups is then seen 
as the effect of the treatment. Unfortunately, many intervention programs are frequently complicated 
by non-compliance, i.e. a departure from the study protocol caused by subjects not following or being 
unable to follow the treatment regime to which they were assigned. Since it makes little sense to look 
for an intervention effect among those who received no treatment, researchers are then tempted to use 
the comparison of the outcome for groups defined by those who received and those who did not 
receive the treatment. However, since non-compliers are invariably systematically different from 
compliers, this comparison is likely to be biased.  

Further complexities may arise when, as in the study described in this paper, the treatment is 
composed of several elements and this set of treatment elements is randomized as a set not to 
individuals but to, for example, schools. It may then not be possible to establish with certainty to 
which treatment elements each subject was exposed.  

Moreover, studies typically may have a longitudinal design, requiring not only the linking of 
responses over time and proper accounting for the lack of independence between observations but also 
tackling the inevitable sample attrition, which may arise at different levels. For example, if we observe 
students over several years, we may have missing values because the single student drops out or 
because the school withdraws from the study and consequently all the students of that school are lost. 
Furthermore, the pattern of missing data cannot always be assumed to be monotone. There may be 
schools that withdraw from the study but decide to re-enter later on. With longitudinal studies one may 
also be interested in investigating the cumulative effect of the treatment over time. 

This paper attempts to address these practical problems. In section 2 we describe the ESFA study 
and its complexities. In section 3 we illustrate how we can estimate cumulative and non-cumulative 
treatment effects for a range of treatment exposure measures (binary, ordinal and continuous) while 
adjusting for non-compliance, clustering and drop-out. In section 4 the analysis and results of the 
ESFA study are described. Lastly, section 5 contains some final comments. 

2. The ESFA Study 

The ESFA Project was set up with the aim of implementing and evaluating the impact of various 
smoking prevention activities in six European countries. The target population was 12 to 16-year-old 
adolescents in secondary education. This trial was novel in attempting to promote change through an 
intervention involving individual, class, school, family and community based activities. We here 
consider the UK component of the study. 

2.1. Sample Design and Interventions 

At baseline 42 schools were selected and assigned to either an experimental or a control group and 
a total of 6,626 students entered the study. Control schools were asked not to carry out any new 
smoking prevention activities, whereas experimental schools were encouraged to implement an 
intervention package over three consecutive years (1999, 2000 and 2001). The interventions were 
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spread over the whole intervention period and consisted of a set of activities, among which were 
lessons, leaflets and a computer game, aimed to awaken students to the hazards of smoking and to 
warn them about tobacco adverting techniques. More details about the study are available [1]. 

2.2. Questionnaires, Compliance and Characterizing Treatment Exposure 

Each of the participating schools designated a contact person to supervise the questionnaire 
management and to facilitate communications between the school and the ESFA team. Treatment was 
delivered via the teachers. Pupils were asked to fill in a questionnaire at the baseline (1998) and in 
each of the subsequent intervention years. Both teachers and school contact persons were invited to 
complete a questionnaire with questions intended to assess compliance. Unfortunately, attempts to 
obtain teacher reports of intervention delivery and acceptability largely failed, making it impossible to 
determine with certainty which part of the intervention package pupils actually received. We were thus 
left with indications of treatment exposure from the students’ self-reporting and from the school 
contact persons’ questionnaires. On the basis of the students’ recalled exposure to elements of the 
program, it became clear that the various components were neither received by all pupils in 
intervention schools nor were they exclusive to these schools. Moreover, within each school there was 
very substantial disagreement among pupils on exposure even where that exposure was likely to be a 
shared experience. The differences between the control and the experimental schools in terms of 
students’ recall of the intervention were mostly quite modest, apart from that related to the computer 
game. Among other measures, the school contact person reported about the number of lessons carried 
out by the school on smoking prevention. With only a single reporter we have little scope for assessing 
its reliability but in face validity terms this seemed to be a good indicator of the overall amount of 
treatment exposure. In this paper we will therefore focus on two measures of compliance: exposure to 
the computer game as reported by the students and the number of smoking-prevention lessons carried 
out by the school as reported by the school contact person.  

2.3. Outcome Variable 

In common with many studies, we focused on students being or becoming regular smokers, defined 
on the basis of self-report average smoking of at least once a week [2,3]. Adolescent self-report on 
smoking appears to be reliable provided that anonymity can be assured [4,5]. In the ESFA study strict 
confidentiality was promised to the pupils before completion of the questionnaire. 

3. Analysis Issues in Complex Multi-Level Intervention Studies 

The Introduction summarized how the estimation of treatment effects are often complicated by 
issues such as non-compliance, missing values and correlation between observations. In this section 
we describe how these problems can be tackled. 

3.1. Estimating Treatment Effects in the Presence of Non-Compliance 

Several methods have been proposed for the estimation of treatment effects. Assuming random 
assignment, perfect compliance and no missing data the treatment effect can be estimated by the 
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difference in the mean outcome between those in the control arm and those in the intervention arm. 
This is the gold standard Intention-To-Treat (ITT) estimator of intervention efficacy [6]. An ITT 
analysis is usually straightforward since it requires just the fitting of some appropriate regression 
model with the randomization indicator as the only predictor and it completely ignores whether or not 
the subject actually received the treatment. However, if there are departures from randomization, this 
can lead to misleading results [7]. 

In a so-called As-Treated (ATT) analysis the subjects are analyzed as if they were randomized to 
the treatment they actually received, regardless of which arm of the trial they were initially allocated 
to. The treatment effect is thus estimated as the difference in outcome means between those who got 
the treatment and those who did not. Nevertheless, if those who comply with treatment assignment are 
systematically different from non-compliers, this comparison is likely to be biased by the presence of 
confounders [8].  

Adjustment for measured confounders is possible by use of a propensity score [9], a measure that 
summarizes the selective receipt of treatment associated with a set of measured factors and covariates. 
Undertaking an ATT analysis while matching, covarying or weighting by the propensity score 
provides a treatment effect adjusted for those confounders [9,10]. To account for selective assignment 
related to both measured and unmeasured confounders we can use an instrumental variable (IV) 
approach, much used in econometrics [11,12]. Consider a linear model for the outcome Y: 

εβα ++= DY   (1) 

where α and β are parameters, D denotes treatment received and ε is an error term with 0)(E =ε  and 
2)(Var σε = . If there is selective treatment exposure and we do not adjust for all the possible 

confounders, D and ε  are correlated and D is said to be endogenous. Any other variable which is not 
correlated with ε is referred to as exogenous. In the presence of endogeneity we cannot simply 
estimate the treatment effect β via ordinary regression. A way to overcome this problem is to find an 
IV, a variable that is correlated with the endogenous treatment variable D but uncorrelated with the 
error term ε. Informally this can be thought of as basing the estimate of treatment effect on a part of 
the variation in treatment exposure that is known to be uncorrelated with confounders. However, 
finding such a variable has proved to be a difficult task in many contexts. In randomized trials the 
problem is made much simpler since the treatment assignment indicator W (W = 1  if the subject is 
assigned to receive the treatment and W = 0  otherwise) is an obvious IV.  

In regression terms the IV approach is conceived in the form of two equations: one for the outcome 
variable and one for the endogenous treatment variable, namely 

εβα ++= DY  11  (2) 

ζβα ++= WD  22  (3) 

where α ’s and β ’s are parameters, W is an IV for D, whereas ε  and ζ are error terms such as 
0),( ≠ζεCov . In other words, when there is non-compliance we cannot simply estimate the effect of 

treatment by using equation (1) because there are confounding variables, which often are unmeasured, 
that influence both the outcome and treatment received. The IV method consists in finding a variable 
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W that is correlated with D and that affects Y only through D and in then fitting the pair of equations 
(2) and (3).  

With a continuous response Y the treatment effect β1 can be consistently estimated by a two-step 
procedure (2SLS). At the first stage D is regressed on W as well as other exogenous variables, whereas 
at the second stage Y is regressed on the exogenous variables and on D̂ , the predicted value of the 
endogenous treatment variable obtained from the previous stage. The standard errors of the second-
stage estimates have to be adjusted to account for the two-step estimation. For outcomes requiring 
non-linear models, such as probit or logistic regression for binary outcomes, the analysis is not so 
straightforward since this two-step procedure no longer yields a consistent treatment effect estimate 
[13]. A way to overcome the problem is by using a simultaneous equations framework. For example, if 
both the outcome Y and the endogenous treatment D variables are binary, we can use a bivariate probit 
model [12,14] which consists in a joint estimation of different probit models for Y and D where the 
error terms of the 2 models are allowed to be correlated. For outcome and treatment exposure 
measures of ordinal or mixed types then appropriate models have to be specified in structural equation 
modelling programs such the Stata procedure gllamm [15].  

Although the IV method does not require the assumption of no unmeasured confounders, this is 
gained at the expense of a possible loss of efficiency. This can be extreme if the available IV is only 
weakly correlated with treatment exposure. Furthermore, if the intervention being trialled involves a 
combination of several elements, non-compliance may occur at the level of the whole combination (i.e. 
individuals receive none or all of the elements) or more commonly element by element. The IV 
approach can be used to test each element in turn; testing the elements simultaneously is more difficult 
because each element requires a distinct IV and with a single combination protocol there is usually just 
one random assignment variable available for use as an IV. 

With longitudinal intervention studies one may also be interested in the cumulative effect of 
receiving treatment over time. This means that at time T we aim to estimate the effect of a variable TΛ  
representing the total amount of treatment accumulated by the individual up to a time T, i.e. 

∑
=

=Λ
T

t
tT

1
δ  w h e r e  δt represents the binary indicator of treatment exposure or the dose of the 

treatment received at time t. 

3.2. Missing Values and Linking Records 

In the ESFA study missing data were common and drop-out occurred at both the individual and 
school levels. At school level it was straightforward to identify schools that had dropped out, and 
dropped back in, during the study. However, identifying individual level drop-out was more 
complicated than expected since it required that respondents always maintain the same identifier at all 
occasions. Unfortunately, in our study there were a proportion of records that failed to link across time 
that were most likely due to errors in identifiers rather than student turnover and absences. There were 
also a smaller number of records that shared identifiers but were clearly different individuals. It is 
known that the reliability of self-report smoking relies critically on convincing students of 
confidentiality through assurances of anonymity. It is easy for anonymity to be confused with lack of 
identifiability. These concerns may have resulted in less attention being given to the consistent use of 
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student identifiers. Before proceeding with the analysis, procedures were therefore developed to check 
the validity of linked records and to link near identical but formally unlinked records. Nonetheless, 
while good progress was made with improved linkage enabling the fitting of multilevel longitudinal 
models, there remained some concern. As a result, we favoured methods of analysis that rested less 
heavily on formal linkage of individuals over time. We assumed that, while the probability of missing 
at the individual level might vary with covariates included in the model, it was otherwise constant. We 
then accounted for the school-level missingness via weighting. This method adjusts for discrepancies 
between the obtained and the target sample of schools caused by missing data. If for example our 
sample can be divided in two strata, one with high and the other with low attrition, then compared to 
participants from the low attrition stratum, each subject that remains from the high attrition stratum is 
given a larger weight since each one must represent the larger number of similar subjects from that 
stratum that were lost through attrition. The weights are derived as the inverse of the “sampling” 
fraction (the proportion with complete data) from each stratum.  

In this analysis the weights are defined as the inverse of the relative probability for a school to be in 
the sample. Logistic regression was used to estimate the probability at each follow-up for each school 
participating in the study. These school and occasion specific weights then weighted each record in a 
pseudo-likelihood analysis of treatment effect. While the application of weights may correct for bias in 
effect estimates their use makes invalid the usual methods for calculating standard errors and other 
estimates of precision and significance. These must be calculated using weighted scores or bootstrap. 
Good overviews on the use of sampling weights can be found in [16,17]. 

3.3. Dealing with Multi-Level Longitudinal Data 

With multi-level longitudinal data it is necessary to account for the correlation between 
observations [18,19]. The two main approaches proposed for the analysis of correlated data relate to 
two broad classes of models, namely random effects or conditional and population-averaged or 
marginal models. In the former the correlation is typically accounted for by including in the model a 
cluster-specific random component [20]. In the population-averaged approach the primary focus of 
interest is the factors influencing the expected or conditional mean of the response variable and the 
correlation among observations is treated as a nuisance [21,22]. Which approach to use depends 
mainly on the research question and whether the correlation is treated as a nuisance parameter or a 
quantity of interest. Moreover, for binary and ordinal outcomes the usual effect estimates derived from 
population-averaged and random effects models do not estimate the same parameter, the latter 
estimator being conditional on unobserved random effects and tending to be larger. However, the 
effect estimate from the random effects model is appropriate to a comparison of two randomly sampled 
individuals with different treatment exposure that can be found from comparing predicted outcome 
rates averaged over the random effects distribution and this does provide an estimator comparable to 
that of the population-averaged approach. In social intervention studies, since the interest lies 
principally in understanding population-level rather than individual-level effects, the population-
averaged framework is more directly suitable, providing the effect estimate of interest without further 
work. Had our study included richer data in relation to school context that would have allowed a more 
detailed examination of the factors associated with between school variance and how much of that 
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variance they could explain, or had the study a more specific focus on between school variability in 
treatment effect, then a random effects approach might have been preferable. 

In its simplest implementation the population-averaged method consists in fitting models to the data 
as if observations were independent and then accounting for the clustering by using a robust estimator 
for the standard errors [23,24]. Since it does not require us to specify the correct correlation structure 
among observations, a complete linkage of records over time at the individual level is less necessary. 
This method also provides appropriate estimates and standard errors where data are weighted. 

4. Results 

The number of schools participating in each of the four years were respectively 22, 18, 16 and 15 
intervention schools and 20, 16, 10 and 11 control schools. School dropout was likely to be related to 
the importance assigned to the topic, implicit evaluations of treatment effectiveness, staffing and the 
like and thus not entirely random. Therefore, for each of the intervention years we used a logistic 
regression to model the probability for school study participation as a function of baseline 
characteristics of the schools. We found evidence of differential school dropout associated with 
intervention group, previous school non-participation, percentage of regular smokers at baseline and 
an interaction between randomization group and baseline level of smoking prevention work. The 
experimental schools were significantly more likely to stay in the study over time; among them those 
with high baseline levels of smoking prevention activities had a higher probability of dropping out. 
The reciprocal of the estimated probability was then used to construct the weights to adjust for school 
drop-out. 

4.1. Non-Cumulative Exposure 

A first analysis was carried out assuming that the treatment might have had an effect only during 
the year it was given to the pupils or, in other words, that the exposure did not have a cumulative 
impact over time. We report only the results obtained after weight adjustment for missing values.  

The simple ITT estimate was found to be -0.079 (p=0.3) for year 1, -0.094 (p=0.2) for year 2 and     
-0.125 (p=0.1) for year 3. The ITT results were therefore unequivocal in suggesting no significant 
treatment effect but, as we have already pointed out, an ITT analysis delivers biased treatment effect 
estimates if there are departures from randomization. The multiple-component nature of the ESFA 
study made it complicated to assess who actually received the whole prevention program. Two 
contrasting treatment exposure measures were considered: student’s recall of the computer game 
(variable game) and the school contact person’s report on the number of smoking prevention lessons 
carried out by the school (variable prevtime). The first is a binary treatment element which, being 
collected at an individual level, allows account to be taken for possible students’ absences from 
school. However, it can be affected by unmeasured factors such as students’ absent-mindedness or 
poor memory. On the other hand the second exposure indicator, i.e. that reported by each school’s 
contact person, is a grouped continuous measure on the amount of time spent in lesson-based anti-
smoking activities. It is an ordinal variable with 6 categories corresponding to 0, 1, 2 to 3, 4 to 5, 6 to 
10 and more than 10 lessons. This seemed likely to be a more reliable measure of treatment receipt, but 
it is a school-level indicator and as such it did not allow us to identify partial and variable compliance 
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within a school. It may have happened that in the same school some classes and students complied and 
some others did not. Furthermore, even from participating schools not all the contact teachers provided 
this information. Data were available on 38 out of 42 schools at baseline, 30 out of 34 at the first 
intervention year and 22 out of 26 at the second and third years of the intervention. This required a 
modified set of non-response weights. Information about the last 2 intervention years were collected 
through the same questionnaire before the end of the study, meaning that the level of exposure 
reported for year 3 was only partial, i.e. up to the time the questionnaire was completed. As a 
consequence, for analyses where the pupils’ level of treatment exposure was assessed though the 
school contact persons’ reports, we focus on years 1 and 2 and ignore year 3 because the exposure 
measure was incomplete.  

 
Table 1. Estimates of the treatment effects for the computer game by using ATT and IV 
methods. Analyses were weighted to account for school dropout and adjusted for 
covariates sex (0 = male, 1 = female) and prevsmok (1 = the student was a regular smoker 
the year before, 0 otherwise). Robust standard errors are denoted with SE* and are 
reported between brackets. 

 ATT  IV method 

 Estimate (SE*) p-value  Estimate (SE*) p-value 

year 1      

treatment (game)  -0.232 (0.083) 0.005   -0.067 (0.198) 0.734 
Sex  0.204 (0.068) 0.003  0.204 (0.066) 0.002 
prevsmok  1.611 (0.103) 0.000  1.616 (0.102) 0.000 
intercept -1.369 (0.061) 0.000  -1.406 (0.072) 0.000 
  
year 2      

treatment (game) -0.216 (0.069) 0.002  -0.331 (0.180) 0.066 
Sex 0.137 (0.074) 0.066  0.141 (0.076) 0.062 
prevsmok 1.696 (0.130) 0.000  1.685 (0.127) 0.000 
intercept -1.158 (0.061) 0.000  -1.131 (0.065) 0.000 
  
year 3      

treatment (game) -0.011 (0.095) 0.905  -0.498 (0.274) 0.069 
Sex -0.014 (0.111) 0.902  -0.004 (0.112) 0.969 
prevsmok 2.161 (0.104) 0.000  2.126 (0.104) 0.000 
intercept -1.341 (0.092) 0.000  -1.228 (0.084) 0.000 

 

An ATT analysis was then performed by using game and prevtime as two alternative measures of 
treatment received. Since adding important covariates can make for a more powerful analysis and can 
further mitigate problems due to selective attrition, we included the student’s sex and previous 
smoking status as two additional explanatory variables. The results of the ATT analysis of student’s 
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recall of the computer game are reported in Table 1. These suggest significant intervention effects in 
years 1 and 2. Equivalent results using the teachers’ reports indicator of treatment received are shown 
in Table 2 and suggest no intervention effect.  

However, as mentioned before, the ATT estimator was likely to be a biased estimator of the 
treatment effect since group provision and receipt of the prevention program can be correlated with 
features of the school, teacher and individual student. Methods that account for non-compliance were 
therefore needed. Non-compliance adjustments based on the propensity score approach are in these 
cases complicated by the presence of time-varying confounders and by the difficulty of controlling for 
all the possible variables that may have an influence on the selective treatment exposure. For example, 
if we consider the exposure to the computer game, the probability of a student recalling the treatment 
may depend on both individual and school characteristics, some un- or imperfectly measured. We 
found for instance that in experimental schools good students, who might be expected to be more 
attentive in class, were more likely to recall the treatment. Since it is not possible to be confident in 
assuming that we are correcting for all the possible confounders, a more reasonable way to proceed is 
to use the randomised treatment group assignment as an IV to account for both measured and 
unmeasured confounders. Since the outcome variable (student’s regular smoking status) was 
dichotomous, this required the IV estimation to be performed in the simultaneous equations 
framework. When treatment exposure was assessed through the binary report of computer-game use a 
bivariate probit model was fitted using the command biprobit in Stata [25]. Treatment assignment was 
found to be a strong IV (p<0.001 in each intervention year). Results are displayed in column 3 of 
Table 1 and show only marginally significant treatment effects in years 2 and 3.  

 
Table 2. Estimates of the treatment effects for prevtime by using ATT and IV methods. 
Robust standard errors are denoted with SE* and are reported between brackets. 

 ATT  IV method 

 Estimate (SE*) p-value  Estimate (SE*) p-value 

  
year 1      

treatment (prevtime)  -0.007 (0.055) 0.894  -0.035 (0.212) 0.867 
Sex  0.258 (0.087) 0.003  0.258 (0.088) 0.003 
prevsmok  1.724 (0.090) 0.000  1.720 (0.096) 0.000 
intercept -1.464 (0.177) 0.000  -1.381 (0.634) 0.029 
      
year 2      

treatment (prevtime) -0.048 (0.041) 0.244  -0.311 (0.326) 0.342 
Sex 0.149 (0.117) 0.202  0.116 (0.128) 0.363 
prevsmok 1.752 (0.147) 0.000  1.740 (0.134) 0.000 
intercept -1.125 (0.119) 0.000  -0.536 (0.772) 0.487 

 



Int. J. Environ. Res. Public Health 2009, 6         
 

 

472

If treatment receipt was measured by the number of smoking prevention lessons, the corresponding 
IV estimator for the effect of treatment required estimating a bivariate ordinal probit model with 2 
categories for the smoking status outcome equation and 5 categories for the endogeneous treatment 
equation. This was estimated in Stata using gllamm. Results are reported in Table 2 and show no 
evidence of treatment effect. However, treatment assignment was in this case a poor IV (p>0.1 for 
years 1 and 2), yielding to wide confidence intervals. 
 
4.2. Cumulative Exposure 

For the computer game the cumulative exposure was obtained by summing the binary variable 
game over time. In year 1 exposure was binary, i.e. exposed to the computer game (1) or not (0). In 
year 2 cumulative exposure had 3 categories: (00) = 0, (01 or 10) = 1 and (11) = 2. In year 3 there were 
four categories: (000) = 0, (100 or 010 or 001)=1, (110 or 101 or 011)=2 and (111)=3. The analysis 
was then carried out for each of the intervention years by fitting a pair of simultaneous equations 
formed by a probit model for the binary smoking outcome and an ordinal probit model for the 
cumulative exposure, where the randomization assignment variable was used as an IV. 

For the number of non-smoking lessons reported by the school contact person the computation of 
the cumulative exposure was not so straightforward because the amount of exposure was sometimes 
known only up to an interval approximation. School contact persons were asked to choose among 0, 1, 
2-3, 4-5, 6-10 and >10 lessons (no school was reported to fall in this last category). The dose of the 
treatment received by the subject was therefore taken as the midpoint of the interval in which it was 
known to fall (if for example the school contact person reported a number of lessons between 4 and 5, 
the midpoint dose was taken as 4.5) and the cumulative exposure was derived by adding these 
midpoint doses over time.  

The resulting analysis required simultaneous equations formed by a probit model for the smoking 
outcome and a linear model for the approximately continuous cumulative exposure for each of years 1 
and 2. Both this and the previous model were fitted in Stata using the gllamm procedure. Results are 
reported in Table 3. Since cumulative exposure is equivalent to the already analyzed current exposure 
data in year 1, results are shown only for year 2 onwards. Intervention group proved a strong IV for 
cumulative exposure to the computer game (p<0.001 in both year 2 and year 3). When controlling for 
smoking at baseline and the sex of the pupil, marginally significant beneficial effects are suggested 
from cumulative exposure to the computer game. By contrast, intervention group proved to be a poor 
IV for time on generic smoking prevention (p=0.6) and, after controlling for baseline smoking and the 
sex of the pupil, there was no suggestion of any treatment effect. 
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Table 3. Estimates of the cumulative treatment effects based on the students’ self-reports 
(computer game) and the school contact persons’ reports (lesson time). Analyses were 
adjusted for covariates sex (0 = male, 1 = female) and smok0 (1 = the student was a regular 
smoker at the baseline, 0 otherwise). Robust standard errors (SE*) are reported between 
brackets. 

 Cumulative exposure 
 Computer game  lesson time 
 Estimate (SE*) p-value  Estimate (SE*) p-value 

year 2      

intercept -0.962 (0.058) 0.000  -0.065 (1.151) 0.955 
Sex 0.199 (0.065) 0.002  0.269 (0.183) 0.141 
smok0 1.166 (0.146) 0.000  1.385 (0.206) 0.000 
treatment  -0.138 (0.073) 0.059  -0.095 (0.123) 0.441 
  
year 3      

intercept -0.780 (0.084) 0.000    
Sex -0.000 (0.111) 0.998    
smok0 1.196 (0.217) 0.000    
treatment -0.150 (0.096) 0.117    

 

5. Discussion 

In the last decades there has been a lot of debate on the effectiveness of smoking cessation 
programs and how this type of interventions should be designed and implemented. Conflicting findings 
from reviews and meta-analyses have been reported in the literature (see for example [26-28]). Several 
researchers have highlighted the need for improved methodologies in drug use prevention studies 
where very often complex statistical issues such as differential attrition and unmeasured confounding 
are not taken into proper account [29]. This paper has presented the analysis of a complex smoking 
prevention study and has illustrated IV estimation of treatment effects to tackle non-compliance and 
measurement error for a range of treatment exposure measures in the presence of clustering and drop-
out.  

Our main findings are both empirical, relating to ESFA treatment efficacy, and methodological, for 
the design of future studies with these methods of analysis in mind. The empirical findings from this 
study provide little encouragement for believing that typical poorly resourced school-based 
interventions can bring about substantial long-lasting reductions in smoking behaviour. In large part 
this may reflect the difficulty of engaging with students [30]. Sussman and colleagues [27] suggested 
that, to minimize non-compliance and drop-out, interventions should be as fun as possible and they 
should include activities such as games and dramatizations. In our study we found that the differences 
between the control and the experimental schools in terms of students’ recall of the intervention were 
mostly quite modest, apart from that related to a computer game.  
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Demonstrating an intervention effect is particularly difficult for dispersed and multi-facetted 
treatment packages such as ESFA. Analyses for the estimation of the effect of the computer game 
suggested that among those who recalled the intervention it may have had marginally significant 
cumulative and non-cumulative effects on the last 2 years of the intervention. When treatment 
exposure was assessed through the number of smoking prevention lessons carried out by the school no 
evidence of treatment effect was found, but the randomization indicator proved to be a poor IV leading 
to wide confidence intervals. For several of the other elements of the treatment package, the materials 
and strategies were becoming integrated into the standard teaching of many schools. Moreover, in 
practice merely achieving a statistically identifiable impact on treatment exposure proved to be quite a 
challenge, but this is a necessary preliminary before an IV estimator can demonstrate an independent 
effect of treatment in the presence of non-compliance. The problems this presented for evaluation are 
likely to recur in future studies. Our ability to detect the effectiveness of such elements rests heavily on 
being able to record student treatment exposure rigorously and is improved where reliable record 
linkage over occasions of measurement can be maintained. In fact, the ESFA study was designed to 
test the effect of the treatment package as a whole, and not the individual elements. However, to 
undertake any analysis other than ITT requires an explicit and reliable measure of exposure to each 
treatment element. In addition, had the intention been to test the individual elements then more IVs 
would have been required, typically one for each element. In practice this would have required 
randomisation to a number of treatment groups, rather than just treatment and control, with each group 
having a distinct combination of treatment elements. 

We introduced the IV estimator from a consideration of a joint model for treatment exposure and 
outcome. A number of alternative effect estimates have been derived from a “counterfactual” approach 
by means of an explicit comparison of an estimate of each individual’s observed outcome to the 
hypothetical outcome had the individual received a treatment regime other than that observed, the so-
called counterfactual outcome. These approaches emphasize the various assumptions that must be 
made in deriving expected outcomes for these counterfactuals and highlight the difference between a 
local average treatment effect (LATE) that is particular to the treatment participation scheme of the 
evaluation study and an average treatment effect that would pertain were the whole population induced 
to participate. IV methods in general make implicit assumptions as to the homogeneity of any 
treatment effect or, if the effect is heterogeneous, the lack of correlation between the response to 
treatment and the propensity to receive treatment [31]. In the simple binary treatment case the IV 
estimator can be defined in terms of counterfactuals [32] and be given a local average treatment effect 
interpretation [33, 34]. The binary treatment case also allows a categorization of participants into so-
called compliers and non-compliers, this distinction being observable only among those randomized to 
treatment. A comparison of outcome differences for the compliers gives the so-called complier average 
causal effect (CACE) and can be obtained for example by specifying the compliance status as a latent-
class for those not randomized to treatment, yielding an estimate equivalent to LATE.  

We have illustrated IV methods in the context of a trial where randomization provided an obvious 
IV. In other applications the search for an appropriate IV is not trivial. Often it is necessary to draw 
upon imagination, theory and chance to find IVs, the latter often by exploiting “natural experiments”. 
For instance, Leigh and Schembri [35] use variation in cigarette price, which can be largely influenced 
by exogeneously determined tax changes, as an IV in their study of the effects of smoking on physical 
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functional status. Genetic polymorphisms are also now being considered as potential IVs [36]. Readers 
need to be convinced that the assumptions of the method, notably the exclusion restriction, are met for 
each specific study. 
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