
Int. J. Environ. Res. Public Health 2010, 7, 164-177; doi:10.3390/ijerph7010164

OPEN ACCESS

International Journal of
Environmental Research and

Public Health
ISSN 1660-4601

www.mdpi.com/journal/ijerph
Article

Estimating Prevalence of Coronary Heart Disease for Small
Areas Using Collateral Indicators of Morbidity
Peter Congdon

Department of Geography and Centre for Statistics, Queen Mary University of London, Mile End Rd,
London E1 4NS, UK; E-Mail: p.congdon@qmul.ac.uk

Received: 20 November 2009 / Accepted: 14 January 2010 / Published: 18 January 2010

Abstract: Different indicators of morbidity for chronic disease may not necessarily be
available at a disaggregated spatial scale (e.g., for small areas with populations under 10
thousand). Instead certain indicators may only be available at a more highly aggregated
spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only
at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level
are important for assessing health need. An instance is provided by England where deaths
and hospital admissions for coronary heart disease are available for small areas known as
wards, but prevalence is only available for relatively large health authority areas. To estimate
CHD prevalence at small area level in such a situation, a shared random effect method is
proposed that pools information regarding spatial morbidity contrasts over different indicators
(deaths, hospitalizations, prevalence). The shared random effect approach also incorporates
differences between small areas in known risk factors (e.g., income, ethnic structure). A
Poisson-multinomial equivalence may be used to ensure small area prevalence estimates
sum to the known higher area total. An illustration is provided by data for London using
hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for
considerably larger local health authority areas. The shared random effect involved a spatially
correlated common factor, that accounts for clustering in latent risk factors, and also provides
a summary measure of small area CHD morbidity.
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1. Background

Profiling geographic variations in health care need is important for equitable and effective targeting
of resources that reflects inequalities in morbidity [1]. Coronary heart disease (CHD) is an important
part of the overall disease burden faced by government health agencies and demonstrates considerable
geographic inequality. Assessing prevalence variations between populations and areas for chronic
diseases such as CHD is a central aspect of defining health care need. However, prevalence is not
necessarily as well recorded as other health outcomes (e.g., mortality, hospitalisations). For example,
in some countries such as the US, area prevalence estimates can only be made on the basis of health
survey data. Focussed studies, such as the British Regional Heart Study (BRHS) considered by
Morris et al. [2] may also provide evidence of geographic prevalence variations, but generally
provide only limited geographic coverage; thus the BRHS included only 24 British towns. In recent
years, prevalence of major conditions (including CHD) treated in primary care in England has been
administratively recorded under a system known as the Quality Outcomes Framework (QOF), but not at
a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). However, small
area contrasts are important in defining variations in health need within local health authorities.

While treated prevalence totals are only available for local health agencies (known as Primary Care
Trusts or PCTs, with 152 such PCTs in England), deaths and hospital admissions for coronary heart
disease are available for smaller areas known as wards, of which there are over 8000. As argued above,
estimating CHD prevalence at small area level is important, and this paper develops a shared random
effect (or common factor) method to pool information regarding spatial morbidity contrasts over multiple
indicators (deaths, hospitalizations, prevalence). This provides a summary index for representing small
area CHD morbidity which is applied to estimate small area CHD prevalence totals and hence relative
prevalence risks (comparing actual to expected prevalence). Geographic variations in latent constructs
relevant to population health are typically spatially correlated, and this is recognised in the derivation
of the common morbidity factor [3]. The shared random effect approach also incorporates differences
between areas in deprivation levels and other forms of population risk (e.g., ethnic structure). That is,
the common factor is partly predicted on the basis of known ecological risk factors or ”multiple causes”,
so providing a spatial adaptation of a multiple indicator-multiple cause approach [4].

An illustration is provided by data for London. London may be disaggregated into 625 small areas
known as wards, and into 31 Primary Care Trust areas. Some observed data on CHD are at ward level,
namely hospital admissions and mortality totals. However, some data (namely CHD prevalence totals)
are only observed for considerably larger PCTs. We wish to obtain a summary index of CHD morbidity
(as a shared random effect) using all the observations, and use this index to estimate the disaggregated
prevalence totals for the 625 wards.

A fully Bayesian approach is used in specifying the model and in the London case study application.
This involves ascribing prior densities to model parameters and updating those densities via the
likelihood for the observed data. Iterative Monte Carlo Markov Chain (MCMC) techniques [5] are
used for estimation, as implemented in the WINBUGS program [6].
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2. Modelling Latent Morbidity at the Lower Spatial Scale

Let j = 1, .., NL denote the set of lower level small areas within a particular region, and let
i = 1, .., NH denote the set of aggregated higher level areas (e.g., local health authorities) within which
the small areas are nested. The available data contain P observed indicators yj = (yj1, .., yjP ) at the
small area scale (such as small area death totals), and counts Zi = (Zi1, .., ZiQ) (e.g., disease prevalence
totals) observed only at the aggregated area scale. However, one aim of the modelling process is to
develop estimates zj = (zj1, .., zjQ) of these indicators at a small area scale.

It is assumed that correlations between the observed indicators can be represented by underlying
common latent factors f = (f1, .., fR), where R is of typically of much smaller dimension than the total
number P + Q of observed indicators. For simplicity, a univariate common factor f = (f1, ...fNL

) is
considered (i.e. R = 1). In the parlance of factor analysis techniques, the set of observed indicators are
proxies for, or ”measures of”, the underlying latent factor.

The first set of small area measurement equations describe the relationship between the observations
yjp (j = 1, .., NL; p = 1, ..., P ) and the latent factor. In population health applications, the indicators
are typically discrete counts (e.g., deaths, hospital admissions), assumed either Poisson or binomial, so
that a general linear mixed model is appropriate for the measurement equations. In the application here,
mortality or admission is infrequent in relation to population at risk, and Poisson sampling is relevant.
Expected mortality or admission counts Ojp are obtained by applying a standard age-sex schedule (for
the entire region, providing an internal standard, or for the nation, providing an external standard) to
small area populations at risk. Then one has

yjp v Po(µjp) (1)

µjp = Ojpρjp,

where ρjp is the relative risk of outcome p in small area j. In the present application, expectations Ojp

are scaled to equal the total of expected counts over all small areas, namely
∑
j

yjp =
∑
j

Ojp, so that the

region wide average relative risk ρp for indicator p is 1 if an internal standard is used.
As is conventional for Poisson responses, a log link is employed [7]. So one has measurement models

for small area indicators p = 1, .., P,

log(µjp) = log(Ojp) + λpfj + ujp, (2)

where the unique errors ujp ∼ N(0, σ2
u) may be necessary for explaining any residual overdispersion.

In substantive terms, the ujp also control for structural influences unrelated to population morbidity per
se (e.g., effectiveness of health care services, hospital configuration). Intercepts are not included in (2),

so providing a form of location constraint on the latent variable f [8]. The coefficients λp are typically
known as loadings, the specification of which is considered below.

Variations in population morbidity, whether observed or latent, typically display spatial correlation
between adjacent areas-unmeasured aspects of population structure relevant to health risk typically
straddle administrative boundaries [9]. However, rather than a priori assume exclusively spatial
dependence, the model here determines an appropriate mix between spatial and non-spatial
(”exchangeable”) dependence in the latent morbidity construct.
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There may also be observed variables (i.e., known rather than latent risk factors) that are relevant
to defining the common morbidity factor. For example, many indices of health need are composites
of variables such as unemployment rates, poverty rates, car ownership, etc. Here a spatial adaptation
of the multiple indicators-multiple causes (MIMIC) approach is used, with L measured causes xj =

(xj1, .., xjL)
′ (such as small area socio-economic or population risk variables) of the latent morbidity

index. These influence the latent morbidity index fj via regression terms

ηj = βxj = β1xj1 + ...+ βLxjL (3.1)

where the regression excludes an intercept, with residuals denoted

rj = fj − ηj. (3.2)

Additionally if the xjl are standardised, the absolute size of the β coefficients measures the relative
importance of different population risk factors or socio-economic variables in defining the morbidity
index.

To allow a mix between spatial and non-spatial dependence in the latent index, define a spatial
correlation parameter κ ∈ (0, 1), and assume symmetric spatial interactions wjh. Also let
f[j] = (f1, ...fj−1, fj+1, ..., fNL

) denote the collection of morbidity effects for all areas but area j. Under
the scheme of Leroux et al. [10], though adapted here to include regression effects, as in (3.1) − (3.2),
the expected value of the latent effect in area j and its variance are

E(fj|f[j]) = ηj + κ Σ
h6=j

wjhrh/[1− κ+ κ Σ
h6=j

wjh], (4.1)

V ar(fj|f[j]) =
σ2
f

[1−κ+κ Σ
h 6=j

wjh]
, (4.2)

where σ2
f is a variance parameter. A value of κ close to 1 indicates high spatial dependence in latent

morbidity, while values near zero imply lack of spatial correlation.
The wjh may incorporate factors such as distances between areas j and h. However, in many

applications the wjh simply represent adjacency, namely wjh = whj = 1 if areas h and j are adjacent,
zero otherwise. In this case it is relevant to define the neighbourhood ∂j of small area j, which contains
the mj areas adjacent to area j, and one then has Σ

h6=j
wjh = mj. The expectations are then

E(fj|f[j]) = ηj + κ Σ
h∈∂j

rh/[1− κ+ κmj]. (5)

To uniquely determine the scale of the f scores, constraints are needed on the loadings λp, or on
the variance σ2

f in (4.2). The first kind involves standardized factors, with σ2
f = 1, as in the spatial

factor model of Wang and Wall [11], with all loadings then unknowns. An alternative constraint involves
appropriately fixed loadings, such as setting one of the loadings λp to a particular fixed value, usually 1.
The variance σ2

f is then an unknown parameter.
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3. Methods: Estimating Prevalence at Small Area Level based on the Morbidity Index

We wish not just to obtain a latent morbidity index, but to use this index to estimate unknown indicator
totals (zj1,..., zjQ) (e.g., prevalence totals) for small areas j = 1, ..., NL. Estimation of the missing lower
area scale data takes account (a) of values of the small area morbidity index f = (f1, ..., fNL

), and (b)
of the known prevalence totals (Zi1, ..., ZiQ) for the i = 1, ..., NH higher level areas. The small areas
are nested within the higher level areas, with Hj ∈ {1, ..., NH} denoting the higher level area to which
small areas j belong, and the region is defined equivalently by all the higher level areas or all the lower
level areas.

Also assumed known are age-sex structures for the small area populations, and from these can be
obtained expected totals Ejq of the small area counts zjq. This involves using an external schedule of
prevalence rates rqsk for the qth outcome by age k and sex s, and applying this schedule to small area
population estimates Pjsk, so that Ejq =

∑
s

∑
k

Pjskrqsk.

To ensure the estimates of (zj1,..., zjQ) take account of the observed prevalence counts Ziq of the
higher level areas they are located in, the Poisson means ∆iq in the likelihood Ziq ∼ Po(∆iq) for the
higher level observed totals Ziq are defined by totals of small area means δjq located within each higher
area. Thus let

∆iq =
∑
Hj=i

δjq, (6)

denote the total mean prevalence counts for large areas i obtained from the small area model for the
z-indicators.

The small area model (i.e., the model for the δjq) can be set up to ensure that the posterior means
of the ∆iq equal (to a close approximation) the known higher level totals Ziq. One way to achieve
thus is via a collection of NH fixed effects γq,Hj

in the model for the δjq, equivalent to using dummy
variables in the small area model for each higher scale area, and providing a Poisson equivalence to the
multinomial [12]. Thus the zjq for Hj = i are multinomial within Ziq. We also wish the values of
the latent morbidity index fj to influence the multinomial allocation of Ziq to small areas in a manner
analogous to that in Equation (2). So the small area model is

zjq v Po(δjq), (7.1)

log(δjq) = log(Ejq) + γq,Hj
+ λP+qfj, (7.2)

where λP+q are additional loadings on the latent spatial morbidity index. Whether they are set to
known values or taken as unknowns depends on the identification constraint adopted for the scale of
the fj .

Other priors for (γ1, ..., γNH
), for example, as random rather than fixed effects, in practice have a

very similar consequence: that the means of the ∆iq equal (to a close approximation) the known higher
level total Ziq. For example, one might use random effect spatial priors, comparable to (4)–(5) but at the
higher area level.

In some circumstances, there may be doubts about how far the Ziq are accurate measures of morbidity,
and a constraint to reproduce them may not be advantageous. For example, the prevalence counts
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obtained under the QOF system in England may under-record prevalence in deprived areas, since the
quality of primary care is lower in such areas [13]; this may result in less effective case-finding [14]. To
allow unconstrained estimation of small area prevalence counts, one may use an intercept in the model
for δjq that is not specific to the higher area, namely

log(δjq) = log(Ejq) + γq + λP+qfj. (8)

This model ensures
NH∑
i=1

Ziq =
NL∑
j=1

zjq, but does not guarantee that
∑
Hj=i

zjq = Ziq, as the constrained

model does.
To recap, the model is a form of spatial structural equation model (SEM) that seeks to estimate small

area health outcomes z for which only large area observations Z are available. The model works in
practice by using observed small area health indicators y (e.g., mortality from a particular disease) which
are likely to be correlated with the missing small area outcomes z (e.g., prevalence of the same disease).
The information in the correlated multiple indicators y is summarised in a latent variable f that depends
on observed area risk factors x, but is also spatially correlated, reflecting spatial clustering in unobserved
area risk factors. The decomposition of large area totals Z to small areas is based on the latent variable
f, and the decomposition can be constrained so that total small area prevalences zj sum to the known Zi
for large area i within which areas j are located. It seems reasonable to use socioeconomic variables x
as causes of variability in f , but another strategy would be to use small area socioeconomic variables as
additional indicators of the latent variable.

4. CHD Morbidity in London: Data

The motivating case study illustrating the above methodology involves derivation of a univariate index
of CHD morbidity (i.e. R = 1) for London small areas using P = 4 observed small area health
indicators, and a single health indicator (Q = 1) observed only at an aggregated area scale. The two
area scales are wards and Primary Care Trusts (PCTs): there are NL = 625 wards and NH = 31 PCTs in
London. The first two small area indicators (yj1, yj2) are male and female CHD deaths over 2004–2006,
while (yj3, yj4) are male and female hospitalisations for CHD over three financial years 2003–2004
to 2005–2006. Expected deaths and hospitalisations Ojp in (2) are based on London wide death and
hospitalisation rates specific to gender and five year age bands.

CHD prevalence totals Zi (for 2004–2005 and 2005–2006 combined) are observed only for PCTs, but
one goal of the model is to estimate missing small area CHD prevalence totals zj . Expected CHD
prevalence totals Ejq = Ej at ward level in (7.2) are obtained with an external schedule of CHD
prevalence rates by age and sex, and applying this schedule to small area population estimates (here
2005 intercensal estimates of ward populations developed by the UK Office of National Statistics). The
external schedule used is based on the 2003 Health Survey for England [15], with the expectations Ej
scaled so that the London wide standard prevalence ratio is 1 (i.e., the total of observed prevalence counts
Zi across all London PCTs equals the total of expected prevalence counts Ej over all London wards).

In the multiple cause sub-model (3), there are L = 3 socio-economic indicators of population CHD
risk. These are x1 = average weekly household income in 2001–2002 [16], x2 = proportion of population
of south Asian ethnicity, 2001 Census [17,18], and x3 = estimated ward level smoking prevalences [19].
These predictors are converted to standardised form so that their relative importance can be assessed.
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5. CHD Morbidity in London: Models

Two models are compared. One assumes intercepts in the small area prevalence model that vary
by PCT, as in (7.2). The other is unconstrained, as in (8). Identifiability is achieved by setting
λP+1 = λ5 = 1, so that σ2

f is an unknown; the inverse variance 1/σ2
f is accordingly assigned a

Gamma(1,1) prior. To ensure the model produces a positive index of CHD morbidity, the remaining λp
parameters also follow Gamma(1,1) priors [20]. Fixed effect parameters, namely β parameters in (3) and
γ parameters in (7.2) and (8) are assigned diffuse N(0, 100) priors, while a uniform prior κ ∼ U(0, 1) is
assumed for the spatial correlation coefficient in (4)–(5).

Comparisons of model fit use the deviance information criterion (DIC) [21], obtained as the average
deviance plus a complexity measure. The focus is on goodness of fit for the y-indicators (deaths and
hospital admissions). Model 1 will automatically fit the higher level (PCT) prevalence data better as
it has separate intercepts for each PCT. Model checking is based on the posterior predictive density,
p(yrep|y), under a mixed predictive approach [22], where sampled replicates yrep are based on model
means that include replicate samples from random effects (f and u effects). Then a mixed-predictive test
for area j and outcome p has the form
pjp,mix = Pr(yrep,jp > yjp|y) + 0.5Pr(yrep,jp = yjp|y),

with extreme tail values indicating poorly fitted cases. One may compare the proportion of cases
under-fitted (pjp,mix < 0.05) or over-fitted (pjp,mix > 0.95) with the expected proportions in these two
tails (namely 0.05 in each).

Inferences are based on the second halves of two chain runs of 10000 iterations with convergence
before iteration 5000 assessed using Gelman-Rubin scale reduction factors [23]. Table 1 presents model
fit and checking criteria. It can be seen that model 1 (ward totals constrained to reproduce the QOF totals
at PCT level) has a lower DIC, and satisfactory predictive performance. Table 2 summarises parameter
estimates under the two models.

Table 1. Fit measures.

Average Deviance Complexity DIC Proportion of y values
with Pr(yrep > y)

under 0.05 or over 0.95

Model 1 (Multinomial Constraint) 2,570 1,290 3,860 0.093
Model 2 (unconstrained) 2,529 1,512 4,041 0.085

The estimated κ coefficients in Table 2 indicate a high spatial correlation in the latent CHD morbidity
index under both models. The estimated βl parameters from the multiple cause regression (3) show
income differences between wards to be the most important known influence on the index, though
concentrations of south Asian ethnic groups are also important. As expected, higher income levels
are negatively associated with morbidity (so the 95% interval for the coefficient β1 is confined to
negative values). The importance of area socioeconomic status to CHD outcomes is confirmed by other
studies [24,25].
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Table 2. Summary of model parameter estimates.

Mean Stdevn Monte Carlo SE 2.5% 97.5%

Model 1 β1 −0.199 0.020 0.002 −0.242 −0.162
β2 0.180 0.023 0.002 0.139 0.231
β3 0.050 0.020 0.002 0.009 0.087
κ 0.937 0.055 0.002 0.800 0.998
λ1 0.450 0.039 0.003 0.371 0.525
λ2 0.410 0.044 0.003 0.325 0.495
λ3 0.720 0.040 0.004 0.638 0.783
λ4 0.769 0.041 0.004 0.682 0.893

Model 2 β1 −0.394 0.032 0.003 −0.461 −0.333
β2 0.158 0.025 0.0001 0.108 0.208
β3 0.062 0.030 0.002 0.007 0.120
κ 0.935 0.055 0.002 0.797 0.998
λ1 0.303 0.024 0.001 0.258 0.352
λ2 0.241 0.026 0.001 0.191 0.292
λ3 0.366 0.020 0.001 0.326 0.406
λ4 0.413 0.023 0.001 0.366 0.456

The income effect is weaker in the constrained model. This is likely to reflect discrepancies in some
deprived parts of London between officially recorded prevalence (used as a constraint in model 1),
and what would be expected on the basis of socioeconomic structure. Examples are the apparently
low prevalence in some deprived areas in inner South East London. The consequence is that the
effect of income is deflated, providing an example of measurement error affecting regression estimates.
Table 3 compares prevalence (in the higher level PCT areas) based on the official QOF totals, with
average income levels in such areas (weekly income in hundreds of pounds). Outliers in the negative
relation between prevalence and income (there is a-0.50 correlation between PCT ranks for prevalence
risk and for income, even though using official CHD prevalence data) include the deprived inner
SE London area of Southwark. The latter area has the sixth lowest income, but also low measured
prevalence. So while the DIC criterion prefers model 1, the geographic prevalence pattern implied by
the unconstrained model 2 might be preferred on the basis of epidemiological arguments.
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Table 3. PCT prevalence risks based on official prevalence total, compared with income
patterns.

PCT Observed Expected using RR based Rank of Average Income
from QOF HSE 2003 on actual RR income rank

as standard QOF prevalence
records

Barking and Dagenham 9,800 9,147 1.071 25 5.3 2
Barnet 20,161 19,287 1.045 21 7.6 25
Bexley 13,973 14,778 0.946 12 6.7 14
Brent 14,040 13,542 1.037 20 6.6 10

Bromley 19,466 20,883 0.932 11 7.5 23
Camden 9,430 9,389 1.004 15 7.3 21

City and Hackney 9,030 8,746 1.033 19 5.5 4
Croydon 17,519 18,868 0.928 9 6.8 15
Ealing 18,410 15,228 1.209 29 7.3 22
Enfield 14,839 16,232 0.914 5 6.6 11

Greenwich 12,419 11,464 1.083 26 5.8 5
Hammersmith and Fulham 7,022 7,609 0.923 7 7.8 27

Haringey 9,318 9,360 0.996 14 6.6 12
Harrow 13,680 12,949 1.056 22 7.7 26

Havering 16,650 16,538 1.007 16 6.9 16
Hillingdon 13,929 14,408 0.967 13 7.2 19
Hounslow 8,127 7,663 1.061 24 6.5 9
Islington 13,929 14,408 0.967 13 7.2 19

Kensington and Chelsea 6,953 9,506 0.731 1 8.0 28
Kingston 8,573 8,485 1.010 17 8.1 29
Lambeth 9,768 10,499 0.930 10 6.6 13

Lewisham 12,027 11,348 1.060 23 6.1 8
Newham 12,495 9,433 1.325 31 4.8 1

Redbridge 14,488 14,223 1.019 18 6.9 17
Richmond and Twickenham 7,802 10,312 0.757 2 9.0 31

Southwark 10,233 11,168 0.916 6 6.0 6
Sutton and Merton 19,303 21,385 0.903 4 7.6 24

Tower Hamlets 9,724 7,523 1.293 30 5.4 3
Waltham Forest 11,955 10,640 1.124 27 6.0 7

Wandsworth 10,904 11,763 0.927 8 8.4 30
Westminster 9,921 11,097 0.894 3 7.1 18
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Figure 1. Latent Morbidity Index.

Figure 1 shows the spatial patterning of the CHD morbidity scores in model 1; higher values are in
inner east (though not central) London and in certain parts of west London. Figure 2 maps the estimated
ward level prevalences in terms of relative risks under the constrained model 1, namely the posterior
means of ξj = zj/Ej . For policy purposes, the probability that a small area has significantly higher
relative risk and thus possibly needs special resources is important. Therefore the marginal variance
ω2 = var(ξj) is monitored during the MCMC run, and the standardized relative risks (SRRs)
SRRj = (ξj − ξ)/ω

are also monitored. High posterior means for these SRRs (e.g., SRRs above 1 or 2, namely 1 or 2
standard deviations above average) indicate significantly elevated prevalence, while low values (under
−1, or under −2) indicate significantly low prevalence. Figure 3 maps the three categories: SRRj > 1,
−1 < SRRj < 1 and SRRj < −1. Clusters of elevated risk are now clearly apparent.

6. Discussion

Estimates of prevalence at small area level are often necessary, as prevalence is less likely to be
routinely reported for such areas, whereas outcomes such as mortality and hospitalization often are.
Prevalence totals may, however, be reported for relatively aggregated large areas, either from health
surveys, or (in the case of the UK) systems of chronic disease monitoring in primary care. The present
paper has employed a common spatial factor model to disaggregate large area CHD prevalence totals
to small areas. Various forms of common spatial factor model have been proposed for spatial health
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outcomes epidemiology. For example, Hogan & Tchernis [26] develop a small area measurement model
for a socioeconomic deprivation score, while Liu et al. [27] develop a spatial structural equation model
linking health outcomes to spatially correlated latent indices.

Figure 2. Relative prevalence risk.

The present paper includes three main extensions on such work: first, it allows for known risk factors
to influence the composite index via a multiple cause sub-model; second, it allows the data to determine
the extent of spatial correlation rather than presuming a priori that latent factors are necessarily spatially
dependent; and third, it applies the model to estimate missing health outcomes at a lower area scale (CHD
prevalence for wards in the London case study), when observations on such outcomes are only available
at a higher scale (PCTs in the London study). The essence of the method is to use all available lower
scale information (both from levels of related health outcomes y and from measures of socioeconomic
structure x) to provide a reasonable imputation of the missing outcomes z at the lower scale.

The case study has considered deaths and hospital admissions for CHD as the lower scale observed
data (the y-variables), and a single higher scale outcome (CHD prevalence), with x-variables (causes)
being income, ethnicity and smoking. It has also had a primarily urban focus, being confined to London.
Under a broader geographic focus (including rural small areas), it might be relevant to consider adding
an urban-rural indicator to the x-variables.

As demonstrated in Figure 3, one application of the modelling scheme is to highlight small areas with
significantly elevated prevalence. This is important for prioritizing resourcing and intervention, and is
based on a method that seeks to make use of all relevant information (comorbid outcomes, area social
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structure, and the spatial configuration of small areas). By contrast, many other health needs measures
used to distribute resources are based simply on socioeconomic variables (e.g., the Jarman score) [28],
or on regressions of single health indicators (e.g., hospitalizations) on socioeconomic variables [29],
when multiple indicators may in fact be relevant. Existing methods also neglect spatial clustering in
unobserved risk factors.

Figure 3. Significantly elevated and depressed risk.

The methodology set out here has potential application to small area prevalence estimation for other
chronic diseases, though the appropriate mix of y and x-variables would be different. For example,
the Quality Outcomes Framework system in the UK monitors prevalence of several chronic diseases. In
particular, PCT (higher scale) level counts of the prevalence of serious mental illness (SMI) are available,
but one may seek ward level measures of SMI prevalence. The available y-indicators in this situation
might be small area hospital admissions for conditions such as schizophrenia and bipolar disorder, while
x-variables would include indicators of risk for psychiatric morbidity, such as small area income or
deprivation, urban-rural status, social capital and so on.

Another potential application area is to use health survey information on disease prevalence, often
obtained only for higher scale regional units. For example, the public release version of recent Health
Surveys for England only contains prevalence rate estimates for chronic conditions included in the
survey (e.g., obesity, diabetes) for 10 Strategic Health Authorities. However, one may wish to use
this information in making estimates of such conditions for lower scale geographies such as the 354
local authorities in England. Using survey based regional estimates Zi of prevalence, one can estimate
lower scale totals zj, using information on both socioeconomic structure (xj) and related outcomes (yj)

at the lower spatial scale. The procedures outlined in the paper could in fact be used to disaggregate
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survey based estimates Zik which include relevant demographic stratifiers k (e.g. age, sex, ethnicity).
Relevant spatial SEM coefficients (β and λ parameters) may well differ between demographic category.
For example, one might seek to disaggregate survey-based regional estimates of diabetes by ethnicity to
a lower spatial scale.
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