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Abstract: Mendelian randomization refers to the random allocation of alleles at the time of 

gamete formation. In observational epidemiology, this refers to the use of genetic variants 

to estimate a causal effect between a modifiable risk factor and an outcome of interest. In 

this review, we recall the principles of a ―Mendelian randomization‖ approach in 

observational epidemiology, which is based on the technique of instrumental variables; we 

provide simulations and an example based on real data to demonstrate its implications; we 

present the results of a systematic search on original articles having used this approach; and 

we discuss some limitations of this approach in view of what has been found so far. 
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1. Introduction  

Observational studies have brought important insight into disease etiology. During the past decade 

however, the validity of observational studies has been questioned [1]. This is due to the fact that the 

role of selected risk, or protective, factors identified via observational studies could not be confirmed 

by subsequent large randomized controlled trials. For instance, hormonal replacement therapy appeared 

to protect women against coronary heart disease in observational studies [2], whereas randomized trials 

showed no such protection [3]. Other examples are given by antioxidant vitamin supplementation [4-6]. 
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One cannot, for ethical and technical reasons, randomize risk factors using controlled trials in 

humans. The identification of risk factors therefore relies on observational studies, which are prone to 

spurious results due to confounding factors, reverse causation, and/or selection biases [7]. As a 

consequence, it is difficult to firmly establish causal relationships between risk factors and disease. 

Most common diseases (e.g., cancer, cardiovascular disease, etc.) are complex and are influenced by 

multiple risk factors that may be correlated with each other. In this context, each factor is expected to 

have a small influence on disease risk. Epidemiologists have the hard task to determine whether a 

putative risk factor is causally related to a specific disease, independently of all other risk factors. A 

promising approach to help epidemiologists in this task is Mendelian randomization. In this review, we 

first recall the principles of a ―Mendelian randomization‖ approach in observational epidemiology 

(Section 2), we then provide some technical explanation of the method of instrumental variable 

(Section 3), followed by simulations and an example with real data (Section 4). We then present the 

results of a systematic search on original articles having used this approach (Section 5), discuss its 

limitations (Section 6) and present concluding remarks (Section 7). 

2. Mendelian Randomization in Observation Epidemiology 

Mendelian randomization refers to the random allocation of alleles at the time of gamete formation. 

A specific genotype carried by a person therefore results from two such randomized transmissions, one 

from the paternally inherited allele and the other from the maternally inherited allele. A logical 

consequence of these randomizations is that genotypes are not expected to be associated with known 

(measurable or not) or unknown confounders for any outcome of interest, except those lying on the 

causal pathway between the genotype and the outcome. This should hence allow analyzing the 

genotype-risk factor association and the genotype-outcome association in an unconfounded manner. By 

combining appropriately the results of these two analyses, one can get an estimate of the risk  

factor-outcome association, which is itself not confounded. This is analogous to randomized controlled 

trials (of sufficient sample size), in which the random allocation of treatment (or preventive measure) 

is expected to lead to an even distribution of (known or unknown) confounding factors across each 

groups. The term ―Mendelian randomization‖ is now frequently used in observational epidemiology to 

refer to the use of genetic variants to estimate a causal effect between a specific modifiable risk factor 

and a trait/disease of interest. The idea is to overcome some of the problems encountered in 

observational epidemiology, such as residual confounding and reverse causation, by taking advantage 

of the natural random allocation of alleles during meiosis [8].  

We here provide an example to illustrate this approach. The aldehyde dehydrogenase 2 (ALDH2) 

gene encodes the enzyme aldehyde dehydrogenase, which catalyzes the chemical transformation from 

acetaldehyde to acetic acid. Carriers of the ALDH2 *2*2 genotype have reduced alcohol consumption 

because of adverse reactions (facial flush, headache, nausea and drowsiness) due to acetaldehyde 

accumulation. This fact has been used to show that alcohol intake increases the risk of esophageal 

cancer [9] or head and neck cancer [10], which is consistent with the findings from observational 

studies. Whereas reported alcohol consumption may be subject to measurement errors, ALDH2 

genotypes can be measured accurately, are present since birth, result from the random allocation of the 

paternally and maternally inherited alleles, are strongly associated with alcohol consumption, and 
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therefore provide a unique opportunity to assess, in an unconfounded manner, the risk of disease 

associated with alcohol consumption. As we shall discuss in Section 6, such an approach - although 

appealing - also raises some methodological issues. 

Historically, the first description of the concept of Mendelian randomization in observational 

epidemiology is attributed to Katan [11], who suggested to use the APOE gene to infer causality 

between cholesterol and cancer. The concept was further developed by Davey Smith and  

Ebrahim [7,8,12,13], who have shown that the causal effect of a risk factor (X) on an outcome (Y) can 

be estimated by combining the effects of a genetic variant (Z) on X and on Y, provided that certain 

assumptions are met (see Figure 1). Thomas and Conti [14] have shown that the Mendelian 

randomization approach was in fact an application of the instrumental variable approach, which had 

been used since more than 70 years by econometricians. Wehby et al. have recently advocated that the 

term ―Mendelian randomization‖ should be replaced by ―instrumental variable analysis with genetic 

instruments‖ [15]. We tend to agree with this latter statement after having reviewed the medical 

literature and observed that the term ―Mendelian randomization‖ was used with different meanings by 

different researchers, which might be confusing.  

Figure 1. Directed acyclic graph (DAG) representing causal relationships between the 

genetic instrument ( Z ), the modifiable risk factor ( X ), the outcome (Y ) and the (known 

or unknown, measurable or non-measurable) confounders ( U ), which satisfy the 

assumptions required by a Mendelian randomization. In a DAG, a node represents a 

variable and an arrow a direct causal effect. Because a cause must precede an effect, no 

cycle is allowed and this is why the graph is termed acyclic (there is no loop from one node 

back to itself following the arrows). See Greenland et al. [16] for more details on DAG. 

 

3. The Method of Instrumental Variables 

We consider the case where an association between a continuous (or binary) modifiable exposure 

X  and a continuous response Y  is measured via a beta coefficient in a linear regression, defined as the 

average increase in Y  when X  is increased by one unit (respectively, when changing the category of 

X  if the exposure is binary). When observing such an association in epidemiological research, 
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however, it is often difficult to determine which of the two variables ( X  or Y ) is the cause and which 

the effect, or whether a third variable (a confounder, U ) related to both variables is responsible for the 

observed association. Moreover, measurement error could attenuate the beta coefficient. Thus, it is not 

obvious how a significant non-zero (e.g., positive) beta coefficient obtained from a classical (ordinary) 

least squares estimate should be interpreted. Here are five possible interpretations (among  

many others): 

1. The beta coefficient is a consistent estimate of the causal effect of X  on Y . 

2. The beta coefficient is actually underestimating the true causal effect of X  on Y  

because of measurement error. 

3. The beta coefficient is overestimating the true causal effect of X  on Y  because of the 

presence of a confounder which is positively related to both X  and Y . 

4. The non-zero beta coefficient is entirely due to the presence of a confounder which is 

related to both X  and Y : in fact there is no causal effect of X  on Y . 

5. The beta coefficient is non-zero because of a causal effect of Y  on X , not of X  on Y  

(i.e., reverse causation). 

 

In other words, if the interest lies in assessing ―the causal effect of X  on Y ‖, i.e., the effect that 

would be observed if one could intervene and change someone’s X  level by one unit, leaving other 

characteristics unchanged, no definitive conclusion can be drawn from such an analysis. We shall see 

below, illustrated in the context described by Figure 1, how the method of instrumental variables can 

help in this regard. 

A linear model (consistent with Figure 1) is given by:  

UXY 111    

where 1  is the causal effect of X  on Y and where U1  plays the role of the error term, U  being 

some unobserved confounder. Whenever X  is correlated with the error term (see Figure 1), the 

expectation of the least squares estimate of the slope in this model, which we denote by LS

1 , will be 

different from 1 . 

The method of instrumental variables has been proposed to correct for the bias of the least squares 

estimate. For this, we need to have at our disposal an ―instrumental variable‖, or instrument Z , for the 

time being continuous or binary, satisfying the following conditions: (1) Z  is correlated with X, (2) Z  is 

independent from U , and (3) Z  and Y  are independent given X  and U . Note that the former of these 

conditions is verifiable from the data, whereas the latter two are largely not. 

A second linear model (consistent with Figure 1) is then as follows: 

UZX 222    

where U2  plays the role of the error term in the model. Since Z  is by assumption uncorrelated with 

this error term, the coefficients of this second model are estimated without bias by least squares. Note 

that the first model can be rewritten as: 

    U 21121211   ZY  

Denoting 2113   , 213    and 2113   , we obtain hence a third linear model: 
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UZY 333    

where U3  is the error term. Since Z  is by assumption uncorrelated with this error term, the 

coefficients of this third model are also estimated without bias by least squares.  

At the end, the parameters of the first model can be consistently estimated using relationships 

2131    and 
231   , the denominator 2  being non zero by assumption. In particular, the 

instrumental variable (IV) estimate of the causal effect 1  in the first model is the quotient of the two 

least squares estimates of slope parameters
3 and 2  in the third and second models. Since the 

expectation of a quotient of two estimates is asymptotically equal to the quotient of the expectations of 

these estimates, the IV estimates are asymptotically unbiased, but they may be biased in finite samples. 

Asymptotically, the IV estimates are normally distributed and explicit formulae for the standard 

errors are available, enabling to calculate confidence intervals and to test for the nullity of the causal 

effect 1  in the first model (as calculated e.g., with the ivregress 2sls command implemented in Stata 

10.0). The standard error of the estimates will depend, among others, on the percentage of explained 

variance in the second model (itself related to the percentage of explained variance in the third model). 

If this percentage is low, the instrument is said to be weak, the standard errors will be large and the test 

above will have low power. Moreover, the bias of the IV estimates is typically larger, and the 

asymptotic normal distribution of the IV estimates may be a poor approximation to the true 

distribution, when the instrument is weak, the inference being then unreliable [17]. In practice, an 

instrument is said to be weak if the F-statistics for testing the nullity of parameter 2  in the second 

model is inferior to 10 [18]. 

Another equivalent way to calculate the IV estimates (but without their standard errors!) is to 

perform a ―two-stage least squares‖, regressing X  on Z  in a first stage (this is the second model 

above), and regressing Y  on the obtained fitted values  ZX̂  in a second stage. The method of 

instrumental variables can be readily extended to the case of several instrumental variables (and 

therefore to the case of a qualitative instrument), which may be useful to improve the precision of the 

instrumental variable estimate. One can also adjust for additional covariates in each of the  

above models.  

In addition to test for the nullity of the causal effect 1 , one may also test for the absence of 

correlation between X  and the error term in the first model, implying the equality of the parameters 

1  and LS

1 , using the Durbin-Wu-Hausman test. This may be of some interest when comparing 

several candidate models which may have generated the data (see the simulations below). 

 

4. Simulations and Example 

 

To illustrate that the method of instrumental variable is effective, we simulated data from five 

models consistent with the five above-mentioned interpretations (Table 1). In each case, we simulated 

an instrument Z  satisfying the conditions. For simplicity, we took all intercepts in these models to be 

0, all slopes to be 1, and the variables which were generated at each step were taken to be N(0,1), i.e., 

normally distributed with mean 0 and variance 1.  
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Table 1. Description of the five models used for the simulations in Section 4. 

Model Step 1 Step 2 Step 3 Step 4 Step 5 

1. Causal effect of X on 

Y 

Z = 

N(0,1) 

X = 

Z+N(0,1) 

Y = 

X+N(0,1) 

  

2. Causal effect of X on 

Y and measurement errors 

on X and Y 

Z = 

N(0,1) 

Xtrue = 

Z+N(0,1) 

Ytrue = 

Xtrue+N(0,1) 

X = 

Xtrue+N(0,1) 

Y = 

Ytrue+N(0,1) 

3. Causal effect of X on 

Y and presence of a 

confounder 

Z = 

N(0,1) 

U = 

N(0,1) 

X = 

Z+U+N(0,1) 

Y = 

X+U+N(0,1) 

 

4. No causal effect 

between X and Y and 

presence of a confounder 

Z = 

N(0,1) 

U = 

N(0,1) 

X = 

Z+U+N(0,1) 

Y = 

U+N(0,1) 

 

5. Causal effect of Y on 

X (reverse causation) 

Z = 

N(0,1) 

Y = 

N(0,1) 

X = 

Z+Y+N(0,1) 

  

 

The causal effect of X  on Y  that we are looking for is 11   under the first three models, and is 

01   under the last two models. Boxplots of the least squares (LS) estimates and of the instrumental 

variable (IV) estimates of parameter 1  obtained from 1,000 samples of size n = 100 under each of the 

five models are shown on the top panel of Figure 2. The LS estimate is unbiased under the first model, 

is consistently too small under the second model, and is consistently too large under the last three 

models. By contrast, the IV estimate is almost unbiased under each of the five models, which is 

actually remarkable. One can also notice that the IV estimate shows a higher variability than the LS 

estimate, which is the price to pay for correcting the bias of the latter. The Durbin-Wu-Hausman test 

was significant in 4.1% (which was close to the nominal 5% level) of the samples generated from the 

first model, for which 1  = LS

1  holds, in 66% of the samples generated from the second model, for 

which 1  > LS

1  holds, and in 88%, 90% and 100% from the samples generated respectively from the 

third, fourth and fifth models, for which 1 < LS

1  holds. 

To provide an idea of what may happen when using a weak instrument, we considered the same five 

models, but the slopes involving Z  were set to 0.25 (instead of 1) in each model. In addition, we 

reduced the sample size to n = 25. Under that setting, the F-statistic in the first stage regression was 

smaller than 10 in more than 95% of the generated samples. Boxplots of the estimates obtained from 

1,000 samples are shown on the bottom panel of Figure 2. One can see that the variance of the IV 

estimates dramatically increased (compared to the top panel), while some non-negligible bias appeared.  
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Figure 2. Results of simulations based on 1,000 samples under each of the five models 

described in Table 1, using (a) a strong instrument and n = 100 and (b) a weak instrument 

and n = 25. Shown are boxplots of the 1,000 least squares estimates (LS1, LS2, LS3, LS4, 

LS5, red boxes) and of the 1,000 instrumental variable estimates (IV1, IV2, IV3, IV4, IV5, 

green boxes) of the causal effect. The true causal effect to be estimated was 11   (solid 

horizontal line) for the first three models, and 01   (dashed horizontal line) for the last 

two models. 

 

We next provide an example with real data to illustrate that the method of instrumental variable is 

able to correct for the bias of least squares in a case of reverse causation. We used the 1,268 

participants of the population-based CoLaus study [19], who reported that they consumed alcohol 

regularly and who had available data for genetic markers located with the gammaglutamyl transferase 1 

(GGT1) gene as well as circulating GGT levels ( X ). CoLaus participants have been genotyped using 

the Affymetrix 500 K chip, alcohol consumption was assessed using a standardized questionnaire and 
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coded in units of alcohol per week, and GGT levels were measured using standard procedures as 

previously described [19]. As we were interested in exploring an example of reverse causation, we 

chose Y  to be the reported alcohol consumption and tested whether circulating GGT ( X ) could cause 

alcohol consumption (which we know is the opposite of the reality) using the best GGT1 marker as our 

instrument ( Z ). Rs2017869 explained 1.12% of circulating GGT levels. The parameter 1  was 

estimated using least squares and the method of instrumental variables (the latter with the ivregress 

2sls command implemented in Stata 10.0). The LS estimate (95%CI) was 5.53 (4.73;6.33) mmol/L per 

risk allele. The IV estimate (95%CI) was −4.60 (−13.82; 4.63) mmol/L per risk allele, which was 

significantly different from the LS estimate in a Durbin-Wu-Hausman test (P = 0.03), and not 

significantly different from zero. Thus, while the result provided by least squares was highly 

significant, the instrumental variable approach did not show any evidence for a positive causal 

association of GGT on alcohol consumption.  

 

5. Review of Observational Studies Using Mendelian Randomization 

 

We searched MEDLINE using the following «Mendelian randomization» OR ―Mendelian 

randomisation‖, which retrieved 99 citations (January 13, 2009). We acknowledge that this search 

strategy might not have retrieved all publications using the concept of Mendelian randomization, but it 

should provide a good overview of what has been published. The aim was to identify original articles 

reporting results from an observational study using a Mendelian randomization approach. We also 

searched references from review papers and original articles, as well as citations of these papers.  

We identified 23 studies with a dichotomous trait as the outcome of interest (Table 2) and 15 studies 

with a continuous trait as the outcome of interest (Table 3). Considering that the instrumental variable 

approach has been introduced, and is well understood, for a continuous outcome, it was a bit of a 

surprise to find that a majority of studies in fact applied this method to a dichotomous outcome (using 

non-linear models and odds-ratios to quantify the associations, for which the method has not been quite 

validated, see also the next section). Thirteen out of 23 studies focusing on binary outcomes (Table 2) 

reported results compatible with a causal association. Most studies were in the field of cardiovascular 

epidemiology and cancer epidemiology. For continuous outcomes (Table 3), half of studies reported 

some evidence for causality and most studies were in the field of cardiovascular epidemiology. Most 

instruments reported in these studies were weak (Figure 3). We also found many studies that claimed 

to use a Mendelian randomization approach although they only analyzed the genotype-outcome 

association, hence focusing on hypothesis testing (i.e., to confirm or disprove causality). Yet, what is of 

interest in the Mendelian randomization approach is to estimate the causal effect of X , the modifiable 

factor, on Y and not simply the association between Z  and Y .  
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Table 2. Literature review for dichotomous outcomes analyzed using a Mendelian 

randomization approach. 

Outcome (Y) Gene  Variant(s) (Z) Risk factor (X) Causality* Reference 

Cardiovascular epidemiology      

  Type 2 diabetes SHBG rs1799941 SHBG + [20] 

  Type 2 diabetes SHBG rs6257, rs6259 SHBG + [21] 

  Type 2 diabetes BCMO1 rs6564851 β-carotene ─ [22] 

  Type 2 diabetes MIF rs1007888 MIF + [23] 

- Coronary artery disease LDLR rs2228671 LDL-cholesterol  [24] 

  Coronary heart disease PCSK9 Y142X, C679X LDL + [25] 

  Coronary heart disease CRP rs1130864 CRP ─ [26] 

  Coronary heart disease CRP rs7553007 CRP ─ [27] 

  Myocardial infarction CRP rs1130864 CRP ─ [28] 

  Myocardial infarction LPA KIV-2 (CNV) Lp(a) + [29] 

  Myocardial infarction FGB -148C/T fibrinogen ─ [30] 

-Stroke MTHFR C677T homocysteine + [31] 

  Hypertension CRP rs1800947, CRP ─ [32] 

  Metabolic syndrome LCT rs4988235 (-13910-C/T) Milk consumption + [33] 

  Hypertriglyceridemia RBP4 rs3758538 RBP4 ─ [34] 

Cancer epidemiology      

  Cancer APOE E2, E3, E4 cholesterol ─ [35] 

  Head and neck cancer ALDH2 rs671 Alcohol consumption + [10] 

  Oesophageal cancer ALDH2 rs671 Alcohol consumption + [9] 

  Lung or kidney cancer FTO rs9939609 BMI + [36] 

Other topics      

  Polycystic ovary syndrome IRS-1 Gly972Arg Insulin + [37] 

  Depression PON1 rs662 PON1 activity  ─ [38] 

  Stillbirth CYP1A2, 

NAT2, GSTA1 

slow/fast metabolizers caffeine + [39] 

  Cataract FTO rs9939609 BMI + [40] 

*  + means evidence for causality; ─  means no evidence for causality. SHBG, sex hormone binding protein; 

LDL, low density lipoprotein; CRP, C-reactive protein; Lp(a), lipoprotein a; RBP4, retinol binding protein 4; 

BMI, body mass index; PON1, paraoxonase 1 Gene symbols: SHBG, sex hormone-binding globulin; PCSK9, 

proprotein convertase subtilisin/kexin type 9. CRP, C-reactive protein; LPA, lipoprotein, Lp(a); FGB, 

fibrinogen beta chain; LCT, lactase; RBP4, retinol binding protein 4; APOE, apolipoprotein E; ALDH2, 

aldehyde dehydrogenase 2 family (mitochondrial); FTO, fat mass and obesity associated; IRS-1, insulin 

receptor substrate 1; PON1, paraoxonase 1; CYP1A2, cytochrome P450, family 1, subfamily A, polypeptide 

2; NAT2, N-acetyltransferase 2 (arylamine N-acetyltransferase); GSTA1, glutathione S-transferase alpha 1. 

MIF, macrophage inhibitory factor; MTHFR, methylene tetrahydrofolate reductase; BCMO1, beta-carotene 

15,15’-monooxygenase 1. 
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Table 3. Literature review for continuous outcomes analyzed using a Mendelian 

randomization approach.  

Outcome (Y) Gene (s) Variant(s) (Z) Risk factor (X) Causality* Reference 

Metabolic traits (insulin, lipids, etc) FTO rs9939609 BMI + [41] 

BMI CRP rs1800947, rs1205 CRP ─ [42] 

BMI CRP, 

LEPR 

rs7553007 

rs1805096 

CRP + [43] 

BMI, blood pressure, triglycerides, 

HDL, waist-to-hip ratio, HOMA-R 

CRP rs1800947, rs1130864, rs1205 CRP ─ [44] 

Blood pressure MC4R 

FTO 

rs17782313 rs9939609 BMI + [45] 

Blood pressure CRP rs1800947, CRP ─ [32] 

Bone mass MC4R 

FTO 

rs17782313 

rs9939609 

adiposity + [46] 

Bone mass density, bone fractures LCT rs4988235 (-13910-C/T) Calcium intake + [47] 

HbA1c CRP rs1130864, rs1205, rs3093077 CRP ─ [48] 

Carotid-intima media thickness CRP rs1130864, rs1205, rs3093077 CRP ─ [49] 

Carotid-intima media thickness CRP rs 2794521, rs3091244, 

rs1800947, rs1130864, rs1205 

CRP ─ [50] 

Carotid-intima media thickness FTO rs9939609 BMI + [51] 

Serum leptin CRP rs 2794521, rs3091244, 

rs1800947, rs1130864, rs1205 

CRP ─ [52] 

Lung function CRP rs1205, rs1800947 CRP + [53] 

Physical functioning IL-18 rs5744256 IL-18 + [54] 

BMI, body mass index. CRP, C-reactive protein. IL-18, interleukin 18. LEPR, leptin receptor. For other gene 

symbols, see Table 2 legend. 

Figure 3. Type and frequency of genetic instruments in Mendelian randomization. R
2
 

represent the proportion of variance of X  explained by Z . Percentage in parentheses 

represent R
2
 value for the first linear regression in 2-stage least squares regression models.  
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6. Some Limitations of Mendelian Randomization 

 

In order to use Mendelian randomization to infer causality in observational epidemiology, numerous 

conditions need to be fulfilled [13,55-57]. A major limitation of this approach is that it is difficult, in 

practice, to meet al.l these conditions for a given risk factor—outcome association. To fulfill the first 

condition, Z  and X  should be correlated (genetic instruments for common complex diseases are 

typically quite weak). This indirectly implies that there is some level of allelic homogeneity (i.e., 

common variants rather than rare variants). Note that for many exposures, no suitable genetic 

instrument is available. The second and third conditions are the problematic ones. They state that Z  is 

(marginally) independent from all potential confounders U , and that Z  and Y  are independent 

conditionally on X  and U  [57]. In an excellent introduction to Mendelian randomization, Didelez and 

Sheehan [58] wrote that ―if we know a gene closely linked to the phenotype without direct effect on the 

disease, it can often be reasonably assumed that the gene is not itself associated with any confounding 

factors‖. See however Section 7 of that paper for situations in which these conditions are not satisfied. 

Mendel’s second law (i.e., the law of independent assortment of alleles at the time of gamete 

formation) is not always true in that genetic variants located on the same chromosome, particularly for 

close loci, do not segregate independently (i.e., they are linked), as detailed in Lawlor et al. [13]. At the 

population level, such physical linkage patterns result in linkage disequilibrium, i.e., correlations 

between alleles at nearly loci. In genetic epidemiology, the second condition implies, among others, 

that there should be no confounding due to linkage disequilibrium (i.e., instrument Z  should not be 

correlated with other genetic variants having an effect on the outcome of interest, Y ) [13]. However, 

the instrument Z  does not necessarily need to be causally associated with X, in that another genetic 

variant associated to both Z  and X  might be the true causal variant [13]. Similarly, population 

stratification, i.e., the existence of population subgroups with different allele frequencies and outcome 

distributions, may violate this second condition as well. In the Mendelian randomization context, 

confounding may exist if the subgroups (these often correspond to ethnic groups) are associated to both 

Z  and Y [13]. 

Also, there should be no pleiotropy, (i.e., Z  having multiple effects, which do not pass through X ). 

This is however only a problem if the other functions of Z  are associated to Y  [13]. There should be 

no canalization (also called developmental compensation), which corresponds to a functional 

adaptation to a specific genotype influencing the expected genotype-disease association [13]. For 

instance, a gene expressed during fetal development may enhance the expression of other genes having 

compensatory effects on the outcome [13]. For most genetic variants involved in complex traits, the 

effect size is small and we do not know if such modifications would lead to developmental 

compensation. Furthermore, there should be no segregation distortion at the locus of interest. Although 

unlikely, it has been reported that some loci in the human genome show some evidence of such 

distortion [59]. Of course, there should be no selective survival due to the genetic variant of interest. 

Considering that the randomization occurred many years before the analysis is conducted, if a specific 

genotype were associated with increased early mortality, the genotypic distribution at the time of the 

study might not reflect the initial distribution. For instance, the C677T MTHFR variant has been 

associated with fetal viability [60,61]. And finally, although this has rarely been assessed so far, there 
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should be no parent-of-origin effect (i.e., the effect of the paternally transmitted allele should be the 

same as the effect of the maternally transmitted allele). 

A practical condition is that there should be enough data to establish reliable genotype-intermediate 

phenotype, or genotype-outcome, associations. In our literature review, we observed that for many 

publications, estimates for these two associations came from different studies. Whenever independent 

studies have analyzed these two relationships, separate meta-analyses can be conducted. For studies 

having assessed both relationships, a multivariate model is needed in order to take into account the 

correlation in the genotype–phenotype and genotype–disease associations. Minelli et al. proposed a 

method to use meta-analysis results in a multivariate Mendelian randomization approach [62,63]. Note 

that their approach is based on odds ratios (see below). According to some authors, the advantage of 

using the same study (or studies) to estimate both associations include (1) being in a better position to 

examine whether or not the assumptions underlying the instrumental variable method have been 

violated or not and (2) having greater precision [13].  

Many of the studies we identified applied a Mendelian randomization approach with a binary 

outcome. While econometricians have proposed instrumental variables methods for binary outcomes 

(see Lawlor et al. [13] for a nice review), the generalization of instrumental variables to non-linear 

systems is not at all straightforward  and may require additional assumptions [13,58]. One possibility is 

to build a linear model using risk differences, instead of risk ratios [64]. Another is to use a latent 

model, in which the underlying outcome variable is assumed to be continuous and the observed binary 

outcome reflects whether or not a specific threshold has been reached (e.g., probit models). Log-linear 

and logistic structural mean models for binary outcomes were also developed [65,66], where it was not 

possible to avoid some bias. Palmer et al. [67] proposed an adjusted IV estimate to reduce the bias of 

the classical IV estimate applied to a binary outcome, but admitted to ignore whether, and under what 

conditions, the estimated parameter had a strictly causal interpretation. They also noted that 

―instrumental variable theory has not been fully generalized to non-linear situations‖. Finally, one may 

obtain bounds on the causal effect using a non-parametric method whenever the instrument, the risk 

factor and the disease are all categorical [58]. Note that none of the published studies of binary 

outcomes we found used these methods.  

7. Conclusions 

The Mendelian randomization approach in observational epidemiology is a valuable tool that has 

taken a new dimension in the post-genomic era and is being used increasingly. This approach 

conceptually relies on an instrumental variable approach. There have been some successes of the 

Mendelian randomization approach to help unraveling causal relationships in observational 

epidemiology. Examples are the recently published evidence for the causal role of body mass index on 

blood pressure [45] or accumulating evidence against the causal role of CRP in coronary heart  

disease [26-28] or atherosclerosis [49,50]. This method however suffers from several limiting factors. 

First, most genetic variants ( Z ) only explain a very small proportion of variance of the phenotype of 

interest ( X ). This implies that very large sample sizes are usually needed (>10,000) to reach sufficient 

power. Second, for many associations of interest, it is not possible to find an appropriate instrumental 

variable. However, as many more instruments are being discovered, the prospects are improving. 



Int. J. Environ. Res. Public Health 2010, 7         

 

 

723 

Third, the success of this method heavily rests on the existence of allelic homogeneity, i.e., a common 

causal allele is shared by many individuals. Fourth, whereas analytic methods have been described for 

continuous outcomes, it is unclear to what extent these methods also apply to dichotomous outcomes. 

Considering the clear interest for epidemiologists to apply this concept for dichotomous outcomes such 

as diseases, it would be important, and even urgent, to clarify the issues on the validity of the 

instrumental variable approach in this context. More methodological development is needed before the 

instrumental variable approach can be confidently used for binary outcomes. 
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