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Abstract: Recent research in range ecology has emphasized the importance of forage 

quality as a key indicator of rangeland condition. However, we lack tools to evaluate 

forage quality at scales appropriate for management. Using canopy reflectance data to 

measure forage quality has been conducted at both laboratory and field levels separately, 

but little work has been conducted to evaluate these methods simultaneously. The objective 

of this study is to find a reliable way of assessing grassland quality through measuring 

forage chemistry with reflectance. We studied a mixed grass ecosystem in Grasslands 

National Park of Canada and surrounding pastures, located in southern Saskatchewan. 

Spectral reflectance was collected at both in-situ field level and in the laboratory. 

Vegetation samples were collected at each site, sorted into the green grass portion, and then 

sent to a chemical company for measuring forage quality variables, including protein, 

lignin, ash, moisture at 135 ºC, Neutral Detergent Fiber (NDF), Acid Detergent Fiber 

(ADF), Total Digestible, Digestible Energy, Net Energy for Lactation, Net Energy for 

Maintenance, and Net Energy for Gain. Reflectance data were processed with the first 

derivative transformation and continuum removal method. Correlation analysis was 

conducted on spectral and forage quality variables. A regression model was further built to 

investigate the possibility of using canopy spectral measurements to predict the grassland 

quality. Results indicated that field level prediction of protein of mixed grass species was 
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possible (r
2 

= 0.63). However, the relationship between canopy reflectance and the other 

forage quality variables was not strong. 

Keywords: forage quality; chemical contents; remote sensing; mixed-grass prairie; protein; 

NDF; ADF 

 

1. Introduction 

Recent research in rangeland ecology has emphasized the importance of forage quality as a key 

indicator of rangeland condition [1-4]. Given the opportunity, grazing animals select forage of high 

nutritional quality, which usually means that they are selecting forage that is not the most  

abundant [5-9]. Forage quality has been frequently reported to affect the behavior of mammalian 

herbivores (e.g., [10-12]). However, the evaluation or mapping of forage quality at temporal and 

spatial scales appropriate for animal management is a challenge, although it can improve 

understanding of animal behaviour.  

Forage quality can be expressed via grass chemical composition and nutrient concentration. 

Chemical composition mainly refers to protein, lignin, ash, moisture (at 135 ºC), Neutral Detergent 

Fiber (NDF), Acid Detergent Fiber (ADF), and Total Digestible, which directly influences food 

particle digestion by grazing animals [13]. Nutrients mainly mean Digestible Energy (DE), Net Energy 

for Lactation (NEL), Net Energy for Maintenance (NEM), and Net Energy for Gain (NEG), which can 

also influence the production of animals [14]. Considering the importance of on the health and 

production of herbivores, a great number of efforts have been made on evaluating forage quality. The 

traditional approaches usually were implemented requiring detailed sampling and expensive laboratory 

analyses, which are time-consuming, tedious, pricy, and most importantly, less representative of the 

population in large areas [15].  

Superior to the traditional methods, the application of remote sensing makes it possible to evaluate 

and predict forage quality of rangeland timely and efficiently, especially in large areas [16]. Estimation 

of forage chemical composition via a remote sensing approach can be dated back to late 1970s [17-19]. 

However, the main remote sensing approach, namely the near infrared spectroscopy (NIRS, the typical 

analyzed wavelength range is 1,100–2,500 nm), can only provide accurate biochemical measures of 

protein, amino acids, lignin and cellulose concentrations in dry foliage in laboratory [20-22]. 

Extending the NIRS approach to a canopy level in the field has yielded limited success, largely 

because of the masking effects of water in fresh canopies [23-26]. Recently, hyperspectral remote 

sensing technique has been applied to evaluate forage quality in the field [27,28]. Starks et al. [29] 

compared the estimation of NDF and ADF from the approaches of laboratory chemical analyses, NIRS, 

and close range hyperspectral remote sensing, and found that accurate estimation of forage 

composition can be obtained through the hyperspectral data in warm season pasture land in Oklahoma, 

USA. The hyperspectral data were also successfully used to predict the biochemicals of living 

vegetation in tropical savanna rangeland in South Africa [16,30-32]. In addition, the research 

conducted in a sown pasture land in Hokkaido, Japan also suggested that the pasture quality (protein, 

ADF, NDF) can be predicted by in situ canopy hyperspectral reflectance [33]. However, a big concern 
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about the application of hyperspectral remote sensing remains due to the fact that in situ canopy 

reflectance may be heavily influenced by atmospheric variation [34], soil background and leaf 

orientation and distribution [35]. Such a concern may be even bigger in northern semi-arid mixed 

grasslands, which are characterized by a large amount of bare soil and dead material [36,37]. Despite 

the concern, few studies have compared the estimation of forage chemical composition using in situ 

hyperspectral canopy reflectance measured in the field and ex situ hyperspectral reflectance data 

measured for dried grass in the laboratory. In addition, the application of hyperspectral remote sensing 

is also influenced by the mathematical methods used to establish the relationship between canopy 

reflectance and forage quality [23,33], for example, Mutanga et al. [16] found the continuum 

absorption approach is better than band width on predicting forage chemical composition.  

 Grazing could affect the nutritive value of the forage [38,39] and the effects would change as the 

grazing density change, which were concluded from an experiment in a moist grassland in Czech 

Republic [40] and a southern mixed grass prairie in the USA [41]. But little research has been focused 

on the effects of light to moderate grazing on forage quality in northern semi-arid mixed grass prairie. 

Therefore, the objectives of our study are three-fold: (1) to evaluate hyperspectral measurements for 

estimating the forage chemical composition of northern semi-arid mixed grass prairie in the field and 

laboratory, (2) to test the reliability of a field level grass quality prediction method, and (3) to compare 

the effects of grazing on grassland quality estimation.  

2. Materials and Methods 

2.1. Study Sites 

The study was conducted in Grasslands National Park of Canada (GNP) (West Block) and 

surrounding pastures owned by the federal and provincial government and private ranchers in southern 

Saskatchewan, Canada. Dominant vegetation in this community includes needle-and-thread 

(Hesperostipa comata Trin. & Rupr.), blue grama (Bouteloua gracilis (HBK) Lang. ex Steud.) and 

western wheatgrass (Pascopyrum smithii Rydb.). Spikemoss (Selaginella densa Beauv.) and Junegrass 

(Koeleria macrantha (Ledeb) J.A. Schultes f.) are also frequently observed [42]. Characterized by the 

semi-arid mixed prairie ecosystem, this region receives approximately 340 mm annual precipitation 

primarily falling in the growing season (May–September). The mean annual temperature is 3.4 ºC with 

the maximum mean daily temperature of 20 ºC in July and the minimum of 15 ºC in January [43]. 

Variation in grassland quality due to long-term changes in productivity or elevated atmospheric CO2 

are of a concern to land managers in this region. 

2.2. Data Collection 

Data were collected in the field and laboratory. Fieldwork was conducted in June–July of 2003. 

Thirty sites were randomly selected within upland grasslands of the study area. At each site,  

two 100-m transects perpendicular to each other oriented in the cardinal directions were surveyed. 

Field level canopy reflectance was collected at 5 m intervals along each transect (40 readings at each 

site) using an ASD FR Pro spectroradiometer (Analytical Spectral Devices, Inc., USA) to capture  

within-site variation. The wavelength measurement range was 350–2,500 nm, and the spectral 
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resolution was 3 nm at 700 nm and 10 nm at 1,400 and 2,100 nm. A 25º field of view probe was used 

pointing down to the canopy at approximately 1 m above ground, yielding a view area of the surface of 

about 0.15 m
2
. Measurements were taken between 1,000 h and 1,400 h local time under cloud-free 

conditions. Calibration was made using a white reflectance panel (Labsphere, USA) at approximately 

10 minute intervals to minimize solar variation due to the changing sun angle over the measurement 

period. Reflectance (R) in a given waveband was calculated by dividing the canopy spectra by the 

white reference spectra. After the canopy reflectance was measured, above-ground vegetation was 

clipped within a 20 × 50 cm quadrat at 20 m intervals along each transect, which yields 12 clipped 

samples at each site. Vegetation samples were sorted into green grass, forb, shrub, and dead material 

shortly after clipping and then dried in an oven at 65 ºC for 24 hours. Dry green grass samples 

randomly selected from 360 samples collected on 30 sites were cut into 1 cm lengths and spread out  

to 1 cm thickness on a black surface for measuring indoor spectral reflectance [44]. Indoor spectral 

reflectance was then measured in the laboratory, using the ASD Pro Lamp for illumination, which is 

specifically designed for indoor lab reflectance measurements over the region of 350–2,500 nm. 

Therefore, spectral measurements were made on in situ field-canopy samples and ex situ dry green 

grass in laboratory, and used for developing models for evaluating forage quality. After the indoor 

spectral measurements, the dry samples were then sent for chemical analysis (ETL ChemSpec 

Analytical Services Ltd.).  

2.3. Spectral Data Processing 

Hyperspectral remote sensing provides detailed information at small wavelength intervals. But this 

also generates a great volume of data that can be difficult to interpret. Interpretation is aided by 

processing the data using algorithms that aggregate regions with known information value. The most 

commonly used hyperspectral data processing methods are the first derivative transformation and 

continuum-removed absorption algorithm. First derivative reflectance: frequently, the clearest 

patterns in reflectance data occur not in the absolute quantity of reflectance, but rather the rate of 

change of reflectance from one wavelength to another. The first derivative transformation of the 

reflectance spectrum (Rfd), that calculates the slope values from the reflectance, can be derived from 

the following equation [45]:  

                        (1)  

where     is the first derivative reflectance at a wavelength i midpoint between wavebands j and j + 1. 

         is the reflectance at wavelength j + 1, and Δλ is the difference in wavelengths between j  

and j + 1.  

Continuum removal: the continuum removal algorithm proposed by Kokaly and Clark [46] is a 

popular method for absorption feature detection. Spectral absorption regions are selective for chemical 

composition and density in vegetation because higher concentrations of particular chemicals lower the 

reflectance in unique spectral regions. Six known chemical absorption regions were selected: two 

(carotenoids and anthocyanins) in the visible range that are related to chlorophyll absorption and 

nitrogen concentration (R470–518 and R550–750), and four in the shortwave infrared region (R1116–1284, 

R1634–1786, R2006–2196, and R2222–2378), that are the result of lignin, protein and other chemical  

absorption [16,26,47]. For the six defined absorption regions, a linear continuum was identified from 
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the start to the end points. Differences between the measured value and the continuum were calculated 

and then summed to represent accumulated absorption in the given region. The other approaches for 

hyperspectral data processing, such as band depth, band depth ratio, and normalized band depth index, 

were not tested in this study. The reason is that the research of Mutanga et al. [16] indicated  

the continuum-removed derivative reflectance (CRDR) is superior to them for estimating forage  

chemical composition.  

2.4. Data Analysis 

Descriptive statistics [mean, standard deviation (Std), minimum (Min), maximum (Max), and 

coefficient of variation (CV)] of forage chemical variables and nutrient contents were calculated to 

understand the general forage quality in the study area. To identify the best indicators for estimating 

chemical components from laboratory and field conditions, Pearson’s correlation analysis was 

conducted between chemical composition and the raw reflectance of dry samples and canopy 

reflectance, and the first derivative reflectance as well as the accumulated absorption calculated  

from the continuum removal approach. The relationships were plotted against wavelength regions  

for comparisons.  

With one-fifth observed protein data and the accumulated absorption data (six each) set aside for 

validation, the stepwise regression analysis was applied to the other four-fifth data (24) to develop a 

model for predicting protein using field measured accumulated absorption derived from reflectance. 

The developed regression model was validated using the jackknife and cross validation approach. This 

approach operates by withholding the spectral data for one site and building the model functions using 

the data from the remaining sites. The process of removing one site from the dataset was repeated until 

all sites had been withheld [48]. Finally, the performance of the prediction model was evaluated by 

root mean-squared error (RMSE) and average relative error (ARE) by comparing the predicted values 

to the six observed protein values.  

The differences in both chemical components and spectral absorption features between grazed and 

ungrazed grasslands were investigated through the analysis of variance (ANOVA), to document the 

effects of grazing on the detection of grassland forage quality.  

3. Results and Discussion 

3.1. Result 

3.1.1. Vegetation chemical and nutrient contents 

Results of the laboratory chemical analysis of the forage quality variables of interest are 

summarized in Table 1. Most forage quality variables showed a small CV, indicating a relative 

homogeneity among samples. The only two exceptions are protein and ash content. The relatively high 

CV of the protein content among samples indicates the diversity of protein content of grass at the field 

level. Although nutritional requirements of ruminant herbivores vary with physiological state and with 

body size [49], benchmark values do exist. For a 500 kg mean live weight cow, the requirement of 

protein content is 3.1% for maintenance and 10.7% for producing 30 kg milk/day. The protein content 

in the study area is at above the cow maintenance level but is lower than the milk production level.  
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Table 1. Chemical variables derived from sample analysis (N is the sample number). 

Chemicals Abbr. Unit N Mean Std Min Max CV 

Lignin Ln % 20 4.03 0.33 3.47 4.54 0.082 

Protein Pt % 90 8.41 1.02 6.2 12 0.121 

Ash Ash % 90 6.35 1.06 4.3 11 0.167 

Moisture at 135 ºC Mt % 90 6.13 0.23 5.7 6.8 0.038 

Neutral Detergent Fiber NDF % 90 65.47 2.11 57 70.7 0.032 

Acid Detergent Fiber ADF % 90 35.49 1.5 30.1 39.4 0.042 

Total Digestible Nutrients TDN % 90 54.67 1.58 50.69 59.83 0.029 

Digestible Energy DE Mcal/kg 90 2.39 0.07 2.2 2.63 0.029 

Net Energy for Lactation NEI Mcal/kg 90 1.23 0.04 1.13 1.36 0.033 

Net Energy for 

Maintenance 

NEm Mcal/kg 90 1.16 0.05 1.01 0.49 0.043 

Net Energy for Gain NEg Mcal/kg 90 0.63 0.05 0.49 0.8 0.079 

3.1.2. Comparison of reflectance measured in the field and laboratory on detecting grass chemicals 

Spectral features: Figure 1 illustrates the spectral features of the samples in both laboratory and 

field measures. The upper and lower 95% confident limits based on the 30 samples indicated that the 

spectral variation is small, which indicates relatively little variation over the sampled areas. Six 

absorption regions selected for this study were also clearly identifiable. Generally, field level spectral 

measures were lower than laboratory measures, which is likely due to the influence of bare ground and 

dead materials. The leaf orientation in the field may also contribute to the difference in the spectral 

response curve from the measures of dried grass samples in the laboratory which minimize the effects 

of leaf orientation and distribution.  

Relationships between grass quality variables and raw reflectance: Correlation analysis on 

chemical composition and raw reflectance showed that only lignin, protein and ash were significantly 

related to reflectance of dried grass in the lab (Figure 2a) whereas protein, moisture and ash were 

significantly related to canopy reflectance in the field (Figure 2b). 

The visible wavelength region is important: the red region (600–700 nm) correlates with protein and 

ash, and the blue (400–500 nm) and green regions (500–600 nm) are correlated with lignin 

concentration. The important red-edge region for estimating protein is consistent with the finding of 

Kawamura et al. [33] in a sown pasture land in Japan and of Starks et al. [50] in a warm season pasture 

land in USA, but the blue region (415–460 nm) was also well correlated with protein content in their 

study. In addition, we found no significant relationship between chemical contents and spectral 

features beyond the near infrared energy range. This finding agrees with [51] indicating that the visible 

wavelength region is the most important for grassland biophysical characterization. However, 

accumulated absorption regions showed significant relationships with the spectral measurements for 

lignin and protein, indicating a potential of using the continuum removal approach for prediction. 
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Figure 1. Spectral response curves of dried grass in the laboratory and living vegetation 

(canopy reflectance) in the field in Canadian mixed grass prairie with 95% upper and lower 

confident limits (UCL & LCL) of 30 samples. Noisy regions due to water vapor absorption 

(1,361–1,395 nm, 1,811–1,925 nm, 2,475–2,500 nm) were deleted for the  

field measurements. 

 

Figure 2. Relationships between chemical components and spectral reflectance measured 

in both laboratory and field. The horizontal lines are the critical significant r values for  

(a) 90 samples (protein and ash) and 20 samples (lignin) in the laboratory, and (b) 30 

samples in the field. 

 

Relationships between quality and first derivative reflectance: By definition, higher first 

derivative reflectance will occur at steeply sloped regions of the spectral response curve (Figure 1). 

The most obvious region is at the red edge, popularly used for Nitrogen content estimation of crops 

and grasses [52,53]. The first derivative of a subset of the red edge region (550–750 nm), showed a 

dramatic enhancement of the relationship between forage quality variables and spectral measures 

(Figure 3a). Energy variables showed very similar results, due to similar calculation methods  
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(Figure 3b). The significant regions in field level measurements are in the blue and red wavelength 

ranges (Figure 3c).  

Figure 3. Comparisons of relationships between chemical contents and the first derivative 

reflectance collected in both (a, b) laboratory and (c) field.  
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We also compared the effects of the first derivative transformation (550–750 nm) applied to lab and 

field spectral measurements. In general, the first derivative transformation increased our ability to 

estimate chemical composition. The relationships between chemical composition and the first 

derivative reflectance are much more consistent based on spectral reflectance measurements in the lab 

throughout the wavelength region, even though the relationships were higher for the field measures for 

most chemical variables. The only exception is lignin content, which is more highly correlated to 

lab-measured reflectance than that in the field. 

Relationships between chemicals and the areas of absorption: For most foliage chemicals, the 

mid infrared region is important for qualitative detection, but not for quantitative estimation. 

Considering the limitations of the first derivative method, the continuum removal method was tested. 

Accumulated absorption was correlated with forage quality variables (Table 2).  

Table 2. Correlation coefficient (r) between chemical components and accumulation of 

absorption features. 

Variables Methods 
Width ranges (nm) 

470–518 550–750 1,116–1,284 1,634–1,786 2,006–2,196 2,222–2,378 

Protein 
Lab \ .328** \ .213* \ \ 

Field .641** .695** .645** –.508** –.812** –.567** 

Ash 
Lab \ 

 
–.267* \ \ \ 

Field .425* .484** .388* \ –.483** \ 

Moisture 
Lab \ 

 
–.231* \ \ \ 

Field .489** .547** .503** \ –.445* \ 

ADF Lab –.429** –.250* –.258* –.237* \ \ 

NDF Lab –.218* \ \ \ \ \ 

TDN Lab .465** .278** .297** .254* \ \ 

DE Lab .463** .280** .291** .256* \ \ 

NEL Lab .461** .263* .300** .246* \ \ 

NEm Lab .455** .279** .288** .253* \ \ 

NEg Lab .456** .273** .282** .241* \ \ 

** Correlation is significant at the 0.01 level; * Correlation is significant at the 0.05 level;  

and ―\‖ means no significant relationship. 

All relationships between the forage quality variables and the 470–518 nm, 550–750 nm,  

1,116–1,284 nm, and 1,634–1,786 nm wavelength regions were statistically significant. Despite 

significant correlation, the variation of forage quality variables accounted for by the variation of 

spectral reflectance varied from 5–66%, indicated by the r
2
 values. Interestingly, based on the spectral 

measurements in the lab, the two mid wavelength regions (2,006–2,196 nm and 2,222–2,378 nm) did 

not show significant correlations with any chemical components. Nonetheless, based on the canopy 

reflectance in the field, the wavelength region (2,006–2,196 nm) demonstrates moderate to high 

correlation with protein, ash, and moisture, and the region of 2,222–2,378 nm is moderately correlated 

with protein content. In the lab, ash and moisture content only weakly correlated with the  

1,116–1,284 nm wavelength region, but in the field both ash and moisture are moderately correlated 

with two visible wavelength regions, one near-infrared and one mid-infrared wavelength region.  
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In addition, NDF was only correlated with 470–518 nm wavelength region, but other chemical 

variables correlated with more than one spectral absorption region in the lab.  

 

3.1.3. Protein prediction model development and validation  

When using the six absorption areas derived from field spectral measurements as independent 

variables in a stepwise regression analysis, we could estimate 63% variation of protein content from 

the absorption area of the wavelength region of 2,006–2,196 nm with the following equation:  

                                   (N = 24, r
2 
= 0.63, P = 0.000) (2)  

where A represents accumulated absorption area in the wavelength range indicated in the equation; N 

is the sample number; and P is the significance value at the 0.05 significance level. This suggests that 

the model is very good at monitoring protein from in situ field samples (Figure 4). Higher protein 

content results in smaller absorption areas due to its strong energy absorption capability in these 

particular wavelength regions. Therefore, larger absorption areas have smaller protein content.  

Figure 4. Jackknife cross validation of protein prediction model based on the accumulated 

absorption of field measured spectra. 

 

Six observed protein data and the corresponding accumulated absorption areas were set aside and 

used to evaluate the performance of the prediction model. RMSE and ARE between the observed and 

predicted protein values were shown in Table 3. RMSE indicates that the predicted protein data series 

is quite consistent with the observed protein. ARE shows the overall error of the model prediction is 

8%, which further indicates that the model (Equation (2)) can accurately predict protein based on  

the in situ measures of canopy reflectance.  
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Table 3. The performance of the protein prediction model evaluated by root mean-squared 

error (RMSE) and average relative error (ARE). 

Absorption area Observed Protein Predicted Protein RMSE ARE 

0.5 10 9.28 0.63 0.08 

0.79 8.7 9.07 
  

1.31 8.97 8.68 
  

1.98 7.53 8.18 
  

2.65 7 7.68 
  

2.09 7.2 8.10 
  

3.1.4. Variation under different management practices 

Forage quality variables and the reflectance of the wavelength regions used for calculating the 

accumulated absorption in grazed and ungrazed grassland were compared in Table 4. ANOVA 

analysis indicated that canopy reflectance of all the selected wavelength regions is significantly 

different at the 0.05 significance level in grazed and ungrazed grasslands. Except lignin and protein, 

the other tested chemical composition, including ADF, Ash, moisture at 135 ºC, and NDF, is also 

significantly different. As for the ADF, ash, moisture, NDF, and Lignin, both the range and CV were 

higher in grazed sites than those in the ungrazed area, indicating a higher variation in grazed swards. 

However, both range and CV indicate that the variation of protein is smaller in grazed sward than that 

in ungrazed sward. In addition, variation of reflectance in the wavelength regions of 1,116–1,284 nm 

and 1,634–1,786 nm is smaller, but that in other wavelength regions is larger, in grazed sward than 

ungrazed sward, indicated by CV. With biomass as a covariate, we only found that NDF (F1, 87 = 12.3, 

P < 0.001) and ADF (F1, 87 = 3.5, P = 0.055) differed significantly among grazing treatments and no 

quality measure varied significantly with biomass. In both cases, NDF and ADF were higher under the 

ungrazed than those under the grazed treatments (Table 4). 

Table 4. Comparisons of chemical composition and canopy reflectance under grazed and 

ungrazed conditions (N is the sample number; and Mt and Ln stands for moisture at 135 ºC 

and Lignin, respectively). 

Category  
Chemical variables Wavelength regions 

Statistics ADF Ash Mt NDF Ln Protein 470–518 550–750 1,116–1,284 1,634–1,786 2,006–2,196 2,222–2,378 

Grazed 

N 45 45 45 45 10 45 15 15 15 15 15 15 

Mean 35.2 6.6 6.2 64.7 3.9 8.3 0.06 0.10 0.28 0.27 0.17 0.14 

Std. 1.51 1.29 0.25 2.14 0.38 0.92 0.01 0.01 0.01 0.02 0.02 0.01 

Min 30.1 4.3 5.7 57 3.47 6.2 0.05 0.08 0.25 0.24 0.14 0.11 

Max 37.5 11 6.8 68.4 4.54 10.2 0.06 0.11 0.30 0.29 0.19 0.16 

Range 7.4 6.7 1.1 11.4 1.07 4 0.02 0.02 0.05 0.06 0.06 0.05 

CV 0.04 0.2 0.04 0.03 0.1 0.11 0.09 0.07 0.05 0.06 0.10 0.09 
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Table 4. Cont. 

Category  
Chemical variables Wavelength regions 

Statistics ADF Ash Mt NDF Ln Protein 470–518 550–750 1,116–1,284 1,634–1,786 2,006–2,196 2,222–2,378 

ungrazed 

N 45 45 45 45 10 45 15 15 15 15 15 15 

Mean 35.8 6.1 6 66.3 4.1 8.5 0.05 0.09 0.25 0.25 0.15 0.13 

Std. 1.43 0.73 0.15 1.77 0.24 1.12 0.01 0.01 0.01 0.02 0.02 0.01 

Min 32.4 4.3 5.7 61.8 3.8 6.8 0.04 0.08 0.24 0.23 0.13 0.11 

Max 39.4 7.7 6.4 70.7 4.54 12 0.06 0.10 0.28 0.28 0.18 0.15 

Range 7 3.4 0.7 8.9 0.74 5.2 0.02 0.02 0.05 0.05 0.06 0.04 

CV 0.04 0.12 0.03 0.03 0.06 0.13 0.12 0.07 0.04 0.06 0.12 0.11 

 
Sig. 0.03 0.05 0.00 0.00 0.13 0.36 0.01 0.00 0.00 0.00 0.01 0.00 

3.2. Discussion 

Our data show that the strongest correlation between forage quality and remote sensing data was not 

from ex situ spectral reflectance measurements of dried grass samples in the laboratory, but from  

in situ reflectance measures made on the vegetation canopy. Previous research has indicated that water 

could mask the relationship in fresh samples [25,26]. However, our reflectance values from in situ 

samples showed consistently higher correlations to chemical composition than from dried samples, 

despite the field samples being a mixture of green grass, forb, shrub, dead materials, and soil.  

Relationships between vegetation quality and spectral measurements differed when measured under 

laboratory conditions compared to field conditions for a range of chemical variables. Noise was less 

for indoor spectral measurement, but correlations to chemical composition were also lower. Both the 

first derivative transformation and absorption continuum removal methods worked very well to 

improve the relationships between chemical and spectral data. However, each method has its own 

suitable wavelength regions; the first derivative transformation was for absorption and reflectance 

transition regions especially the red edge area, while the absorption removal method was mainly for 

absorption regions that can be extended to mid infrared regions. Furthermore, the first derivative 

transformation provided more promising results for measurements in a laboratory, which provided 

smoother spectral response curves. Sixty-six percent variation of protein content could be explained by 

the total absorption area in the wavelength region of 2,006–2,196 nm. Lignin showed a better 

relationship with indoor spectral data than with the field measurements. The reason for this result is 

not fully understood as the sample numbers are lower for lignin compared to other chemical variables 

because of the high cost for lignin laboratory analysis. Further analysis with increased sample numbers 

should be investigated. Both first derivative and continuous removal approaches are specifically for 

hyperspectral remotely sensed data. Fortunately, data from hyperspectral satellite sensors are available 

currently (e.g., Hyperion on Earth Observing-1 and CHRIS on Proba). Other satellite-based 

hyperspectral sensors such as Canadian HERO will be launched in the future. At the same time, 

airborne hyperspectral imagers (e.g., AISA Airborne Hyperspectral Imager of UPM-APSB and 

HYMAP of Australia) also become available. However, the practical application of hyperspectral 

remote sensing will not be applicable in the short term due to high cost. 

To verify if the remote sensing data at field level could be used for grass quality assessment, we 

made detailed comparisons on field and dried samples. Except lignin content, all field spectral 
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measurements provided a better indication of chemical composition than spectral measures in the lab. 

The trend among wavelength regions was clear: higher negative correlations in absorption regions and 

higher positive correlations in reflectance regions for protein, with significantly positive correlations in 

near infrared region for moisture content and ash. For the lab measures, only the visible region showed 

a significant positive relationship with lignin content, which has no significant relationship with field 

spectral measurements. To measure forage quality using spectral reflectance in such a ecosystem, 

apparently it is not necessary to dry samples. This is consistent with the findings of Starks et al. [50], 

Mutanga et al. [16], Mutanga and Skidmore [30-32], and Kawamura et al. [33] for forage quality 

estimation in warm season pasture land in Oklahoma, USA, tropical savanna rangeland in South Africa, 

and in a sown pasture land in Hokkaido, Japan, respectively. 

The interplay between plant moisture, nutritional quality, grazing and reflectance is interesting, 

which deserves further exploration. It appears that in more mesic vegetation communities, 

maturational variation in plant quality will be greater, but our ability to detect these changes using  

in situ reflectance will be greatly impaired. Plant maturation is the factor that largely dictates 

nutritional quality [54]. Nutritional quality typically declines as maturation increases [55]. Water stress, 

for its part, typically retards maturation in plants [56]. On average, nutritional quality in plant under 

water stress will be higher than those in well watered plants [57]. Thus, the rate at which nutritional 

quality declines with maturation, typically indicated by biomass and growing season, will slow. 

Unfortunately, in plant canopies containing more moisture, nutritional quality estimated by canopy 

reflectance is less reliable [16,21,29,58]. So where nutritional quality of swards likely varies  

as environmental conditions change, our ability to track the variation of nutritional quality will  

be constrained. 

Additionally, forage quality is improved by short-term grazing pressure due likely to the delay of 

average maturity of plant tissues caused by grazing in the sward [59]. Grazing can also affect 

reflectance signals by creating more bare ground and reducing the density of non-photosynthetically 

active material in a canopy [60]. Again, grazing creates a more temporally and spatially dynamic 

vegetation canopy that, because of what changes are made, make forage quality detection using 

reflectance measures more difficult. Hence, where moisture and grazing are the dominant effects on 

vegetation quality, in situ measures of nutritional quality of forage will be challenging. This 

supposition is consistent with our findings. In the semi-arid grassland, variation in nutritional quality 

was very low and was only related to grazing treatment (not biomass). Hence our in situ reflectance 

measures were as effective as or more effective at detecting plant chemical composition than ex situ 

measures. But these factors also point to why the literature is divided on the effectiveness of in situ 

measures of forage quality. We should perhaps not expect to find similar results on more mesic 

grasslands or where grazing is more intense.  

This conclusion has interesting implications for tracking large-scale changes in forage quality 

resulting from increasing atmospheric CO2 concentrations and climate change. As CO2 concentrations 

increase, plant growth rates are expected to increase [61] and communities may shift towards greater 

dominance by C3 species [3,62-65]. In many ecosystems these changes may be accompanied by 

changing precipitation patterns that will result in longer periods of little or no precipitation during the 

growing season [66,67]. Because C3 species tend to be of higher nutritional quality than C4  

species [68] and decline less in quality with maturation [69], a shift towards C3 species accompanied 
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by less growing season precipitation suggests less within-season variation in forage quality in 

temperate grassland ecosystems. Hence, while lower canopy moisture will enhance in situ detection of 

canopy quality variation that may accompany climate change, there may be less within-season 

variation to detect.  

Landscape level measurement of grassland nutrient content shows a great promise with modern 

remote sensing tools. Our study supports the idea that grassland quality assessment using remote 

sensing approaches can be successful in the field. Nevertheless significant challenges, such as teasing 

out sward moisture effects and accounting for grazing management, remain. The key to overcoming 

these challenges, we believe, will be the careful comparison of controlled grazing treatments in 

grassland ecosystems differing in precipitation regimes.  
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