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Abstract: Concentrations of four heavy metals (Cr, Cu, Ni, and Zn) were measured at 

1,082 sampling sites in Changhua county of central Taiwan. A hazard zone is defined in 

the study as a place where the content of each heavy metal exceeds the corresponding 

control standard. This study examines the use of spatial analysis for identifying multiple 

soil pollution hotspots in the study area. In a preliminary investigation, kernel density 

estimation (KDE) was a technique used for hotspot analysis of soil pollution from a set of 

observed occurrences of hazards. In addition, the study estimates the hazardous probability 

of each heavy metal using geostatistical techniques such as the sequential indicator 

simulation (SIS) and indicator kriging (IK). Results show that there are multiple hotspots 

for these four heavy metals and they are strongly correlated to the locations of industrial 

plants and irrigation systems in the study area. Moreover, the pollution hotspots detected 

using the KDE are the almost same to those estimated using IK or SIS. Soil pollution 

hotspots and polluted sampling densities are clearly defined using the KDE approach based 

on contaminated point data. Furthermore, the risk of hazards is explored by these 

OPEN ACCESS 

mailto:yplin@ntu.edu.tw


Int. J. Environ. Res. Public Health 2011, 8         

 

 

76 

techniques such as KDE and geostatistical approaches and the hotspot areas are captured 

without requiring exhaustive sampling anywhere. 

Keywords: kernel density estimation (KDE); indicator Kriging (IK); sequential indicator 

simulation (SIS); heavy metal; soil contaminant 

 

1. Introduction 

Unfortunately, as a result of industrial activities, improper disposal of wastes, pollution of 

agricultural soils with heavy metals has become an increasingly serious problem throughout the  

world [1-4]. To understand the contamination risk, monitoring is a necessary and prohibitively costly 

process. Risk assessment at unsampled locations is of significant importance for the delineation of 

contamination areas [5-9]. However, the accuracy of risk estimation depends on the methodology used 

and various related factors. 

Geostatistical analysis considers the concentration of a potentially hazard in soil as a regionalized 

variable in space. Geostatistics was developed as a means to describe spatial patterns of soil pollution 

by semivariograms and to predict the values of soil attributes at unsampled locations [10]. 

Geostatistical models could be used to estimate the spatial patterns of soil contaminant without 

measuring soil data in an entire area. The degree of contamination and hotspot areas for soils may vary 

with the methods used. For delineating hazardous areas, indicator kriging (IK) determines the spatial 

probability distribution of soil pollution in fields [6,11-16]. IK provides a non-parametric distribution 

estimated at an unsampled location directly using fixed thresholds and qualifies the spatial patterns of 

a hazardous risk. Moreover, stochastic simulation methods such as sequential indicator simulation 

(SIS), have been recently proposed to overcome the inherent limitations of IK [17-19]. The stochastic 

simulation method is based on a probabilistic model, and does not require any assumption for the 

shape of the conditional distribution and the systematically adds a stochastic noise component into the 

kriging model. Simulation with multiple realizations offers significant improvements over kriging 

techniques at sites with high data variations. 

Hotspot mapping is used to help identify where soil pollution exists and comes from. Recently, 

Kernel density estimation (KDE) is one of the methods for analyzing the first order properties of a 

point event distribution [20-22], in part because it is easy to understand and implement. KDE has been 

widely used for hotspot analysis and detection. The objective of KDE is to produce a smooth density 

surface of point events over space by computing event intensity as density estimation [22-24]. 

Moreover, Schnabel and Tietje [23] applied the KDE method to spatially distributed heavy metal soil 

data and compared it with ordinary kriging. The results represent the interdependence between various 

heavy metal concentrations and additional site characteristics. Furthermore, the method could be a 

valuable supplement for the geostatistical uncertainty assessments. 

The purpose of this study was to propose alternative approaches in searching for pollutant hotspots. 

The primary objective of the present work was to investigate proposals for delineating soil pollutant 

hazards. First, KDE identifys the hotspots of soil pollutions based on the hazardous metal sampling 

data. Then, IK and SIS generate a hazard probability map based on the samples for management. A 
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study case from a field survey is provided to estimate the probability maps for hazard delineation. It is 

expected that results can give references for identification of hazardous areas. 

2. Methods and Materials 

Kernel density estimation is used to identify the location, spatial extent and intensity of soil 

pollution hotspots. Moreover, the spatial patterns of hazardous probability for heavy metals are 

estimated using geostatistical methods. The three methods are used for visualization of hotspots of soil 

pollutions in the case study. Study area and sampling of heavy metals will be discussed in the 

following sections. 

2.1. Study Area and Soil Sampling 

The study area is in Changhua County, which is a critical agricultural region in Taiwan. Changhua 

city is in the east area and Lugang town lies to the west. Approximately 106 industrial plants are 

clustered in study area. Most industrial plants in the study area involve metalwork, electroplating, 

textile and metal surface treatment industries (Figure 1). The industrial plants have been suspected of 

discharging wastewater into irrigation channels in this study area [8,12,25]. The data of 1,309 topsoil 

(0–15 cm) samples containing concentrations of Cr, Cu, Ni, and Zn were obtained by the soil heavy 

metal investigation project carried by Taiwan’s Environmental Protection Administration (EPA), 

between February and August 2002. The sampling sites are shown in Figure 1.  

Figure 1. The study area and sampling sites. 

 

 

Approximately 1 kg of soil was collected for each sample using a stainless steel spade and a plastic 

scoop and then stored in a plastic food bag. After air drying at room temperature, 3 g of each soil 
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sample were disaggregated, sieved to 0.85 mm and ground to a fine 0.15 mm powder. Each 3 g milled 

sample was then digested for 2 h at room temperature with 7 mL HNO3 and 21 mL HCl (aqua regia, 

1:3) to slowly oxidize organic matter in the soil. Next, the digest was filtered and made up to 100 mL 

with distilled water [15,16]. The levels of heavy metals in the samples were determined by Inductively 

Coupled Plasma-Optical Emission Spectrometers (ICP-OES). 

2.2. Kernel Density Estimation (KDE) 

The general form of a kernel density estimator in a 2-D space, termed KDE in the rest of this paper, 

is given by [22]: 


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where )(s  is the density at location s, r is the search radius (bandwidth) of the KDE, n is the number 
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To identify the soil pollution hotspots, the KDE package based on ArcGIS software was used in  

the study. 

2.3. Indicator Kriging (IK) 

The IK estimates the probability that the concentration of a pollutant exceeds a specific control 

value at a given location [8,17]. The data (z(s)) are transformed into an indicator as follows: 



 


otherwise

zszif
zsI

c

c
,0

)(,1
),(      (3) 

If the concentration of heavy metal [ )(sz ] exceeds 
cz  then the indicator is 0, otherwise it is 1 [11]. 

The expected value of ))(|;( nzsI c
, conditional on n surrounding data, can be expressed as: 

)](|)([))](|;([ nzszprobnzsIE cc      (4) 

The hazardous probability that exceeds 
cz  can be expressed as: 

)](|)([1)](|)([ nzszprobnzszprob cc     (5) 

This ordinary indicator kriging estimator is: 
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where );( czsI  represents the indicator values at x ; n,,1 ;   is the kriging weight of 

);( czsI  determined by solving the following kriging system: 
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where   is the Lagrange multiplier; );( ci zss   is the indicator variogram between indicator 

variables at the 
th  and th  sampling points; );( 0 ci zss  is the variogram between the indicator 

variables, i.e., the 
th sampling point and 

0s ; n,,1 . 

2.4. Sequential Indicator Simulation (SIS) 

In sequential indicator simulation, modeling of the N-point conditional cumulative distribution 

function (ccdf) is a sequence of N univariate ccdfs at each grid cell along a random path [25,26]. The 

SIS requires the following steps [17,25,26]:  

1. Define a random path that visits each location of the domain once, in which all nodes 

},,1,{ Nisi  discretizing the interest domain. A random visiting sequence ensures that no 

spatial continuity artifact is introduced into the simulation by a specific path visiting N nodes. 

2. At the first visited nodes ( 1s ): 

A. Model, using either a parametric or nonparametric approach, the local ccdf of )( 1sz  

conditional on n original data :},,1),({ nsz    

)}()({))(;( 1111 nzszprobnzsFZ      (9) 

B. Generate, via the Monte Carlo drawing relation, a simulated value )( 1

)( sz l from this ccdf 

))(;( 11 nzsFZ , and add it to the conditioning data set, now of dimension 1n , to be used 

for all subsequent local ccdf determinations. 

3. At the i
th

 node 
is  along the random path: 

A. Model the local ccdf of )( isz  conditional on n original data and the 1i  near previously 

simulated values: 
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B. Generate a simulated value )()(

i

l sz  from this ccdf, and add it to the conditioning data set, 

now of dimension in  . 

4. Repeat step 3 until all N nodes along the random path are visited. 

The probability of soil heavy metal at s  exceeding the control standard ( cz ) can be denoted by 

])([ czszprob  [18,19]: 

1000
)(
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where )(sn  is the number of realizations if )(sz  is higher than the control standard in the 1000  

SIS realizations. 



Int. J. Environ. Res. Public Health 2011, 8         

 

 

80 

3. Results and Discussion  

3.1. Basic Statistics  

Table 1 summarizes the descriptive statistics of the investigated four heavy metals (Cr, Cu, Ni, and 

Zn) from the original 1,082 samples. In Taiwan, the pollution control standards (maximum allowable 

concentrations) for the investigated heavy metals are as follows (in mg/kg): Cr 250, Cu 200, Ni: 200 

and Zn 600. Table 1 lists 286 samples for Cr, 395 samples for Cu, 622 samples for Ni, and 336 

samples for Zn over the control standards. Moreover, the high variability of the pollutant 

concentrations at various heavy metals requires a detailed evaluation and interpretation. The 

application of various methods is an efficient tool in achieving better understanding of the hazardous 

state of the soil pollution. It seems recommendable to combine various approaches instead of relying 

only on one of them to gain better information of the pollutions, such as the KDE, geostatistical 

methods (i.e., the IK and SIS). 

Table 1. Descriptive statistics of heavy metals for 1,082 samples. 

 
Min 

(mg/kg) 

Median 

(mg/kg) 

Max 

(mg/kg) 

Average 

(mg/kg) 

SD 

(mg/kg) 

Control 

standards 

(mg/kg) 

Number of 

observances over 

control standards 

Cr 22.6 119.0 3,070.0 194.0 212.5 250 286 

Cu 11.0 116.0 3,810.0 194.7 222.7 200 395 

Ni 21.3 189.2 4,020.0 271.3 259.0 200 622 

Zn 60.5 337.0 7,850.0 526.4 549.6 600 336 

Min: minimum; Max: maximum; SD: standard deviation. 

3.2. Point Pattern Analysis Using Kernel Density Estimation (KDE) 

Figure 2 shows the hotspot patterns of soil pollutants on the kernel density map. The Kernel Density 

Estimation (KDE) transforms a dot pattern into a continuous surface, providing a more useful 

representation of soil pollution distributions, allowing for easier detection of possible pollution 

hotspots [24]. Results show that the hotspots associated with the four heavy metals in the study area 

are often multiple. We found that soil pollution hotspots were more clearly defined using KDE, 

probably because of the clustered distribution of soil pollution occurrences. The spatial patterns also 

reveal Cr hotspots near industrial plants and irrigation systems in the study area. The areas with Cu 

hotspots are in the central and eastern parts of the study area in the vicinity of the industrial plants and 

irrigation systems. Hotspots of Ni are particularly highly distributed throughout the northeast part of 

the studied area. The areas with Zn hotspots are close to the industrial plants and irrigation systems in 

the northwest. However, there are potentially contaminated sites that are hidden, especially in the areas 

where the history of land use is complicated and the sources of imported soils are usually  

unknown [27]. The maps show that the area with high susceptibility of pollution is along the industrial 

plants and the irrigation systems. The KDE results match the previous studies showing that the 

distributions of background heavy metals and pollution sources correlated with industrial plants and 
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irrigation channels [15]. These industrial plants are suspected of discharging wastewater into irrigation 

systems in the study area [12,15,16,25].  

Figure 2. The kernel density maps (stretched to min–max range) of (a) Cr (b) Cu  

(c) Ni (d) Zn. 
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3.3. Sampling Density and Spatial Interpolation of Probability Exceeding Control Standards Using the 

IK and SIS Approaches 

The hazardous probability that heavy metal concentrations exceed control standards at any of the 

unsampled sites is determined by geostatistical methods (i.e., IK and SIS). Moreover, the spatial 

distribution of hazardous probability can be characterized by an indicator variogram. The variance is 

estimated as a function of a variogram model, where the variogram is calculated using the relative 

locations of the samples. Table 2 lists the parameters of indicator variograms for the four heavy metals. 

In the indicator variograms, the fitted ranges, the nugget effects and the sills are 120–249 m,  

0.0206–0.0251 and 0.187–0.235 (Table 2), respectively. The results show that the sill value for Ni is 

the largest one. Based on the cases, the higher sill corresponds to greater variability in the probability 

map. Spatial structure analysis has been identified to be a useful tool in illustrating the spatial patterns 

of variables, and a necessary basis for a number of other spatial analysis procedures, such as kriging 

analysis [28]. Furthermore, SIS realizations are performed based on the indicator variogram models for 

the 25th, 50th, and 75th percentiles of the sample distribution (Table 3) of original samples for Cr, Cu, 

Ni, and Zn in the study area. 

Table 2. Indicator variogram models for heavy metals. 

 Threshold 

(mg/kg) 
Model C0

 
C0+C R (m) RSS 

2r  

Cr 250 Exp. 0.0237 0.1874 120 2.52E-04 0.859 

Cu 200 Exp. 0.0251 0.2202 135 3.08E-04 0.904 

Ni 200 Exp. 0.0206 0.2352 249 3.39E-03 0.723 

Zn 600 Exp. 0.0221 0.2042 147 6.05E-04 0.808 

Exp.: Exponential model; C0: Nugget; C0+C: Sill; R: Range; RSS: Residual Sum of Squares;  
2r : Coefficient of determination 

Table 3. Indicator variogram models for the 25th, 50th, and 75th percentiles of heavy 

metals in 1,082 samples. 

Heavy metal Model 
Parameters 

RSS 
2r  

C0 C0+C R (m) 

Cr 

25% Exp. 0.020 0.184 216 1.730E-03 0.722 

50% Exp. 0.026 0.247 171 1.202E-03 0.807 

75% Exp. 0.025 0.190 120 2.075E-04 0.852 

Cu 

25% Exp. 0.017 0.184 240 2.008E-03 0.737 

50% Exp. 0.025 0.247 186 7.016E-04 0.899 

75% Exp. 0.024 0.190 108 5.293E-04 0.663 

Ni 

25% Exp. 0.015 0.179 222 2.614E-03 0.634 

50% Exp. 0.022 0.237 228 3.608E-03 0.671 

75% Exp. 0.018 0.183 159 5.723E-04 0.805 

Zn 

25% Exp. 0.024 0.190 222 1.464E-03 0.768 

50% Exp. 0.028 0.250 171 3.795E-04 0.936 

75% Exp. 0.021 0.189 144 8.077E-03 0.710 

Exp.: Exponential model; C0: Nugget; C0+C: Sill; R: Range; RSS: Residual Sum of Squares;  
2r : Coefficient of determination. 
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Figures 3 and 4 show the probability maps for sites where Cr, Cu, Ni, and Zn exceed the control 

standards based on the IK and 1000 SIS realizations (by Equations 5 and 11).  

Figure 3. The probability maps of (a) Cr (b) Cu (c) Ni (d) Zn using indicator kriging based 

on 1,082 samples. 
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Figure 4. The probability maps of (a) Cr (b) Cu (c) Ni (d) Zn in 1000 realizations using 

sequential indicator simulation based on 1,082 samples. 

 

The results demonstrate that the hotspots of hazard probability for Cr and Cu are similar. The 

spatial patterns of hazard probability also reveal hotspots of Cr near industrial plants and irrigation 

systems in the study area. The Cu hotspots are located in the central and east-northern parts of the 

study area in the vicinity of industrial plants and irrigation systems. The hotspots of Ni are distributed 

throughout the study area, except for the south-western part; and the areas with high concentrations of 
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Zn are close to industrial plants and irrigation systems in the north-western part. Furthermore, all 

probability maps show that the multiple hotspots of hazard probability are close to industrial plants and 

irrigation systems in the study area. 

Table 4 shows that polluted sampling density value is subjected to SIS probability exceeding 

regulatory thresholds with given critical probabilities (
cp = 0.9, 0.8, 0.7 and 0.6) in the Cr, Cu, Ni, and 

Zn content of soil. Results show polluted sampling density increases as the critical probability 

increases. The polluted sampling density could be detected using KDE when delineating 

contaminations based on the original samples. In the study area, polluted sampling density range from 

0.00023 to 0.00036 (L/m
2
) However, density values for heavy metal Ni are the lowest among the four 

heavy metals. For long-term pollution monitoring, the Ni pollution sampling points could be increased 

primarily. Based on these results, the KDE method is an effective approach to make sure of sampling 

density in delineating heavy metal pollutions for further monitoring. 

Table 4. Polluted sampling density value based on SIS probability criteria. 

 Critical 

probability( cp ) 

Number of grid which 

value is over cp  

Density value (L/m
2
) 

 Mean Range 

Cr 

0.6 591 0.00028  0.00066  

0.7 467 0.00031  0.00066  

0.8 373 0.00033  0.00066  

0.9 310 0.00034  0.00066  

Cu 

0.6 851 0.00029  0.00082  

0.7 643 0.00032  0.00081  

0.8 505 0.00034  0.00080  

0.9 403 0.00036  0.00080  

Ni 

0.6 2,157 0.00023  0.00071  

0.7 1,554 0.00027  0.00070  

0.8 1,099 0.00030  0.00067  

0.9 773 0.00032  0.00067  

Zn 

0.6 709 0.00028  0.00079  

0.7 560 0.00030  0.00079  

0.8 453 0.00032  0.00079  

0.9 379 0.00033  0.00079  

3.4. Comparisons of Hotspot Visualizations by Various Methods 

These techniques such as KDE, IK and SIS are commonly used in exploratory spatial analyses and 

pattern resolution for soil pollution visualization of heavy metals. All three visualization methods that 

we used to explore the soil pollution intensity patterns showed similar results (Figures 2–4) near 

factories and irrigation systems. These methods showed generally consistent results, but differences 

existed. KDE is an efficient means of detecting soil pollution hotspots based on point data. Results 

show the pollution hotspots are consistent in the other two approaches (i.e., IK and SIS). The KDE 

results also show multiple hotspots in the study area and may under-emphasized areas with heavy 

metal pollution. However, the hotspots when determined based on KDE are more conservative than the 

ones estimated by IK and SIS. Results imply that the KDE multiple hot spots may be  
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under-emphasized heavy metal pollution zones in the study area (Figure 2). Estimation results indicate 

that the hazard probability patterns estimated by the SIS are less fragmented than those estimated by 

IK (Figures 3 and 4). SIS takes into account not only the spatial variation of observed data at sampled 

locations but also the variation in estimations at unsampled locations which kriging estimation ignores 

those factors [18,25]. In addition, the simulation approach modifies the failure of IK to reproduce 

clusters of large concentrations above the tolerable maximum [18]. Simulation generates equally likely 

sets of values for a variable, which are consistent with available in-situ measurements. This usually 

implies that the simulated values have the same mean and variogram as the original data; they may 

also have to coincide with the original data at sampling points [29]. Furthermore, the local uncertainty 

information obtained by the IK is not sufficient to quantify the uncertainty at several locations 

simultaneously. Future work could assess multi-location uncertainties using SIS for the delineation of 

soil pollution. In addition, several investigators have published evidence of dynamics in environmental 

management [30-33]. In the future study, the temporal analysis of pollutant concentrations could be 

further explored. 

4. Conclusions  

This study utilizes KDE and geostatistical techniques with 1,082 samples to delineate hazardous 

zones and quantify the risk of multiple pollutants in a contaminated area. Various methodologies show 

generally consistent results, but differences exist. The results demonstrate that KDE is an alternative 

means of determining hazardous hotspots of soil pollutants only using hazardous point data in the 

preliminary investigation. The polluted sampling density could be detected by using KDE with SIS 

delineation. Moreover, the geostatistical models are approaches for identifying the risk of hazard 

delineation and are highly promising for use in evaluating the susceptibility of heavy metals without 

surveying soil concentrations over an entire study area. All proposed methods can be extended to show 

that soil pollution is closely related to pollution sources such as industrial factories and the irrigation 

system in the study area. According to the spatial maps, model assessment of soil pollution hotspots 

enables remediation planners to help identify hazardous pollution areas. Integrating KDE and 

geostatistical methods, the KDE method is an effective approach to determine sampling density when 

delineating heavy metal pollutions by geostatistical methods. The information of spatial sampling 

density and hotspot pattern could be useful for long-term monitoring and assessment. 
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