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Abstract: Exposure to elements in groundwater (toxic or beneficial) is commonplace yet, 

outside of lead and mercury, little research has examined the impact of many commonly 

occurring environmental exposures on mental abilities during the aging process. Inorganic 

arsenic is a known neurotoxin that has both neurodevelopmental and neurocognitive 

consequences. The aim of this study was to examine the potential association between 

current and long-term arsenic exposure and detailed neuropsychological functioning in a 

sample of rural-dwelling adults and elders. Data were analyzed from 434 participants  

(133 men and 301 women) of Project FRONTIER, a community-based participatory 

research study of the epidemiology of health issues of rural-dwelling adults and elders. The 

results of the study showed that GIS-based groundwater arsenic exposure (current and 

long-term) was significantly related to poorer scores in language, visuospatial skills, and 

executive functioning. Additionally, long-term low-level exposure to arsenic was 
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significantly correlated to poorer scores in global cognition, processing speed and 

immediate memory. The finding of a correlation between arsenic and the domains of 

executive functioning and memory is of critical importance as these are cognitive domains 

that reflect the earliest manifestations of Alzheimer’s disease. Additional work is 

warranted given the population health implications associated with long-term low-level 

arsenic exposure. 

Keywords: arsenic; chronic exposure; environmental exposure; cognition; rural health 

 

1. Introduction 

The detrimental impact of acute high-level exposure to arsenic on health is well established; 

however, prior work has also documented adverse consequences of prolonged exposure to 

groundwater arsenic at levels below the current U.S. standard of 10 μg/L. Chronic exposure to  

low-levels of arsenic through drinking water is common in the U.S. where 13.6% of sampled public 

water-supply systems exceeded 5 μg/L and 25% exceeded 2 μg/L [1]. Such exposure has been found to 

increase risk for a range of diseases including hypertension, diabetes, coronary artery disease, skin 

melanosis, cancer, and poorer cognition [2-8]. Therefore, over 40 million Americans are at an 

increased risk for negative health consequences resulting from being exposed to low-levels of arsenic 

over the course of their lifetime [1]. In fact, it has been proposed that exposure to environmental toxins, 

including arsenic, has caused a ―silent pandemic‖ in modern society that has gone undetected [9]. This 

circumstance has likely remained unnoticed because the neurodevelopmental and neurotoxic 

consequences of in utero exposure (along with chronic lifetime exposure) may not become evident 

until neuronal attrition associated with aging occurs [9]. To date, however, no prior work has been 

published looking at the potential impact of long-term low-level arsenic exposure on cognitive 

functioning among adults and elders. The purpose of this study was to take a first-step towards 

addressing this gap in the public health literature.  

There is ample reason to hypothesize an association between chronic arsenic exposure at low levels 

and neuropsychological dysfunction. Inorganic arsenic at high doses is a known neurotoxin with  

both neurodevelopmental and neurocognitive consequences. From a neuropathological standpoint,  

arsenic exposure has been associated with an increase in the production of β amyloid [10], 

hyperphosphorylation of tau protein [11], oxidative stress [12], inflammation [13,14], endothelial cell 

dysfunction [15] and angiogenesis [16], all of which have been linked to cognitive dysfunction and are 

proposed mechanisms underlying Alzheimer’s disease [3,17-19]. In animal models, arsenic exposure 

has been shown to cause morphologic and neurochemical alterations in the hippocampus and other 

memory-related neuronal structures and expected learning and memory deficits have been  

noted [15,20,21]. However, the direct link between chronic low-level arsenic exposure and detailed 

neuropsychological status remains untested.  

Despite the National Research Council’s call for epidemiological studies of the non-cancer health 

consequences of long-term low-level arsenic exposure [7,8], little research has been conducted to date. 

This is not for lack of interest; however, the methods for conducting such investigations have yet to be 
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established. The ideal situation is one where a biomarker of chronic exposure is available, which is the 

case when considering lead. Bone lead level measurement via K-shell-x-ray fluorescence has been 

used as a biomarker of long-term exposure [22] and the correlation between such exposure and 

cognitive functioning has been studied [23,24]. However, a valid biomarker for long-term arsenic 

exposure is lacking. One method that has been utilized is to reconstruct chronic exposures according to 

retrospective report of the level as well as the duration of exposure. In the PHYTHONER study, Baldi 

and colleagues [25] have documented a detrimental impact of long-term pesticide exposures on 

neurocognitive functioning among French vineyard workers using this approach. In countries where 

high levels of arsenic exposure have been documented for decades (e.g., areas of China, Bangladesh, 

and Mexico), researchers have historical data regarding exposure levels that can be utilized to create 

models of chronic exposure. In the U.S., the state of Texas offers a very unique situation given that the 

Texas Water Development Board (TWDB) has been monitoring well-water levels of a large number of 

chemicals including arsenic, for over 15 years across the state. Additionally, we have been conducting 

an epidemiological study of rural health, Project FRONTIER, for several years in two West Texas 

counties with mean groundwater arsenic levels that are below the U.S. standard. As part of this 

protocol, we have collected subjects’ (1) exact residential location and (2) number of years living at 

that location. Therefore, combining data from the TWDB and Project FRONTIER can create estimates 

of current and long-term arsenic exposure. Groundwater arsenic concentration at each subject’s home 

can be estimated with Geographic Information System (GIS) approach (the ArcGIS program) based on 

the residential location’s distances to surrounding wells with known groundwater arsenic 

concentrations provided by TWDB. The purpose of the current study was to examine the potential 

association between current and long-term arsenic exposure estimated by the GIS methods and detailed 

neuropsychological functioning in a sample of rural-dwelling adults and elders. Based on our prior 

work, as well as work with children and adolescents, we hypothesized that increased low-level arsenic 

exposure would be significantly correlated with poorer scores in the domains of global cognition, 

executive functioning, memory, and language. 

2. Experimental Section 

2.1. Participants 

Data from 434 participants (133 men and 301 women) from Project FRONTIER were analyzed. 

Project FRONTIER is an ongoing epidemiological study of cognitive aging among rural-dwelling 

individuals. Project FRONTIER utilizes a community-based participatory research (CBPR) approach, 

which is a research methodology that involves partnering communities with scientific groups to 

conduct studies of human disease that is growing rapidly in terms of use and acceptance in the 

scientific community. CBPR is particularly useful when working with underserved communities that 

may not respond to classic approaches (e.g., random digit dialing, mail surveys) and is very well suited 

to rural health research; CBPR is supported by and recommended for rural research by the National 

Institute of Environmental Health Sciences [26]. In Project FRONTIER, we have spent several years 

establishing and maintaining our community ties through local advisory boards, presentations, hiring 

of local workers into the research infrastructure, and partnering with community entities for 
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completion of parts of the research protocol (i.e., blood work and medical examinations); our CBPR 

process for maintaining this translational research platform has been described in detail elsewhere [27]. 

Briefly, we partner with the local hospitals and clinics (who conduct the medical examinations and 

clinical labs as well as provide office space) as well as the senior citizen’s organizations. Our 

community recruiters, community individuals, and research staff present information about the study at 

community events as well as through door-to-door solicitation. The distribution of participants 

recruited into the study (Cochran Cohort & Parmer Cohort) as compared to all eligible individuals by 

county (Cochran County & Parmer County) by race/ethnicity, age, education, and gender are provided 

below in Figure 1. As can be seen from these figures, the demographic composition of our cohort 

closely resembles that of the eligible population from which they are drawn. 

Figure 1. Demographic comparison of enrolled participants (Cochran Cohort & Parmer 

Cohort) versus all eligible individuals in each county (Cochran County & Parmer County) 

for race/ethnicity, age, education, and gender. 

 

 

2.2. Procedures 

The protocol includes a standardized medical examination, clinical labs and neuropsychological 

testing, as well as an interview with the participant and a brief interview with an informant. Inclusion 

criteria are (1) age 40 and above and (2) residing in one of the counties participating in Project 

FRONTIER. The two counties currently part of project FRONTIER are Cochran County and Parmer 

County, both located west of Lubbock, Texas, on the Texas—New Mexico border. The U.S. Census 

conducted in 2008 indicated that the Cochran County comprised 3,501 residents with 1,609 individuals 

age 40 and over (779 men and 830 women), compared to 9,639 residents for Parmer County including 

3,937 individuals age 40 and over (1,906 men and 2,031 women). Additionally, twenty-two percent of 
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Cochran County inhabitants were reported to live below the poverty level, relative to 14% reported in 

Parmer County. The principal economic land use in Cochran and Parmer County is large-scale 

irrigated farming (cotton and wheat), ranching, and oil and natural gas production. Participant 

recruitment is conducted by community recruiters through different means including brochures/flyers, 

presentations and events, as well as, in-person and/or door-to-door solicitation. All participants signed 

written informed consent and Project FRONTIER is conducted under an IRB approved protocol.  

The neuropsychological test battery was comprised of instruments covering a range of cognitive 

domains. The Mini-Mental State Examination (MMSE) [28] is the most commonly administered 

psychometric screening assessment of global cognitive functioning. Since its development, there has 

been a wealth of literature published on the MMSE demonstrating it to be a relatively sensitive marker 

of dementia [29]. The Exit Interview (EXIT25) [30] is a well-validated global measure of executive 

control that covers a range of tasks including sequencing, fluency, anomalous sentence repetition, 

thematic perception, automatic behaviors, go-no-go and automatic behavior, among others. EXIT25 

scores are significantly correlated with other validated measures of executive functioning [30]. Scores 

range from zero to 50 with higher scores suggestive of greater impairment; a score of 15 or greater best 

discriminates non-demented elderly controls from those with dementing illnesses. The Repeatable 

Battery for the Assessment of Neuropsychological Status (RBANS) [31] is a brief neuropsychological 

instrument that assesses multiple cognitive domains [32]. It contains 12 subtests that combine to create 

five indices: Attention, Language, Visuospatial/Constructional abilities, as well as Immediate and 

Delayed recall. The RBANS has accumulated a large amount of normative data [33] and has well 

established psychometric properties [34]. The Trails Making Test (TMTA and TMTB), is a 

neuropsychological instrument that measures attention, processing speed and mental flexibility, and is 

considered to be a sensitive marker of cognitive dysfunction and decline [35]. The Controlled Oral 

Word Association Test (COWAT) [35] assesses both phonemic (FAS) and categorical (Animal 

Naming) verbal fluency, both of which are standard neuropsychological assessment techniques with 

high sensitivity to cognitive dysfunction and dementia [35]. 

Determination of GIS-Arsenic. Geographic information system (GIS) is a way of displaying and 

analyzing geographically referenced information. GIS-based methods are commonly used to estimate 

environmental exposures [3,36-39]. We used the Environmental Systems Research Institute [40] 

ArcGIS (release 9.2) program to plot a point for each of the 16,335 arsenic ground water 

measurements that are readily available from the Texas Water Development Board (TWDB) [41]. 

Through inverse distance weighted (IDW) interpolation, the ArcGIS software builds a three 

dimensional surface map from a list of points. Each point’s influence is weighted based off its distance 

to that section of the map, which was generated using 12 well measurements from the TWDB within 

the immediate geographic vicinity. Each of the study participant’s current residential address was 

geocoded with the ArcGIS StreetMap data. Finally, GIS-arsenic concentration was calculated by 

extracting the estimated arsenic value from the IDW surface at each resident’s location. The maps of 

arsenic concentration in Texas (left) and Texas Panhandle (right) are presented below (Figure 2). 

Arsenic groundwater levels are found to increase from Parmer County (15-year mean As level of  

3.0 μg/L) south to Cochran County (15-year mean As value of 7.4 μg/L with a maximum of 15.6 μg/L 

at the ―hot spot‖). Additionally, the length of residential history of residents from our pilot study 

suggests that large portions of the community are long-term residents averaging over 30 years living in 
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their respective communities. Combined, these data demonstrate that the two counties selected for this 

study provide an optimal naturalistic setting to investigate long-term low-level arsenic exposure  

from groundwater. 

Figure 2. Ground water arsenic measurements form the Texas Water Development Board (TWDB). 

 

Calculation of long-term low-level arsenic exposure. In order to estimate long-term low-level 

arsenic exposure, we used readily available TWDB historical data and data from Project FRONTIER 

regarding current residential address as well as years living at that residence. We examined 15-years of 

TWDB water arsenic levels from wells within the communities of Project FRONTIER. We estimated 

long-term low-level exposure by multiplying current estimated arsenic levels by the number of years 

residing in current home. Similar methods for estimating long-term exposure have been utilized 

previously [42,43]. As part of a different research study, we pilot tested the comparability between 

observed and estimated (current) groundwater arsenic levels. We collected data from 7 rural wells and 

examined their actual values by an atomic fluorescence method [42,43] and compared these data with 

their respective GIS-estimated arsenic concentrations. GIS-estimated versus measured values are listed 

in Table 1. GIS-estimated arsenic concentrations were quite close to measured values except wells 

number 6 and 7, of which GIS-arsenic values are 4.6 and 4.2 μg/L higher than the measured values. 

However, the ranks of the two series of value are nearly identical (with the exception that rank 6 and 7 

based GIS approach for well #6 and #7 are a tie by measured values). 

Linear regression models were created with SPSS version 18 using raw neuropsychological test 

scores as outcome variables and either current or long-term arsenic exposure estimates as predictor 

variables. Covariates considered in the models included age, gender, education, ethnicity, language of 

administration, and APOE4 status (present/absent). Given that selenium is known to impact arsenic 

toxicity, current groundwater selenium estimates were also calculated via GIS methods and were 

entered into the models as a covariate. We utilized receiver operating characteristic (ROC) curves to 

estimate the accuracy of arsenic levels in classifying cognitive status (impairment versus no 
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impairment) by reviewing the area under the ROC curve (AUC). Statistical significance was set at  

p < 0.05. 

Table 1. Comparison of GIS-estimated vs. measured arsenic concentration in seven wells (μg/L). 

Well # GIS-Estimated Measured 

1 12.9 14.2 

2 12.0 14.4 

3 11.6 13.3 

4 10.5 10.7 

5 7.0 5.8 

6 6.2 1.6 

7 5.8 1.6 

3. Results and Discussions 

The mean age and education of the 434 participants was 62.12 (sd = 12.81; range = 40–96) and  

10.84 (sd = 4.46; range = 0–20), respectively. Seventy-nine percent (n = 344) of the sample was tested in 

English, with the remainder completing the assessment in Spanish. Ninety-seven percent of the sample 

self-reported their racial status as White and 42% (n = 180) reported their ethnicity as Hispanic, with the 

majority (n = 171) being of Mexican American origin. Of those participants genotyped (n = 440),  

329 (75%) were APOE4 negative and 111 (25%) were APOE4 positive. Demographic characteristics of 

the sample are presented in Table 2. Estimated mean current arsenic level was 6.33 μg/L (sd = 3.03, 

range = 2.19–15.26). The 15-year mean arsenic concentrations in Parmer and Cochran County, TX were 

3.06 μg/L and 7.39 μg/L, respectively. In both counties, there was less than 2 μg/L variability over any 

given time period with results remaining very stable over this time period. There were 301 participants 

with all requisite data for calculation of long-term arsenic exposure at current household; mean long-term 

exposure was 240.15 μg/L-years (sd = 182.96; range = 2.87–972.83). On average, participants resided in 

their current residence for 34.12 years (sd = 20.01years, range = 1–80 years).  

Table 2. Demographic characteristics. 

 Mean (sd) Range 

Age 62.12(12.8) 40–96 

Education 10.84 (4.46) 0–20 

MMSE 27.54 (2.80) 12–30 

Arsenic (μg/L) 6.33 (3.03) 2.19–15.26 

Long-Term Arsenic (μg/L-years) 240.15 (182.96) 2.87–972.83 

FAS Total 27.93 (12.62) 0–71 

Animal Naming 16.35 (5.01) 0–32 

TMTA (seconds) 56.73 (34.00) 18–420 

TMTB (seconds) 127.32 (77.67) 33–532 

RBANS Immediate Memory 41.11 (9.39) 5–61 
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Table 2. Cont. 

 Mean (sd) Range 

RBANS Visuospatial 28.80 (6.26) 0–40 

RBANS Language 27.36 (5.46) 8–42 

RBANS Attention 45.51 (16.72) 9–100 

RBANS Delayed Memory 35.76 (9.25) 10–60 

EXIT-Total 7.31 (4.77) 0–23 

Note: RBANS scores are reflective of raw index scores. 

Current estimated groundwater arsenic exposure level was significantly associated with poorer 

scores in language (RBANS Language scores, B(SE) = −0.458 (0.171), p = 0.008), visuospatial skills 

(CLOX2, B(SE) = −0.118 (0.060), p = 0.048), and executive functioning (CLOX 1 B(SE) = −0.225 

(0.080), p = 0.005) (see Table 3). Current arsenic exposure significantly classified cognitive 

dysfunction (AUC = 0.58, 95% CI = 0.51–0.65, p = 0.03). 

Table 3. Arsenic levels impact on neuropsychological functioning. 

 Long-Term Arsenic Current Arsenic 

 B (SE) p-value B (SE) p-value 

MMSE −0.003 (0.001) 0.004 −0.116 (0.088) 0.191 

CLOX 1 −0.001 (0.001) 0.290 −0.225 (0.080) 0.005 

CLOX 2 −0.001 (0.001) 0.038 −0.118 (0.060) 0.048 

FAS −0.012 (0.004) 0.002 −0.724 (0.377) 0.056 

Animal Naming −0.002 (0.002) 0.250 −0.138 (0.181) 0.446 

TMTA 0.034 (0.014) 0.016 0.986 (1.17) 0.400 

TMTB 0.037 (0.029) 0.209 4.23 (2.44) 0.084 

RBANS Immediate Memory −0.010 (0.003) 0.003 0.187 (0.311) 0.547 

RBANS Visuospatial −0.001 (0.002) 0.543 −0.342 (0.211) 0.106 

RBANS Language −0.005 (0.002) 0.017 −0.458 (0.171) 0.008 

RBANS Attention −0.007 (0.005) 0.118 −0.466 (0.423) 0.271 

RBANS Delayed Memory 0.001 (0.003) 0.651 0.537 (0.303) 0.077 

EXIT Total 0.006 (0.002) 0.000 0.475 (0.139) 0.077 

Note: Covariates included age, gender, education, language of administration (English or Spanish), 

selenium level and APOE4 presence (yes/no); B = unstandardized regression coefficient;  

SE = standard error. 

Long-term low-level exposure to arsenic was significantly associated with poorer scores in global 

cognition (MMSE B(SE) = −0.003 (0.001), p = 0.004), visuospatial skills (CLOX 2 B(SE) = −0.001 

(0.001), p = 0.038), language (FAS B(SE) = −0.012 (0.004), p = 0.002; RBANS Language  

B(SE) = −0.005 (0.002), p = 0.017), processing speed (TMTA B(SE) = 0.034 (0.014), p = 0.016), 

executive functioning (EXIT B(SE) = 0.006 (0.002), p < 0.001), and immediate memory (RBANS 

Immediate Memory B(SE) = −0.010 (0.003), p = 0.003). Long-term low-level arsenic exposure 

significantly classified cognitive impairment (AUC = 0 .62, 95% CI = 0.55–0.69, p = 0.001).  

With the rapidly growing number of elders world-wide, there is a great need for research examining 

factors that impact cognition among adults and elders. Prior work has consistently demonstrated the 
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adverse health consequences of high levels of arsenic exposure. As a result, the U.S. acceptable 

standard of arsenic concentration was reduced in 2001 from 50 μg/L to 10 μg/L. However, as pointed 

out by the National Research Council, there remains a need for research examining the non-cancer 

health effects of low-level arsenic exposure [7,8] using longitudinal methodologies. Our current 

findings suggest that long-term low-level arsenic exposure is detrimental for the cognitive status of 

adults and elders. Our findings are consistent with prior work linking environmental exposure to 

arsenic to poorer neuropsychological functioning. Bolla-Wilson and Bleeker [44] evaluated the 

neurocognitive functioning of a 50-year-old adult following acute exposure to arsenic and documented 

deficits in learning and memory, which improved over time with no subsequent exposures. Similarly, 

Wright and colleagues [45] examined the neuropsychological profile of 31 school-aged children 

residing in Ottawa County, Oklahoma, which contains the Tar Creek Superfund site, and found higher 

hair arsenic levels to be significantly associated with poorer scores on tests of intelligence and memory. 

Tsai and colleagues [46] evaluated 49 junior school students and found that higher chronic 

groundwater arsenic exposure was significantly related to poorer memory and executive functioning 

(i.e., switching attention). In a sample of 602 school children age 6–8 years, Rosado and colleagues [47] 

found that higher urinary arsenic levels were significantly associated with poorer visuospatial skills, 

intelligence, attention and executive functioning. In our study, higher levels of current groundwater 

arsenic exposure (though still low-level exposure) was related to poorer visuospatial skills, language, 

and executive functioning. Increased levels of long-term low-level exposure were related to 

significantly poorer performance in the domains of global cognition, language, executive functioning, 

as well as memory. The current study is, however, different from all of the previously conducted work 

in several ways. First, the mean and median values of groundwater exposures in the communities 

evaluated in this study are below the current U.S. acceptable standard and are therefore reflective of 

low-level exposure. Second, we examined the impact of exposure on neuropsychological functioning 

in a community-based sample of rural-dwelling adults and elders rather than school children. Lastly, 

ours is the first to study the impact of estimated long-term low-level arsenic exposure on detailed 

neuropsychological functioning. Our results are consistent with and extend prior work to adults and 

elders exposed at lower levels of groundwater arsenic [3].  

The consistent finding of arsenic being related to the domains of executive functioning and memory 

is of critical importance as these are cognitive domains that may change as part of the normal aging 

process and may even be the earliest manifestations of Alzheimer’s disease [48,49]. This is particularly 

important for the long-term estimates, which as can be seen from Table 3, are more strongly related 

with cognitive status. Therefore, it is possible that the impact of low-level arsenic exposure on 

neuropsychological functioning happens over time, which fits with the developmental course of 

Alzheimer’s disease. Alzheimer’s disease is a disease of insidious onset with slow progression that 

begins decades before clinical manifestation. While it has been suggested that research should focus on 

preventative strategies for Alzheimer’s disease [50], the recent NIH consensus panel suggested that 

there are no preventative strategies currently available for Alzheimer’s disease, albeit dietary factors 

were suggested as having promise. The notion of groundwater exposure to arsenic as a risk factor for 

late-life Alzheimer’s disease offers potential for the first ever population-wide preventative effort 

aimed at preventing and/or delaying onset of this disease, which could be accomplished by revision of 

the Safe Drinking Water Act (SDWA).  
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There are limitations to the current study. One limitation is the cross-sectional nature of the data, 

which does not allow for inference of causality. Longitudinal assessment of this topic will be 

conducted through Project FRONTIER as follow-up waves are completed. The key limitation to the 

current study is the lack of either a biomarker of arsenic exposure (i.e., blood, hair, or nail levels) or 

direct measurement of the actual water arsenic levels at participant homes. However, the existence of 

the TWDB data provides an exceptional opportunity to model chronic arsenic exposure and the state 

can serve as a naturalistic setting for future studies. This is due to the fact that there are several ―hot 

beds‖ of high arsenic levels across the state, even though the majority of the state is well below the 

current EPA standard. It is shown that GIS-estimated arsenic concentrations are very close to the 

measured values, particularly in terms of rank. Future Project FRONTIER studies will examine serum 

arsenic levels along with current household water levels. We cannot at this point conclude that long-

term low-level arsenic consumption through water is causally related to poorer cognition from the 

current data. However, we can assert that those individuals who have resided for long periods of time 

in regions that have historically low levels of arsenic in groundwater supplies are at increased risk for 

cognitive dysfunction. This finding is certainly novel and warrants further investigation. 

4. Conclusions 

Our findings suggest an association between low-level arsenic exposure and neuropsychological 

functioning, as originally hypothesized. Of particular interest is the association between long-term 

low-level arsenic exposure and neuropsychological functioning across a broader range of domains than 

current exposure. Our findings offer the first direct evidence that low level arsenic exposure, 

extrapolated from current arsenic levels and self report of duration in residence is associated with 

poorer neuropsychological functioning among community-dwelling adults and elders in the U.S. 

Further research is needed to investigate this topic and, if cross-validated, this research will provide 

ample justification for a re-evaluation of current policy related to acceptable groundwater  

arsenic levels.  
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