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Abstract: Tobacco smoking during pregnancy remains common, especially in indigenous 

communities, and likely contributes to respiratory illness in exposed offspring. It is now 

well established that components of tobacco smoke, notably nicotine, can affect multiple 

organs in the fetus and newborn, potentially with life-long consequences. Recent studies 

have shown that nicotine can permanently affect the developing lung such that its final 

structure and function are adversely affected; these changes can increase the risk of 

respiratory illness and accelerate the decline in lung function with age. In this review we 

discuss the impact of maternal smoking on the lungs and consider the evidence that 

smoking can have life-long, programming consequences for exposed offspring. Exposure 

to maternal tobacco smoking and nicotine intake during pregnancy and lactation changes 

the genetic program that controls the development and aging of the lungs of the offspring. 

Changes in the conducting airways and alveoli reduce lung function in exposed offspring, 

rendering the lungs more susceptible to obstructive lung disease and accelerating lung 

aging. Although it is generally accepted that prevention of maternal smoking during 

pregnancy and lactation is essential, current knowledge of the effects of nicotine on lung 

development does not support the use of nicotine replacement therapy in this group. 
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1. Introduction 

Recent epidemiological studies have shown that lung function and susceptibility to respiratory 

diseases throughout life can be programmed by environmental factors operating during fetal and early 

postnatal life. One of the most common factors that can result in reduced lung function and respiratory 

health is exposure to maternal tobacco smoking, both before and after birth. Other factors include poor 

nutrition (both maternal and neonatal), maternal alcohol consumption, intra-uterine infections, early 

postnatal infections and exposure to allergens. For all of these, the timing of exposure in relation to 

lung development, as well as the level of exposure, will determine the severity of the effects on later 

lung function and respiratory illness. In this review we will focus on the immediate and long-term  

(or programming) effects of maternal tobacco smoking on lung development and respiratory function. 

As nicotine is a major component of tobacco smoke and has been identified as a risk factor for diseases 

in infants and children [1,2] we will emphasize the programming effects of early exposure to nicotine. 

In addition to effects on the lungs, nicotine exposure via the mother may affect the development of 

multiple organs; for example it has been shown to have long-lasting effects on body adiposity and 

endocrine function of offspring [3]. 

Although smoking during pregnancy is the leading cause of fetal morbidity and mortality and 

obstetric disease, many pregnant women continue to smoke. In North America 20–25% of pregnant 

women smoke tobacco and in Spain this figure varies between 30% and 36% [4]. Although nearly 41% 

of smokers try to quit the habit each year, relapse is common, and only about 10% achieve and 

maintain abstinence. The unpleasant effects of nicotine withdrawal account in part for the low success 

rate. Approved pharmacotherapies to treat nicotine dependence, such as nicotine replacement therapy 

(NRT) and Buproprion [5], have moderate efficacy. Thus additional and more effective therapies are 

required [6]. Varenicline appears to be one such therapy [7], provided that the benefits outweigh the 

risks to the mother and offspring. 

2. Effects of Maternal Tobacco Smoking on Lung Function and Respiratory Health of Offspring 

Prenatal and early postnatal exposure to tobacco smoke has a wide range of adverse health effects, 

including an increased risk of low birthweight and perinatal complications, the Sudden Infant Death 

Syndrome (SIDS), obstructive lung disease, altered neurodevelopment and childhood infections and 

cancers [8]. Arguably the most common of these is the adverse effect on lung function and respiratory 

health of perinatally exposed infants and children, and even adults. Clinical and epidemiological data 

from people whose mothers smoked tobacco have collectively provided strong evidence that exposure 

to the components of tobacco smoke during gestation and/or infancy can alter lung development such 

that later lung function and respiratory health are impaired. In infants prenatally exposed to maternal 

smoking, tidal and forced expiratory flow rates are reduced, suggesting that small airway development 

has been affected [9,10]. This is supported by studies in guinea pigs which showed that maternal 
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smoke exposure during pregnancy affected structural and functional development of the small 

conducting airways of the offspring soon after birth [11]. It is likely that changes in airway structure 

and function that are present in infancy persist until childhood and potentially into adulthood. 

Numerous studies over the last 20 years have shown that children who are exposed to tobacco smoke 

during gestation are at increased risk of having airway hyperresponsiveness and asthma [12]. Prenatal 

smoke exposure in particular has been associated with reduced lung function in children, implicating 

restricted airflow in small conducting airways [13]. The effects of early smoke exposure on airway 

hyperresponsiveness appear to continue until at least early adulthood, suggesting that effects of smoke 

exposure on the small airways are permanent [14]. A potential mechanism for reduced lung function is 

a reduction in the number of alveolar-bronchiolar attachment points, due to reduced alveolarization.  

It is possible that maternal smoking could affect lung development by increasing oxidative stress in the 

lungs. However, the hypothesis that polymorphisms in maternal anti-oxidant genes could play a role in 

the adverse influence of maternal smoking on lung function in children was not supported by a recent 

study [15]. 

There is some evidence that lung function in adults could be affected by perinatal smoke exposure, 

independent of personal lifestyle [8,16]. Maternal smoking may also increase the risk of low FEV1 and 

COPD in adults [17], but it is presently unclear whether such effects are due to prenatal smoking or 

exposure to environmental tobacco smoke during infancy and childhood. 

3. Nicotine Uptake 

Nicotine is arguably the major physiologically active component of tobacco smoke and is rapidly 

absorbed from the respiratory tract of smokers. Although it has often been assumed that pulmonary 

absorption of nicotine from inhaled cigarette smoke is more rapid than by other routes (e.g., oral and 

transcutaneous), the lung appears to serve as a reservoir for nicotine, which slows its entry into the 

arterial circulation [18]. This implies that rather than all of the nicotine inhaled in each puff being 

absorbed in a few seconds, it may require 30–60 seconds or longer for the nicotine to be absorbed. 

Once in the maternal circulation, nicotine readily crosses the placenta and enters the fetal  

circulation [19]; it can enter the amniotic fluid and from there it can be absorbed via the skin of  

the fetus [20]. Nicotine enters breast milk, and can reach concentrations that are approximately  

2–3 times that in maternal plasma. This is primarily due to the partitioning of nicotine into the  

high-lipid-containing [21], more acidic milk [22,23]. 

The typical American smoker who consumes 17 cigarettes per day absorbs systemically about  

0.3 mg nicotine/kg body weight per day [24]. Blood or plasma nicotine concentrations sampled in the 

afternoon in cigarette smokers generally range from 10 to 50 ng/mL [25]. The tissues with the highest 

affinity for nicotine are the liver, kidney, spleen and lungs; the lowest affinity for nicotine is in adipose 

tissue. It also binds with high affinity to brain tissue [25,26]. 

When a pregnant woman smokes tobacco, nicotine enters the fetal circulation via the placenta. 

Although nicotine readily crosses the placenta there is no evidence that it is metabolized by the 

placenta. It is therefore likely that the blood concentrations of nicotine reached in the fetus are similar 

to those in the mother; however, there is no direct evidence supporting the notion. Peak nicotine levels 

in the pregnant mother’s blood occur 15–30 minutes after it is administered [27]. Most of the nicotine 
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that enters the fetus returns to the maternal circulation for elimination, although some enters the 

amniotic fluid via the fetal urine. Consequently nicotine and cotinine accumulate in the amniotic fluid 

of the pregnant smoker because the nicotine eliminated by the fetus is added to the nicotine coming 

from the blood vessels of the amniochorionic membrane [23]. The fetus is therefore likely to be 

exposed to nicotine even after concentrations in maternal blood have decreased. 

4. Metabolism of Nicotine during Pregnancy 

The clearance of nicotine and cotinine, the major product of nicotine metabolism, is increased in 

pregnant women [28]. This can be ascribed to an increase in liver blood flow and an increased 

enzymatic breakdown of nicotine and cotinine in the mother. Since the enzymatic protection 

mechanisms of the fetus are not well developed [29-31], the metabolism of nicotine in the fetal liver is 

slow and a longer half-life of nicotine in the fetus can be expected. This is confirmed by the higher 

concentrations of nicotine in fetal tissue compared to maternal blood levels [32]. Consequently the 

cells of the developing lung and other organs are exposed to higher concentrations of nicotine for 

longer periods of time and thus to the adverse effects of nicotine on cell integrity. This is important as 

nicotine is genotoxic [33] and induces the release of oxidants [34]. Since rapidly dividing cells are 

more vulnerable to the effects of foreign substances such as nicotine [35], it is conceivable that 

nicotine exposure during gestation and early postnatal life via maternal milk may interfere with growth 

and development. This can be achieved in two ways: by having a direct effect on cells and/or by 

reducing the nutrient supply to the fetus during gestation and lactation. It has been shown that  

long-term nicotine exposure results in a predisposition for genetic instability [21,36,37]. This may 

result in changes in the genetic “program” that controls lung development, maintenance of lung 

structure and aging of lung tissue, which may render the lungs more prone to disease. 

5. Nicotine and Oxidant/Antioxidant Status 

It has been shown that maternal smoking is associated with increased levels of oxidative stress 

markers in the mother and offspring [38,39]. There is also convincing in vivo and in vitro evidence 

suggesting that exposure to nicotine results in oxidative stress in fetal, neonatal and adult  

tissues [39,40]. Reactive oxygen species (ROS) target mitochondria, and mitochondrial DNA has been 

shown to be more sensitive to the deleterious effects of ROS than nuclear DNA [41]. In addition, the 

electron transport chain enzyme complexes in the inner membrane of the mitochondria are extremely 

sensitive to ROS inactivation [42]. 

In addition to inducing overproduction of oxidants, nicotine exposure results in a decrease in the 

activity of SOD and catalase. It also results in a decrease in the levels of low molecular weight 

antioxidants such as vitamins C and E [43]. Along with the decrease in the antioxidant capacity of the 

body, concentrations of malondialdehyde (MDA) are increased, indicating oxidant damage to the  

cells [1,2]. The increase in ROS levels, together with a decrease in the activities of enzymes with 

antioxidant function, results in an imbalance in the oxidant/antioxidant capacity. This imbalance is 

maintained long after nicotine withdrawal [2] and becomes worse with age [34]. 

It is conceivable that the increased levels of nicotine-induced ROS in the fetus and suckling neonate 

as a consequence of maternal smoking or NRT will result in not only mitochondrial DNA damage but 
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also damage of nuclear DNA. It is therefore likely that nicotine and ROS will result in a change in the 

capacity of the mitochondria to deliver energy and to participate in homeostatic mechanisms and in 

changing the “program” that controls growth, tissue maintenance, aging and cellular metabolism. 

6. Effects of Maternal Nicotine on Nutritional, Hormonal and Biochemical Profiles in  

the Offspring 

A number of studies indicate that some women who quit smoking during gestation relapse again 

during lactation. Lactation is a sensitive period during which cognitive and neurologic developments 

occur in suckling offspring. In a recent study it was shown that maternal nicotine intake, only during 

the period of lactation, leads to long-term effects on body weight (BW) regulation, leptin concentration, 

and thyroid function in adult rat offspring [44]. In rat experiments it has been shown that, when 

neonates were exposed to nicotine in milk during suckling, their circulating catecholamine 

concentrations were higher than those of controls. After weaning, catecholamine levels decreased to 

normal but it is possible that the transient early adrenal medullary dysfunction caused by nicotine 

exposure may have a later impact on cardiovascular control in adult progeny [3]. 

7. Nicotine-Induced Body Malformations 

It is believed that the early period of organogenesis is the most vulnerable stage of embryogenesis 

to environmental insults [32]. Changing the in utero environment during early organogenesis may 

impair the process and in this way alter the structure and function of organs in the long term. Tobacco 

smoke introduces more than 4,000 chemicals into the circulation. Many of these chemicals, including 

nicotine, cross the placental barrier and enter the blood of the developing embryo and fetus. They can 

also enter the amniotic fluid and in this way alter the environment within which the embryo and fetus 

grows and develops. Nicotine is a major teratogenic component of tobacco smoke which can perturb 

embryogenesis. Studies in rats have shown that nicotine can induce embryonic abnormalities,  

such as neural tube malformations, before and during the early stages of organogenesis, in a  

concentration-dependent manner [45]. The nicotine-induced embryonic malformations were associated 

with increases in programmed cell death in embryos. Nicotine can also cause cell death by increasing 

intracellular calcium levels and oxidative stress in the embryo [45]. Severe embryonic malformation 

may result in embryonic demise and is associated with higher spontaneous abortion and miscarriage in 

humans [46]. These malformations are thought to be caused by the nicotine-induced overproduction of 

ROS [45]. 

Animal studies show that a variety of antioxidants are effective in decreasing the damaging effects 

of heightened oxidative stress induced by teratogens. Effective antioxidants which might also be of 

clinical value include vitamins C and E, carotenoids, folic acid, as well as synthetic products. 

Appropriate clinical studies with antioxidants in pregnancies at high risk of developing oxidative stress 

are needed, since non-toxic antioxidants might prove an efficient and inexpensive way to reduce the 

rate of some serious and potentially fatal congenital anomalies [47]. 
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8. Effect of Nicotine on the Development of the Lung 

There is growing evidence that nicotine which is transported across the placenta may be the key 

constituent of cigarette smoke that alters lung development in offspring, thereby leading to impaired 

lung function and an increased risk of respiratory illness. After entering the fetal circulation, nicotine 

interacts with nicotinic acetylcholine receptors (nAChRs) in the fetal lung. This causes changes in lung 

structure and function in the offspring. Consistent with this, it has been shown that α3, α5, and α7 

nicotinic acetylcholine receptors (nAChR) are expressed in non-neuronal cells in the lungs of fetal 

monkeys, and that maternal nicotine exposure up-regulates nAChR expression in fetal lung [48]. High 

affinity nAChRs are found in the membranes of normal lung cells and in lung cancer cells of all 

histological types [49-51]. These include α3, α5, α7, and β2 or β4 subunits [50], of which α7 may help 

to modulate cell shape and affect cell-to-cell contact. It has been demonstrated that nicotine promotes 

cell proliferation upon its interaction with nAChRs on the surface of rodent bronchial epithelium and 

may contribute to dysanaptic lung growth [52].  

Fetal exposure to nicotine has been shown to reduce the surface complexity of the lung  

parenchyma, increase collagen accumulation, up-regulate surfactant protein gene expression, and 

induce neuro-endocrine cell hyperplasia in fetal lungs; collectively these changes alter pulmonary 

function [53]. In addition it has been shown that non-neuronal cells in lung synthesize acetylcholine 

(ACh), and that a cholinergic autocrine loop exists in developing lung [54]. Thus, prenatal nicotine 

exposure likely affects lung development by modifying the actions of this autocrine cholinergic loop. 

Much remains, however, to be determined about the mechanism by which nicotinic signaling alters 

lung development. 

Nicotine also activates several cellular pro-survival signals [55,56]. An example is the increase in 

the activity of protein kinase C (PKC) in various human and murine lung cancer cell lines when 

exposed to nicotine. Nicotine also elicits the activity of Raf-1 [57]. The activation of these kinases has 

been shown to be responsible for the phosphorylation of Bcl-2 which antagonizes opioid-induced 

apoptotic signaling in lung cancer cells [49,58,59]. An increase in the phosphorylation of Akt has been 

detected in vivo in the lungs of nicotine-treated mice and in human lung cancer cells derived from 

smokers. The activation of this kinase is associated with tobacco-related carcinogenesis in the lung. 

The activation of these kinases in cultured cells that were transiently exposed to nicotine, suggests that 

nicotine directly or indirectly contributes to the process of lung carcinogenesis [49,55,59,60]. 

It has also been shown that long-term nicotine exposure results in a predisposition for the induction 

of genetic instability [36,37,61]. Gene amplification is a hallmark of gene instability. Gene instability 

requires two critical elements, namely an inappropriate cell cycle progression, and DNA damage. 

Long-term nicotine exposure, through the activation of Ras pathways and up regulation of cyclin D1, 

disrupts the G1 arrest. It also augments the production of ROS which may lead to DNA damage. This 

implies that exposure to nicotine via tobacco smoke or via NRT will make the lungs more prone to the 

development of cancer [36]. 
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9. Effects of Nicotine on Metabolic Activity in the Lung 

9.1. Energy Metabolism 

Glucose uptake and metabolism are essential for the proliferation and survival of cells, and may be 

enhanced in actively proliferating cell systems such as embryonic tissue. Glucose is considered to be 

an essential source of energy in lung tissue [62] and is necessary for the functional development of the 

lung [63-65]. Glucose is also the main source of α-glycerophosphate for pulmonary surfactant 

synthesis in the adult lung while in fetal lung, the loss of cellular glycogen from alveolar type II cells 

just before birth is associated with increased surfactant synthesis [66]. During the alveolar phase of 

lung development, which occurs from around week 36 of gestation in humans [67], lung tissue is more 

dependent on glycogen as an energy substrate than adult lung. This is illustrated by the fact that during 

fasting the phosphorylase activity of adult lung tissue decreases to conserve glycogen while it 

increases in fetal and neonatal lung, thereby increasing the utilization of the lung glycogen stores. This 

means that the control of glycogen metabolism during the alveolar phase of lung development is 

different from that of adults [68]. 

Although glucose and glycogen are the primary energy substrates of adult and developing lung, 

fatty acids are also important. For example, during fasting, when blood fatty acid levels are elevated, 

fatty acids replace glucose as the primary energy substrate. Under these circumstances glucose is 

conserved by the lung for α-glycerophosphate synthesis and eventual surfactant formation by the  

type II alveolar epithelial cells [69]. 

Nicotine exposure during gestation and the early postnatal period results in sustained suppression of 

glycogenolysis and glycolysis in lung tissue (Figure 1) [70,71]. The lower glycogenolytic activity is 

due to a lower phosphorylase activity in the lungs of nicotine exposed offspring [71]. The ratio of 

inactive to active phosphorylase of lung tissue of nicotine exposed offspring is the same as for animals 

that were not exposed to nicotine via the placenta and mother’s milk. However, the tissue levels of 

both phosphorylase fractions are lower than in the lungs of the control animals, which implies that the 

total phosphorylase content of the lungs of the nicotine exposed animals was lower than that of the 

control animals. This means that maternal nicotine exposure suppresses the synthesis of phosphorylase 

in the lungs of the offspring. It also implies that maternal nicotine exposure had no direct inhibitory 

effect on the activity of the phosphorylase in the lungs of the offspring. The lower rate of glycogen 

breakdown in the lungs of animals that were exposed to nicotine via the placenta and mother’s milk 

was due to a permanent lower glycogenolytic activity. The implication is that the developing fetal and 

neonatal lungs of these animals are more dependent on exogenous glucose for utilization via the 

hexose monophosphate shunt than on glucose derived from the lung’s glycogen stores [71]. 

The uptake of exogenous glucose is carried out by glucose transporters. Glucose transporter 

isoforms 1 (Glut 1) and 4 (Glut 4) are not present in adult lung, but are present in developing lung [72]. 

Over-expression of these Glut isoforms can enhance glucose uptake into fetal lungs to support active 

cell proliferation, which is a common characteristic of developing lung epithelium [73]. The decrease 

in the flux of glucose through the glycolytic pathway of lungs of nicotine exposed rat pups is, however, 

not due to compromised glucose transporters because the total glucose turnover of the lung tissue of 

rats that were exposed to nicotine via the placenta and mother’s milk is higher than in animals that 



Int. J. Environ. Res. Public Health 2011, 8         

 

 

882 

were not exposed to nicotine. The higher glucose flux is actually due to a faster utilization of glucose 

via the hexose monophosphate shunt [74]. After nicotine withdrawal the flux of glucose through the 

glycolytic pathway remained suppressed to the same degree than while exposed to nicotine (Figure 1). 

After nicotine withdrawal, the flux of glucose through the hexose monophosphate pathway returns to 

normal [70]. In addition to the reduced flux of glucose through the glycolytic pathway [70], AMP 

accumulates in the lungs of the nicotine exposed rat pups [75]. 

Figure 1. The influence of maternal nicotine exposure during gestation and lactation on: 

(A) glucose (Control vs. Experimental groups: P < 0.001), (B) glycogen utilization 

(Control vs. Experimental groups: P < 0.001) and (C) lactate production (Control vs. 

Experimental groups: P < 0.01) by lung tissue of the offspring.  

 

Hatched bars show data from Control offspring (postnatal days 21 and 42 data combined); Grey 

bars show data from Nicotine exposed offspring killed at postnatal day 21; Black bars show data 

from a Withdrawal group at postnatal day 42. In the Withdrawal group, nicotine was not available 

from weaning on postnatal age 21 until the animals were killed at day 42; a period of 21 days of 

nicotine withdrawal was allowed to establish the longer term effect of nicotine exposure on 

carbohydrate metabolism by lung tissue of the offspring. Age-matched Control tissue was used in 

each case [68,71]. Data are presented as mean ± SEM. 

Both the persistent reduction in glycolytic activity and high levels of AMP are associated with 

premature onset of cell senescence [76,77]. This is supported by studies showing that enhancement of 

glycolysis prevents cellular senescence [78]. It is, therefore, conceivable that nicotine exposure during 

gestation and suckling induces premature aging of the lungs by irreversible suppression of glycolysis 

and the persistent high levels of AMP in the lungs of the offspring (Figure 2). 
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Figure 2. Diagram to illustrate the factors that induce premature aging of the lung 

parenchyma of rats exposed to nicotine via tobacco smoke or nicotine replacement therapy 

(NRT) via the placenta and mother’s milk. Premature aging of the lung is associated with 

an increased propensity for emphysema. 

 

9.2. Xenobiotic Metabolism 

The respiratory system is one of the major targets for exposure to exogenous substances [79]. A 

major source of exogenous chemicals to which the respiratory system is exposed is inhaled tobacco 

smoke [80]. In addition to exposure to air-borne substances the respiratory system is also exposed to 

chemicals via the systemic circulation [81]. This is particularly true during gestation when the 

developing lungs are exposed to chemicals transferred to the fetus from the maternal circulation, and 

during lactation when compounds are conveyed to the newborn via the mother’s milk [82]. As nicotine 

freely crosses the placenta [83] and occurs in significant quantities in the milk of smoking  

mothers [82], it can interact with the developing fetus and neonate of mothers who either actively 

smoke tobacco or use NRT. 

It is widely accepted that the cytochrome P450 (CYP) superfamily of enzymes is the principal 

means by which the lung metabolizes exogenous substances [79]. Upon entering the lung many of the 

chemicals are not hazardous as such, but are frequently biotransformed by CYP enzymes into reactive 

intermediates. A critical factor contributing to the etiology or modification of respiratory disease is 

whether the lung tissue has the ability to activate or efficiently inactivate chemicals [83]. Recent 

studies have indeed shown that maternal nicotine exposure during gestation and lactation results in a 

permanently elevated expression of CYP2A3 and CYP 2B1 [84]. It has been shown that CYP2A6 

plays an important role in the formation of cancer-inducing agents such as 4-(methylnitrosoamino)- 

(3-pyridyl)-1-butanone (NNK). It is also known that the rat orthologue of CYP2A3 induces the 

synthesis of NNK [85]. The permanent increase in expression of these CYPs may thus increase the 

susceptibility of the lungs of nicotine exposed offspring to cancer.  

The Mn-Zn SOD activity of the developing lungs is also reduced by nicotine exposure which 

further reduces the ability of the lungs to be protected against the point mutations in DNA induced by 

oxidants; this will increase the susceptibility of exposed lungs to changes in the “program” that 

controls lung development, maintenance and aging.  
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10. Effects of Nicotine on Structural Development of the Lungs 

Fibroblasts play a critical role in the transition from the saccular to the alveolar stage of lung 

development, during which there is a four-fold increase in the number of interstitial fibroblasts in the 

neonatal rat lung [86]. Perturbations such as hyperoxia, barotrauma and steroid therapy have been 

shown to interfere with alveolar development in the rat [87], baboon [88] and human [89], the net 

result of which is a significant, often permanent, decrease in the number of alveoli. 

Although the control of alveolar formation is poorly understood, a substantial body of evidence 

exists regarding events that coincide with alveolar septation, many of which may influence fibroblast 

proliferation. Elastic fibers are thought to be involved in septation by providing structural support for 

newly emerging secondary septa. Inhibition of elastic fiber assembly has been linked to impaired 

septation and alveolarization [90]. In neonatal rat lung fibroblasts, elastin expression peaks during the 

second postnatal week, that is during the phase of rapid alveolarization, and declines rapidly  

thereafter [91]. This means that interference with lung fibroblast integrity may result in impaired 

formation of alveoli, which may lead to a permanent reduction in the number of alveoli. 

Exposure to cigarette smoke inhibits fibroblast proliferation and migration by increasing cell cycle 

transit time, thereby reducing the rate of alveolarization [92]. Consequently the surface area available 

for gas exchange is reduced; another effect of reduced alveolarization is a reduction in the number of 

alveolar-bronchiolar attachments, which can lead to airway narrowing [93]. Cigarette smoke exposure 

also compromises fibroblast-induced repair responses, and may be one of the factors that contributes to 

the development of smoke-induced lung diseases [94]. Accumulation of nicotine in fibroblasts will 

affect glycolysis and plausibly fibroblast function too. However, in vitro studies have shown that 

nicotine has no effect on fibroblasts from human fetal lungs [94]. In vivo studies also show that 

nicotine only has a transient effect on metabolism in lungs of adult animals, as opposed to a permanent 

suppression of energy metabolism of animals that were exposed to nicotine during lung  

development [75]. The in vitro studies on fibroblasts were performed on cells that were not 

metabolically permanently compromised as opposed to the fibroblasts of lung cells of neonatal rats 

that had been exposed to nicotine during gestation and lactation. Therefore, since nicotine exposure 

during gestation and lactation interferes with glucose metabolism and apoptosis in the fetal and 

neonatal lung, and since it may cause disruption of the interaction between lung fibroblast glucose 

metabolism and fibroblast function, it is plausible that it will also adversely affect the long-term 

maintenance of lung structure. It is interesting to note that lung fibroblasts from patients with 

emphysema show a reduced proliferation rate [95] and premature aging [96] and that this condition is 

characterized by slow degeneration of the lung parenchyma [97]. Therefore, the gradual deterioration 

of the connective tissue framework of the lungs of nicotine exposed rat pups (Figure 3) may be 

partially due to inadequate fibroblast proliferation and function. 

Many agents that induce lung injury may do so by modifying key metabolic events for various cell 

populations in the lung. Type I alveolar epithelial cells for example, which cover more than 90% of the 

alveolar surface [98], depend on glycolysis for energy [99]. Glycolysis also supplies the ATP required 

to maintain the membrane-linked Na + -K + ATPase [100]. The Na + -K + ATPase pump plays a vital 

role in maintaining cell volume. Therefore, reducing its activity by inhibition of glycolysis will result 

in the swelling of these cells and the formation of membrane “blebs” [101]. 
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Figure 3. Effect of maternal nicotine exposure during pregnancy and lactation in rats on 

the connective tissue framework (stained black) of the lung of adult offspring. Note that the 

connective tissue framework of the control lungs (A) is more extensive than that of the 

offspring that were exposed to nicotine via the mother (B) [102]. 

(A) (B) 

  

 

Inhibition of glycolysis would therefore be expected to interfere with the ability of the type I 

alveolar epithelial cells to adapt to changes in the environment and to maintain cell volume. Since 

pulmonary glycolysis is irreversibly suppressed in animals that were exposed to nicotine during lung 

development, the activity of the Na + -K + ATPase pump will also be permanently lower in type I 

epithelial cells, and this could result in membrane blebbing and rupture of the cell membranes  

(Figure 4). The type I epithelial cells are the most vulnerable to injury [102] and the permanently 

reduced glycolytic activity will therefore make them even more susceptible to damage, especially 

when exposed to toxic substances in blood and inhaled air. 

Alveolar type II cell proliferation has been found to be increased in the lungs of nicotine exposed 

animals, which is a likely response to type I cell injury and death [103]. Type II alveolar epithelial 

cells are critical for the maintenance of alveolar homeostasis by secreting surfactant and by 

proliferating and differentiating to replace damaged type I cells [104]; in effect these cells act in 

defense of the alveolus. It has also been shown that maternal nicotine exposure during gestation  

and lactation induces rapid type II alveolar epithelial cell proliferation in response to type I cell  

damage [105-107]. Since rapid cell proliferation is associated with rapid shortening of the  

telomeres [108], it is conceivable that premature aging of the type II cells will occur in the lungs of the 

nicotine exposed rats. This may result in an increased vulnerability of the alveolus, which is supported 

by the observation that loss of type II cells has a detrimental effect on the alveolus [106].  
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Figure 4. Scanning electron micrographs of the alveolar surface in postnatal rats showing 

(A) control lung, (B) blebbing of the alveolar type I cell membrane in a nicotine exposed 

animal and (C) rupture of the alveolar surface to reveal the underlying capillary filled with 

red blood cells in a nicotine exposed animal. The nicotine exposed rats received nicotine 

during gestation and lactation. All animals were sacrificed on postnatal day 21 and lung 

tissue processed for scanning electron microscopy [102]. 

(A) (B) (C) 

   

It appears that the negative impact of maternal nicotine exposure during gestation and lactation on 

the growth, development and repair processes of the lungs of the offspring causes lung structure to 

more rapidly deteriorate with age than in animals that were not exposed to nicotine. This is illustrated 

by the appearance of membrane blebs (Figure 4), alveolar fenestrations [109] and eventually 

microscopic emphysema (Figure 5). The elastic tissue framework (Figure 3) of the lungs of nicotine 

exposed animals is also compromised [110]. Exposure of fetal monkeys and rats to nicotine via the 

placenta during the late saccular/early alveolar phase of lung development results in an increase in the 

size of the primitive alveoli; as a consequence the alveolar surface area for gas exchange in the  

adult lung is decreased [109,111]. Collectively, the structural changes in the lungs of these  

animals resembles faster aging of the lungs, and are likely to make the lungs more susceptible to 

respiratory disease.  

The gradual deterioration of the lung parenchyma with increasing age is clearly due to an inability 

of the lung epithelium and fibroblasts to maintain the structural integrity of the lungs. This effect is 

likely due to premature aging of the fibroblasts [96] and alveolar epithelial cells [112], which can be 

attributed to altered “programming” due to the changes in the in utero environment [111,113,114]. 

The reason for the altered “programming” is not clear. It is known that nicotine induces 

peroxidation of membrane lipids. It also reduces the anti-oxidant capacity of the lungs [40,115]. Since 

oxidants [33] and nicotine [116] can induce point mutations in DNA (Figure 2), it is possible that the 

imbalance in the oxidant/antioxidant status of the nicotine-exposed developing lung results in the 

altered “programming” and consequently the lower glycolytic capacity of the lungs [70], as well as the 

drastic increase in AMP [75]. This theory is supported by the observation that maternal vitamin C 

supplementation during pregnancy and lactation prevents the lowering of the glycolytic capacity of the 

lungs of nicotine-exposed offspring [40] as well as the development of microscopic emphysema  

(G Maritz, unpublished data). It is therefore plausible that restoration of the oxidant/antioxidant status 
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of the mother and offspring will prevent altered “programming” and thus premature aging of the lungs 

of the offspring. 

Figure 5. The effect of nicotine exposure via the mother during pregnancy and lactation on 

the parenchyma of the lung tissue of adult offspring. The alveoli of the control lungs (A) 

are smaller than those of the lungs that were exposed to nicotine (B).  

(A) (B) 

 

 

It has been demonstrated that in utero exposure to nicotine increases DNA methylation and 

acetylation in the fetus. Nicotine also alters gene methylation in cultured human esophageal squamous 

epithelial cells [117]. It is therefore plausible that some of the longer term effects of maternal nicotine 

exposure on the respiratory system of the offspring are due to epigenetic changes. It has been 

suggested that the rapid induction of insulin resistance in rats exposed to nicotine during gestation and 

lactation is a reflection of an acute epigenetic response and not a genetic predisposition [118]. It is thus 

plausible that the effects of maternal nicotine exposure on the metabolism and lung structural integrity 

of the offspring are due to epigenetic changes rather than changes to the DNA. 

11. Nicotine and Cell Signaling: Apoptosis and Lung Development 

Programmed cell death or apoptosis is an energy-dependent and genetically controlled process [119] 

that can be induced by a number of molecular tools [120]. Apoptosis occurs in the pulmonary 

mesenchyme as early as day 14 of gestation in the rat, when branching of conducting airways is the 

predominant feature. The percentage of cells undergoing apoptosis increases dramatically between 18 

and 22 days of gestation and remains elevated in the first day of postnatal life. 

During the phase of rapid alveolarisation between postnatal days 4 and 13 in rats, which 

corresponds to week 36 of gestation in humans [67], interstitial fibroblasts undergo rapid proliferation. 

Few alveoli are formed after this phase. Between postnatal days 13 and 21 the number of fibroblasts 

and type II cells decreases. This decrease in fibroblasts and type II cells occurs by means of 

programmed cell death or apoptosis, which peaks between postnatal days 17 and 19. Apoptosis 

therefore plays a key role in the thinning of the alveolar septa that occurs after the cessation of 

alveolarisation [121,122].  
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Cigarette smoke inhibits the proliferation and migration of human lung fibroblasts and  

fibroblast-mediated responses and in this way can contribute to the development of emphysema [94]. 

Nicotine and its metabolite cotinine inhibit apoptosis in fibroblasts [123], but the mechanism is not 

known. Nicotine is known to exert its effects on many cell types via nicotinic cholinergic receptors.  

It has been suggested that pediatric, smoking-associated pulmonary diseases and small cell lung 

carcinoma may be caused by the direct chronic stimulation of an α7-nicotinic acetylcholine  

receptor-initiated autocrine loop by nicotine and NNK, where NNK is formed from nicotine by 

nitrosation in the body and during curing of tobacco [124,125]. It is also possible that certain effects of 

nicotine are not receptor mediated and may operate through unconventional nicotine receptors [123]. 

There is evidence that nicotine: (a) activates the mitogen-activated protein kinase (MAP) signaling 

pathway and extracellular signal-regulated kinase (ERK-2), resulting in increased expression of the 

Bcl-2 protein and inhibition of apotosis, and (b) blocks the inhibition of protein kinase C (PKC) 

activity in lung cells. Nicotine appears to have no effect on the activities of c-jun NH-2-terminal 

protein kinase (JNK), c-myc or p28 MAP kinases that are involved in apoptosis. While exposure to 

nicotine can result in the activation of two major signaling pathways (MAP-kinase and PKC) that are 

known to inhibit apoptosis, nicotine regulation of MAP and ERK kinase activity is not dependent on 

PKC. These effects of nicotine occur at concentrations that are generally found in the blood of smokers, 

and could lead to disruption of the critical balance between cell death and proliferation [58,126]. The 

inhibition of apoptosis by nicotine may contribute to the slower thinning of the alveolar septa of the 

lungs of rat pups that were exposed to nicotine during gestation and suckling [127]. Experimental data 

suggests that nicotine exposure of the fetus and newborn during the phases of rapid cell division may 

render the lungs more susceptible to the development of cancer [53]. No epidemiologic data are 

currently available to support this suggestion, although the risk of other forms of cancer may be 

increased by prenatal exposure to tobacco smoke [128,129].  

It has been suggested that in utero exposure of pulmonary neuro-endocrine cells to nicotine or NNK 

may contribute to the development of pediatric lung disorders such as bronchitis and lower respiratory 

illnesses [53] along with altered pulmonary mechanics in infants and children [130]. The alterations in 

lung function in monkeys prenatally exposed to nicotine parallel those observed in infants of mothers 

who smoke during pregnancy [130]. These alterations in lung function could be induced via two 

mechanisms. The first is a direct effect of released 5-hydroxytryptamine (5-HT) in response to α7 

nicotinic receptor stimulation of bronchial and vascular smooth muscle and fibroblast growth; the 

second is an indirect effect of 5-HT on pulmonary neuro-endocrine cell numbers via activation of a 

Raf-1/MAP kinase pathway, resulting in yet more cells that can synthesize and release 5-HT. Chronic 

exposure to nicotine and NNK during early development may therefore up-regulate the α7 nicotinic 

receptor as well as components of its associated mitogenic signal transduction pathway, thereby 

increasing the vulnerability of infants to the development of pediatric lung disorders [48]. 

12. Nicotine and Immune Response. 

The development of immune systems begins during fetal life and proceeds into early neonatal life. 

This renders them very vulnerable to changes in the environment to which the fetus and neonate are 

exposed, and may have lasting effects on the immune function of the individual. It has been shown that 
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in adults cigarette smoke is a risk factor for upper respiratory tract infections [131]. Some of the effects 

of cigarette smoke on the immune system, such as lowered serum IgG and decreased activity and 

numbers of natural killer cells, may be attributed to nicotine. It was indeed shown in rodents that 

adolescent nicotine treatment results in impaired T-cell immune responses well after nicotine exposure 

was terminated. It is therefore plausible that nicotine exposure during early development modulates 

allergic responses and thereby increases the susceptibility of the offspring to asthma in later life [132]. 

13. Nicotine Replacement Therapy (NRT) 

Recently it has been suggested that all pregnant women should stop smoking immediately because 

if a mother abstains from smoking during the first three months of her pregnancy, the risks to the fetus 

are the same as those of a fetus of a non-smoking mother [4]. Nicotine replacement therapy (NRT) is 

prescribed by many health professionals to assist smokers to quit the habit. Various products are 

currently available to provide nicotine in order to reduce the craving for smoking; these include 

nicotine containing gums, patches, lozenges, and sprays [133] as well as electronic cigarettes. NRT has 

been recommended to assist women to quit smoking when they become pregnant. Although NRT is 

widely prescribed by health professionals as an aid to stop smoking, it is questionable whether nicotine 

intake during pregnancy and lactation is safe for the fetus and neonate. 

The use of NRT is widely promoted because it is often thought that nicotine is not harmful [4]. 

However, several studies show that nicotine can damage the fetal lungs, heart, and the central nervous 

system. Nicotine is genotoxic [4,33] and its toxic effects persist in the fetus after administration has 

stopped [4]. Studies in non-human primates [104] clearly show that nicotine exposure during 

pregnancy increases the development of α7 nicotinic receptors in cells implicated in lung development. 

Pulmonary hypoplasia and other abnormalities in pulmonary and bronchial development have been 

found in the offspring after exposure to nicotine during gestation [48,70,108,111]. It is also evident 

that nicotine exposure during development suppresses lysyl oxidase activity and this could contribute 

to the gradual deterioration of the lung parenchyma of the offspring. Furthermore, nicotine induces 

peroxidation of membrane lipids [84] which changes the oxidant/anti-oxidant status of the lungs of the 

offspring. This is supported by the decrease in the vitamin C and E content of the lungs of the 

offspring [134]; these lungs also clearly show a decrease in the levels of the enzymes that catalyze the 

removal of antioxidants from the lung. Our studies show that the level of superoxide dismutase in the 

lungs of rats that were prenatally exposed to nicotine remains significantly lower than that of rats not 

exposed to nicotine (G Maritz, unpublished data). This implies that, apart from its immediate effect in 

the lungs of those who use NRT, maternal nicotine intake during pregnancy and lactation will have a 

long-term effect on the maintenance of lung integrity and respiratory health of exposed offspring [42]. 

14. Conclusions 

Maternal nicotine exposure during gestation and lactation, and therefore by implication maternal 

tobacco smoking (and perhaps tobacco chewing), results in a change in the program that controls the 

development and aging of the lungs of offspring. Changes in the conducting airways and alveoli render 

the lungs of the offspring more susceptible to disease and reduced lung function. Although it is 

generally accepted that prevention of maternal smoking during pregnancy and lactation is essential, the 
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considerable evidence of adverse effects on exposed offspring indicates that it is not appropriate to 

prescribe NRT to pregnant women. 
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