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Abstract: We examined the role of ultraviolet radiation (UVR) in persons diagnosed with 

multiple sclerosis (MS) in four different populations, Italians, Danish, White and African 

Americans. We tested whether variation in UVR as determined by seasons (short term 

variation) and solar cycles (long term variation) is related to MS birth month and to 

survival as measured by lifespan. Cases were selected from three Italian MS Case 

Registries (2,737); from the United States National Center for Health Statistics (56,020); 

and from the Danish Multiple Sclerosis registry (15,900). Chi-square tests were used to 

study the pattern of month of birth distribution in patients with MS comparing with general 

population data. T-tests were employed to study solar cycles association with lifespan. A 

surplus of births was observed in June for White Americans. A decrease of births in 

October and November, though not significant after multiple testing correction, was 

observed in the three populations. In White American with MS overall, males and females, 

we found that solar cycle is associated with lifespan. We found that season and solar cycles 

have some role in MS susceptibility and life duration. However, this is an exploratory 

analysis and further work is needed to discern the association. 

Keywords: multiple sclerosis; seasonality; solar cycles; variation in ultraviolet radiation 

 

1. Introduction 

Solar radiation not only supplies the biosphere with energy and synchronizes circadian rhythms, but 

may also actively modify genomes, both through mutation and epigenetic mechanisms [1]. Many 

epidemiological studies report that some diseases occur with higher incidence in persons born in 

particular months, referred to as seasonality [2]. This suggests that an environmental factor may 

operate during gestation. Seasonal pattern of birth have been observed for schizophrenia and bipolar 

disorders [3], and for some autoimmune diseases, as type 1 diabetes [4], Crohn’s disease [5],  

myositis [6] and celiac disease [7] among others.  

Seasonality effects have also been found for multiple sclerosis (MS) [8], a chronic inflammatory 

autoimmune disease of the central nervous system, which causes myelin destruction and neuronal cell 

degeneration leading the patient to a progressive disability. The disease has a higher incidence in 

females than in males and most commonly presents in the second to fourth decade of life. The cause of 

MS is unknown, but it most likely results from a complex interplay of both genetics and environmental 

factors. While genetic factors shape the overall population susceptibility, epidemiological studies 

suggest an important role of the environment in disease initiation and modulation [9]. Findings on 

seasonality effects, however, are not consistent. A Canadian study using data from Canada and UK and 

combined with previously reported data from Denmark and Sweden [8] found a statistically significant 

difference in seasonal pattern of births among MS patients, but to estimate the numbers of MS cases 

born in a particular month, the authors summed number of births over the years 1926–1970 without 

taking into account year of birth. It has been argued [10] that biases could have arisen as MS cases 

born in one year were weighted relative to persons with completely different follow-up time. Another 

Canadian study [11] was unable to detect any significant seasonal difference. In Sicily, an excess in 
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birth of MS patients occurred in the summer, with a peak in August [12]. A trend was also seen in a 

recent study on 1524 Australian patients with excess risk for those born in November-December, 

which is equivalent to April–May in the Northern hemisphere [13]. 

A relationship between the geographical distribution of MS, exposure to sunlight, and 

hypovitaminosis D has long been advocated [14]. Scientists have hypothesized that MS is rare in the 

tropics because people synthesize great quantities of vitamin D from exposure to ultraviolet  

radiation (UVR) in equatorial sunlight. On the contrary, MS is more prevalent in the high latitudes of 

Northern Europe and America where there is less exposure to sunlight [15]. Sardinia is an exception to 

this rule possibly due to inbreeding and genetic drift. Indeed, it has a high UVR exposure and a high 

MS prevalence comparable to that of Northern Europe [16]. These arguments support the so called 

“latitude hypothesis”, i.e., vitamin D may protect against the development of MS [17]. Prevalence of 

MS is lower than expected at high latitude where vitamin D intake is high because of fatty fish 

consumption [18]. Also, MS seems to decrease with migration from an higher to a lower latitude [19]. 

However, as emphasized by two recent reviews, a direct cause-and-effect relationship between vitamin 

D deficiency and MS has not yet been established thus suggesting that UVR may have effects beyond 

making vitamin D [18,20,21]. 

Davis and Lowell reported the association between intensity of solar radiation, referred as solar 

cycles, and various diseases [22]. The term “solar cycle” refers to the periodic rise and fall of the 

intensity of solar radiation where the Sun increases its irradiance on average every 11 years (range 9–14). 

Sunspots, the manifestation of magnetic storms on the Sun’s surface, are proxies for increase radiation 

intensity and have been recorded for centuries. During cycle peaks, sunspots increase in number and 

size with a concomitant increase in radiation [23]. In particular, the solar cycle variation causes as 

much as a 400% variation in UVB at 300 nm reaching the earth [24]. Relatively small changes in solar 

radiation (0.1%), due to solar cycle variability, may also significantly modify regional surface 

temperatures [25]. 

These results and those regarding seasonality, support the notion that UVR is instrumental in 

modifying the human genome not only by overt mutation DNA, but also by an epigenetic mechanism [1]. 

This hypothesis is supported by the recent work of Feng et al. showing that binding of histone 

deacetylase 3 (HDAC3) to the genome depends on light circadian rhythm: thus light can actually 

contribute to chromatin remodeling, modifying gene expression [26]. UVR significantly affects DNA 

and the effects are cumulative throughout life [27]. Epigenetic mechanisms are important as they 

enable the embryo to quickly modify its genetic library to match current environmental conditions and 

hence to maximize survival. Human lifespan may be modulated by sunlight as there is a statistically 

significant variation in lifespan by month of birth between peaks and non-peaks of solar cycles [23]. 

The aim of this study is to examine the role of UVR in persons diagnosed with MS in four different 

populations, Italians, Danish, and White and African Americans. In particular we test whether 

variation in UVR as determined by seasons (short term variation) and solar cycles (long term variation) 

is related to MS birth month and to survival as measured by lifespan. 
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2. Experimental Section  

2.1. Study Populations 

Italy: Demographical data of MS patients were collected from the Case Registry of the Division of 

Neurology of the Nuoro Hospital, Sardinia (n = 890); from the Case Registry of the Interdepartment 

Research Center for Multiple Sclerosis, Neurological Institute Casimiro Mondino, Pavia (n = 683); and 

from the Case series from San Raffaele Scientific Institute (ISR), Milan (n = 1164). The three 

registries are ongoing. They were started respectively in 1995, 1990 and 1996. 

For this study, all records include birth year (YOB), birth month (MOB) and gender. National and 

regional data of month/year specific birth were retrieved from the Italian Statistical Institute (ISTAT) 

database. We normalized for the Italian general population data as the MOB distribution in the three 

studied Italian areas did not differ significantly. All Italian patients were of Caucasian origins. 

USA: Death records were collected from the United States National Center for Health Statistics 

(NCHS) from 1979 to 2005 which contains 59 million death records. ICD9 code 340 and ICD10 code 

G35 for cause of death were used to extract records for MS (N = 56,020) from the NCHS data set. 

Data used in this sample included sex, ICD9 & ICD10 cause of death, state of birth, month and year of 

birth, month and year of death and ethnicity. National month/year specific birth was calculated using 

the NCHS dataset and pulling out the MS cases. As U.S. cases presented a great ethnic  

diversity (White, African American, American Indian, Asian and others), the analysis was restricted to 

the two largest ethnic groups: White and African Americans. White and African Americans were 

analyzed separately throughout because they respond differently to solar UVR. African American 

people have a different skin pigmentation and they more efficiently block UVB. As a consequence, 

they tend to be more vitamin D deficient. This unexpectedly inversely correlates with MS risk [18].  

Denmark: Cases were selected out of 15,900 cases from the Danish Multiple Sclerosis registry [28]. 

The registry was established in 1948 with a nationwide prevalence survey and has since then collected 

information on MS patients from multiple sources. Virtually all Danish residents in whom multiple 

sclerosis was diagnosed by a neurologist or in a department of neurology are registered [29]. The 

registry is continuously updated with new information on registered cases and new cases. For the 

seasonality analysis, cases were selected to have a definite diagnosis of MS before 2005; while for the 

solar cycle analysis, deceased MS patients were chosen. National month/year specific birth were 

extracted from Statistics Denmark [30]. Almost all Danish cases were of Caucasian origin [31]. 

2.2. Solar Data 

The average number of annual sunspots per year was collected from the U.S. Department of 

Commerce National Oceanic and Atmospheric Administration (NOAA) web site [32] and the three 

peak years of sunspots of each of the past twelve cycles was obtained. Solar cycles MAX years are 

1905, 1906, 1907, 1917, 1918, 1919, 1927, 1928, 1929, 1937, 1938, 1939, 1947, 1948, 1949, 1957, 

1958, 1959, 1968, 1969, 1970, 1979, 1980, 1981, 1989, 1990, 1991, 2000, 2001, 2002. Solar cycles 

MIN years are 1895–1904, 1908–1916, 1920–1926, 1930–1936, 1940–1946, 1950–1956, 1960–1967, 

1971–1978, 1982–1988, 1992–1999, 2003–2005. 
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2.3. Seasonality Analysis 

For the seasonality analysis, our hypothesis was that people with MS might show a different pattern 

of month of birth. For Italy and Denmark, expected cases were calculated based on the MOB of each 

general population born in the same years as the cases. The U.S. population based controls came from 

the 59 million death records and include all non-MS cases. Expected values for White and African 

Americans were calculated differently based on the birth distribution of White and African Americans 

in the general population. Chi-square statistics were calculated in 2 × 2 tables with the MOB in 

question against the remaining 11 months. We accounted for multiple testing using Bonferroni 

correction. 

2.4. Solar Cycles Analysis 

Age at death was calculated from month and year of birth to month and year of death. To examine 

the influence of solar cycles on survival, birth year data were grouped by solar maximum or solar 

minimum defined as follows: the year before and the year after the peak were defined as the Maximum 

Solar Period (MAX); the years before and after each three year MAX cycle were grouped as Minimum 

Solar Period (MIN). T-tests were use to determine whether the difference between MAX and MIN 

groups was due to chance variation. 

3. Results and Discussion  

The gender distribution of the MS study populations is reported in Table 1. The female:male ratio 

varies in the different populations with the Italians having the highest (the number of females with MS 

is more than twice the number of males) and the Danish the lowest (the number of females with MS is 

a bit more than one and a half the number of males). However, as expected, the number of affected 

females always exceeds the number of affected males. 

Table 1. Gender distribution of the MS study populations, n (%). 

Sex Italians Danish White Americans African Americans
F 1,897 (69) 9,856 (62) 32,456 (64) 3,630 (67) 
M 840 (31) 6,044 (38) 18,194 (36) 1,740 (32) 
F:M 2.26 1.63 1.78 2.09 
TOTAL 2,737 15,900 50,650 5,370 

3.1. Seasonality Analysis 

We compared the number of individuals with MS born in each month versus the other 11 months. 

The expected number of births was calculated using the distribution of birth in the general population 

for Italy and Denmark (Table 2), and of population controls for the U.S. data (Table 3). 
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Table 2. Seasonality overall results for Italy and Denmark normalized for the specific general population data. 

 Italy Denmark 

MOB Obs Exp Obs/Exp Month 

specific χ2

p value Obs Exp Obs/Exp Month 

specific χ2

p value 

(95% CI) (95% CI) 

January 248 231 1.07[0.94; 1.21] 1.31 0.2531 1274 1304 0.98 [0.92;1.03] 0.75 0.3864 

February 204 204 1.00[0.86; 1.14] 0 0.9907 1240 1274 0.97[0.92;1.03] 0.99 0.3197 

March 241 219 1.10[0.96; 1.24] 2.49 0.1147 1523 1462 1.04[0.99;1.09] 2.8 0.0942 

April 238 203 1.17 [1.02; 1.32] 6.36 0.0117 1478 1420 1.04[0.99;1.09] 2.6 0.1068 

May 228 234 0.97[0.85; 1.1] 0.17 0.684 1451 1417 1.02[0.97;1.08] 0.9 0.3427 

June 242 221 1.10[0.96; 1.23] 2.2 0.1377 1384 1326 1.04[0.99;1.1] 2.77 0.0960 

July 220 240 0.92[0.8; 1.04] 1.75 0.1863 1322 1339 0.99[0.93;1.04] 0.24 0.6242 

August 216 235 0.92[0.79; 1.04] 1.76 0.1845 1358 1328 1.02[0.97;1.08] 0.74 0.3896 

September 243 251 0.97[0.85; 1.09] 0.26 0.6135 1263 1310 0.96[0.91;1.02] 1.84 0.1749 

October 219 250 0.88[0.76; 0.99] 4.15 0.0416 1243 1267 0.98[0.93;1.04] 0.49 0.4839 

November 208 224 0.93[0.80; 1.06] 1.22 0.27 1139 1208 0.94[0.89;1] 4.27 0.0389 

December 230 226 1.02[0.89; 1.15] 0.08 0.77251 1225 1246 0.98[0.93;1.04] 0.38 0.5376 

 chisq(11) = 19.95, p =0 .0461 chisq(11) = 17.19, p =0.1023 
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Table 3. Seasonality overall results for U.S. data normalized for the population based controls. 

 White Americans African Americans 

MOB Obs Exp Obs/Exp 

(95% CI) 

Month 

specific χ2

p value Obs Exp Obs/Exp 

(95% CI) 

Month 

specific χ2

p value 

January 4178 4291 0.97[0.94;1] 3.251 0.07137 458 452 1.01[0.92;1.1] 0.087 0.7681 

February 3894 4034 0.97[0.94;1] 5.279 0.021582 403 431 0.94[0.85;1.03] 1.978 0.1596 

March 4405 4402 1[0.97;1.03] 0.002 0.962259 460 480 0.96[0.87;1.05] 0.915 0.33876 

April 4033 4069 0.99[0.96;1.02] 0.346 0.556199 423 441 0.96[0.87;1.05] 0.8 0.37097 

May 4152 4140 1[0.97;1.03] 0.038 0.845688 411 443 0.93[0.84;1.02] 2.519 0.1125 

June 4255 4027 1.06[1.03;1.09] 14.024 0.000181 425 424 1[0.9;1.1] 0.003 0.9596 

July 4480 4318 1.04[1.01;1.07] 6.644 0.009948 504 453 1.11[1.01;1.21] 6.271 0.0123 

August 4537 4480 1.01[0.98;1.04] 0.796 0.372414 494 481 1.03[0.94;1.12] 0.386 0.5345 

September 4425 4416 1[0.97;1.03] 0.016 0.8997 463 464 1[0.91;1.09] 0.002 0.96 

October 4175 4312 0.97[0.94;1] 4.758 0.0291 483 441 1.1[1;1.2] 4.358 0.037 

November 4030 4016 1[0.97;1.03] 0.053 0.8179 394 407 0.97[0.87;1.07] 0.449 0.5027 

December 4086 4145 0.99[0.96;1.02] 0.915 0.33888 452 454 1[0.91;1.09] 0.01 0.92 

 chisq(11) = 33.16, p < 0.0001 chisq(11) = 16.30, p = 0.1304 
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In the Italian population (Table 2) we found a significant surplus of births in April (χ = 6.36, 

uncorrected p = 0.0117) and a lower incidence in October (χ = 4.15, uncorrected p = 0.0416)  

(Table 2), but these were not significant after multiple testing correction. When we analyzed males and 

females separately normalizing for males and females general population data, we found an excess of 

birth in April for Italian men (χ = 5.64, uncorrected p = 0.0175) and a decrease of birth in October for 

Italian women (χ = 5.02, uncorrected p = 0.025). However, these were not significant after multiple 

testing correction. 

In the Danish sample, a lower incidence was observed among people born in November (χ = 4.27, 

uncorrected p = 0.0389), but again this did not pass multiple testing correction (Table 2). We could not 

perform the analysis by sex as gender of the general population, according to MOB, was not available 

on the Statistic Denmark database. 

In the U.S. population, June and July had significantly more cases than expected for White 

Americans (June: 5.7% more, χ = 14.024, uncorrected p = 0.000181 or p = 0.002172 with Bonferroni 

correction; July: χ = 6.644, uncorrected p = 0.0099), while October had significantly less (χ = 4.758, 

uncorrected p = 0.0291). Only June was significant also after accounting for multiple testing using 

Bonferroni correction (Table 3). A surplus of birth in July was also seen in African Americans  

(χ = 6.271, uncorrected p = 0.0123), though not significant after multiple testing correction and an 

excess of birth was observed in October (χ = 4.358, uncorrected p = 0.037).  

When stratifying by sex, we confirmed a statistical significant increase in births in June and July for 

White American females (June: 6.2%, χ = 10.58, uncorrected p = 0.001146 or p = 0.013752 with 

Bonferroni correction; July: χ = 4.89, uncorrected p = 0.027059), and a significant increase in births in 

May for white American males (χ = 4.39, uncorrected p = 0.0361) and a decrease of birth in October 

for white American males (χ = 4.3, uncorrected p = 0.0382). Again, June only was significant after 

accounting for multiple testing correction. A surplus of birth was also observed in African American 

females (χ = 6.02, uncorrected p = 0.014168), while no difference was found in African American men. 

3.2. Solar Cycles Analysis 

From the NOOA database, the average annual sunspot number for the past 250 years is 49; for the 

past 60 years the average is 107.5; for the most powerful cycles (sunspots >135), the average is 154, 

about three times the 250-year average. Also, the average annual sunspot number in a MAX year is 

107.71 (SD = 43.33), while the average annual sunspot number in a MIN year is 38.73 (SD = 33.60). It 

was not possible to perform a solar cycle analysis on the Italian cohorts as the majority of the  

patients (>99%) were still alive. 

We found a statistically significant association in White Americans (Table 4): those born in solar 

cycles MAX years have a significantly shorter lifespan (−0.64 year, p ≤ 0.0001) than those born in 

solar cycles MIN years. When we stratified by sex (Table 5), we saw similar results for both White 

American males (−0.5 year, p = 0.0184) and females (−0.71 year, p = 0.0006). No significant 

difference emerged neither in the African American sample nor in the Danish population. 
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Table 4. Counts and Mean age at death by solar Max and solar MIN for the MS cohort data. 

 White Americans African Americans Danish 

RGRP N Mean (SD) N Mean (SD) N Mean (SD) 

MAX 15,054 59.43 (13.26) 1,591 51.68 (13.26) 1,974 60.09 (13.60) 
MIN 35,596 60.07 (13.67) 3,779 51.57 (13.75) 5,195 60.26 (13.76) 

  p ≤ 0.0001  p = 0.7849  p = 0.6517 

Table 5. Mean age at death for the MS cohort by sex. 

 Males Females 

 
White 

Americans 
Black 

Americans 
Danish 

White 
Americans 

Black 
Americans 

Danish 

RGRP N Mean 
(SD) 

N Mean 
(SD) 

N Mean 
(SD) 

N Mean 
(SD) 

N Mean 
(SD) 

N Mean 
(SD) 

MAX 5,440 58.82 
(12.74) 

521 51.45 
(13.22) 

889 59.25 
(13.09)

9,614 59.77 
(13.53)

1,070 51.79 
(13.28) 

1,085 60.78 
(13.41)

MIN 12,754 59.32 
(13.35) 

1,219 51.36 
(13.86) 

2,337 59.30 
(12.94)

22,842 60.48 
(13.83)

2,560 51.67 
(13.70) 

2,858 61.04 
(13.72)

 p = 0.0184 p = 0.9009 p = 0.9340 p < 0.0001 p = 0.7991 p = 0.6025 

3.3. Discussion 

In this paper, we first show that there is a significant pattern of risk of MS with MOB. Among 

White Americans with MS, 5.7% more than expected were born in June. This finding is confirmed in 

White American females where the percentage increases to 6.2%. A similar trend, though not 

significant after accounting for multiple testing, was found in White American men with a peak in 

May, for Italians with a peak in April and for Italian men with a peak again in April. A trend of lower 

risk of developing MS was observed in those born in October (White Americans: overall and males; 

Italians: overall and females) and in November (Danish). MOB October through November versus 

May through July mirrors months of conception January through February and August through 

October suggesting that increasing and decreasing UVR at conception has an effect on MS. This was 

also reported in a recent Australian study [13] where low maternal exposure to UVR at conception was 

associated with a higher risk of MS for the offspring. Moreover, an increase of births in April was seen 

in a French study [33], even though it did not reach statistical significance and in a pooled analysis of 

data from Canada, UK, Denmark and Sweden an excess of birth was reported in May and a decrease in 

November [8].  

In the U.S. sample, we found that there is a statistically significant difference between MAX and 

MIN solar cycle years for White Americans (overall, males and females). We were unable, however, to 

replicate this finding both on African Americans and in the Danish sample (Table 4). The reason for 

this could be that the difference in lifespan between those born in solar cycles MAX and MIN year is 

relatively small and hence it only reached the statistical significance in the U.S. sample, as it is a  

large cohort.  

A recent paper [34] about the MS genome in identical twins underscores that genetics alone do not 

explain the phenotype of MS; rather, an important environmental factor must be in play. We think that 
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it may be UVR itself, possibly the ultraviolet range, in those that inherit a particularly sensitive  

sex-linked genome where females are twice as likely as males to develop MS (as confirmed in  

Table 1) because of their increased sensitivity to long-term changes in sunlight (Table 5). Increased 

sensitiveness of females to solar cycles could be explained considering the role of sunlight in  

vitamin D metabolism and the link between vitamin D and estrogen metabolism. Indeed, calcitriol, a 

biologically active compound derived from vitamin D, regulates the expression of the Cyp19, an 

aromatase necessary to synthesize estrogens [35–37]. Thus sunlight-driven variations in vitamin D 

level could also influence estrogen levels. 

Our study has some strengths. First, the Danish sample originates from a close to complete registry 

of a whole country with registration of cases in the last 60 years. Second, the U.S. sample is drawn 

from the NCHS, which contains more than 99% of all births and deaths registered in the U.S. Third, 

we had data on four different populations and hence the chance of comparing the effect of sunlight on 

people with different geographical and ethnic background. Moreover, previous studies of autoimmune 

diseases including celiac disease and myositis, show that birth season differs based on race or ethnicity 

[6,7]. We had information of ethnic background and were therefore able to run a stratified analysis.  

Our study also has some limitations. First, as the U.S. data is drawn from the NCHS and as there are 

more people dying with MS rather than of MS, we may have missed some cases. Indeed, a Danish 

study found that more than half (56.5%) MS patients have MS as cause of death on the death 

certificate [38]. It is likely that those excluded were patients suffering from a less severe MS (i.e., not 

severe enough to die from it). Second, we could not run the solar cycle analysis on the Italian data as 

the majority of the Italian patients were still alive. Third, the statistical analysis employed in the paper 

does not adjust for factors such as variation in viral outbreaks, epidemics, other seasonally varying 

factors such as ambient temperature, changes in diet, temporal trends, etc. and thus does not rule out 

the possibility that such factors might explain variation in season of birth or in lifespan based on year 

of birth. Also, it is impossible to untangle whether the observed surplus of births in June and July in 

the U.S. data, is due to the fact that MS is more likely to occur in those born in those months or if there 

is something about being born in those months that increases the risk of death.  

Finally, we recognize that we compared three different datasets with different methods of collecting data 

and that there are large methodological problems in doing so. However, this is an exploratory analysis.  

4. Conclusions 

We think that our results are novel and interesting. To our knowledge, we are the first to investigate 

long term UVR variation, measured as the influence of solar cycles, on MS. Even if the results are not 

replicated in all the population studied, we did find a significant signal in White American males and 

females and we believe this is worth reporting. Moreover, we confirm that there is a seasonality effect 

on MS suggesting that there is some environmental factor operating during gestation. 

The next steps would be to investigate (i) whether the difference in lifespan we observe for MS 

patients differs from other causes of death in magnitude; and (ii) whether people born in solar cycles 

MAX years differ for some genomic features from those born in solar MIN year. Assuming that solar 

radiation affects the human genome through mutation and epigenetic mechanisms, a case-only genome 

wide study of genetic and methylation profiles, comparing groups of MAX and MIN MS patients, 
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could identify MS epigenetic susceptibility factors induced by exposure to solar radiation and genetic 

profiles ideally referable to vitamin D metabolism pathways. 
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