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Abstract: Polluting facilities and hazardous sites are often concentrated in low-income 

communities of color already facing additional stressors to their health. The influence of 

socioeconomic status is not considered in traditional models of risk assessment. We 

describe a pilot study of a screening method that considers both pollution burden and 

population characteristics in assessing the potential for cumulative impacts. The goal is to 

identify communities that warrant further attention and to thereby provide actionable 

guidance to decision- and policy-makers in achieving environmental justice. The method 

uses indicators related to five components to develop a relative cumulative impact score for 

use in comparing communities: exposures, public health effects, environmental effects, 

sensitive populations and socioeconomic factors. Here, we describe several methodological 

considerations in combining disparate data sources and report on the results of sensitivity 

analyses meant to guide future improvements in cumulative impact assessments. We 

discuss criteria for the selection of appropriate indicators, correlations between them, and 

consider data quality and the influence of choices regarding model structure. We conclude 

that the results of this model are largely robust to changes in model structure. 
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1. Introduction 

Environmental justice advocates and scholars have documented the disproportionate pollution 

burden experienced by many low-income communities of color in California [1–3] and elsewhere in 

the U.S. [4–6]. Polluting facilities are often concentrated in low-income communities that already face 

additional challenges to their health, such as limited access to health care, substandard housing, a  

lack of open space or recreational facilities, poor access to healthful food, and higher levels of  

stress stemming from poverty, under-employment or high rates of crime. This concept of “double  

jeopardy” [7]—the combination and potential interaction of socioeconomic stressors and elevated 

exposure to hazards—is absent in traditional risk assessment methods. In contrast, the evidence is 

growing that socioeconomic factors can increase sensitivity to the health impacts of pollution [8–12].  

In a previous paper, we presented a screening method for cumulative impact assessment designed as 

a first step in addressing environmental justice [13,14]. Several researchers have also proposed 

methods to evaluate cumulative impacts [15–18]. Unlike traditional risk assessment methodologies, 

this method utilizes a framework that considers the presence of sensitive populations and socioeconomic 

factors in addition to pollution burden in accordance with the National Research Council’s call for risk 

assessments that consider “nonchemical stressors, vulnerability, and background risk factors” [9] and 

the working definition of cumulative impacts adopted by the California Environmental Protection 

Agency (Cal/EPA) Interagency Working Group on Environmental Justice (IWG): “Cumulative 

impacts means the exposures, public health or environmental effects from the combined emissions and 

discharges in a geographic area, including environmental pollution from all sources, whether single or 

multi-media, routinely, accidentally, or otherwise released. Impacts will take into account sensitive 

populations and socio-economic factors, where applicable and to the extent data are available.” [14]. 

The product of this screening method is a relative ranking of communities in California at the ZIP 

CodeTM level in regards to their potential for cumulative impacts. This method is not advanced to the 

stage of quantifying the probability of harm or risk. Instead, it identifies communities that warrant 

special attention and helps policy- and decision-makers prioritize their activities to the benefit of the 

most impacted communities.  

In its 2009 report, Science and Decisions: Advancing Risk Assessment, the National Research 

Council emphasized the need for “simplified risk assessment tools… (that) allow communities and 

stakeholders to conduct assessments and thus increase stakeholder participation” [9]. With this in 

mind, simplicity and transparency were key considerations in the design of this screening method. For 

example, only data sources available to the general public in California were used. A Cumulative 

Impacts and Precautionary Approaches Work Group of stakeholders from academia, industry, and civil 

society organizations also guided the method’s development. Some of the advice that emerged from 

the work group process was to quickly identify highly impacted communities in order to begin to 
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address the problems, and to implement a scientifically-based approach that encourages meaningful 

public participation and incorporates contributions from the public.  

This paper considers methodological issues in combining disparate data sources related to 

cumulative impacts. The insights from this analysis are meant to help guide future efforts related to 

cumulative impacts assessment. We describe the choice of indicators and data sources, correlations 

between indicators and the potential for double counting. We also report on several sensitivity analyses 

that examine the robustness of the results to changes in the model structure and scoring regime.  

2. Methods 

2.1. The Screening Method 

The cumulative impacts method employs a model that combines five components related to either 

the pollution burden or population characteristics of a geographic area. In accordance with the working 

definition of cumulative impacts above, the components of pollution burden are exposures, public 

health effects and environmental effects, and the components of population characteristics are sensitive 

populations and socioeconomic factors (see Figure 1). The separation of pollution burden and 

population characteristics allows one to distinguish between drivers of cumulative impact [15,16] and 

is consistent with risk assessment practices in which sensitivity factors are incorporated separately [13]. 

Figure 1. Components of cumulative impact and their definitions. 

 

Multiple indicators were used to incorporate information about the condition of geographic areas 

and populations living in them for each of the components. Indicators are simple, quantitative 

measures of an underlying complex phenomenon. In addition to representing the phenomenon, they 

can also be used to guide decision-making and track progress towards a societal goal [19]. The set of 

indicators for a component, taken together, can be used to measure a component, and provide a relative 

comparison of that component for different geographies.  
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The formula for arriving at a relative cumulative impact score from the indicators is as follows. 

Geographic areas are scored by their relative value of each indicator. Indicator scores are then 

averaged in order to arrive at a score for each component. The component scores are weighted 

differently to reflect certainty regarding the contribution of each component to cumulative environmental 

health impacts and the ability of Cal/EPA programs to address the causes of each component. The 

three scores for the components making up the pollution burden are summed, as are the two 

components making up the population characteristics. The overall cumulative impact score is the 

product of the scores for the pollution burden and population characteristics for each geographic area 

(see Figure 2). 

Figure 2. Structure of the cumulative impacts screening model. 

 

2.2. Pilot Study  

Thirty California ZIP CodesTM were chosen to represent a diversity of geographic regions and 

community types. We selected indicators for this pilot analysis based on several criteria. Foremost was 

an indicator’s ability to represent a component of cumulative impact. Other criteria included adequate 

geographic resolution, enough variation in the indicator across the state to discern differences between 

communities, state-wide availability, currency of data, overall data quality, and our assessment of the 

ability of the indicator to be understood by the lay public. For the sake of transparency, we restricted 

ourselves to the use of publicly-available datasets. We also sought to minimize the number of 

indicators and the potential overlap among them in order to simplify the subsequent analysis and avoid 

double counting.  

Whenever possible, indicator measures for pilot ZIP CodesTM were compared to those of all other 

ZIP CodesTM in the state to derive relative indicator scores. For some data sources, the state-wide 

distribution was not readily available and the distribution of indicators for the 30 pilot ZIP CodesTM 

was used instead. Indicators of exposure were assigned a score from 1–10 based on deciles; indicators 

of public health and environmental effects were scored from 1–5 based on quintiles; and indicators of 

sensitive populations and socioeconomic factors were scored from 1–3 based on tertiles. The 

justification of the selected range of scores for the components was described in our previous  

work [13].  
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2.3. Indicators and Data Sources 

2.3.1. Exposure  

We chose five exposures that are important drivers of environmental health effects in California:  

(1) fine particulate air pollution; (2) ground-level ozone; (3) hazardous chemical emissions; (4) vehicular 

traffic and (5) pesticides. Ambient fine particulate matter (PM2.5) and ozone (O3) were chosen as 

indicators of exposures (1) and (2), respectively, and obtained from the California Air Resources Board 

ambient air quality monitoring network. Ambient particulate matter concentrations are reported for  

24-hour intervals while ozone concentrations are reported for one- and eight-hour intervals. The air 

monitor closest to the population-weighted centroid was used to approximate air quality for each ZIP 

CodesTM. For PM2.5, the average quarterly (3-month) means were calculated for 2007 (2006 or 2005 if 

data was missing). For ozone, we determined the 5-year (2003–2007) average 8-hour concentration.  

Hazard-weighted pounds reported to the Toxic Release Inventory (TRI) from 2005–2007 were used 

as an indicator of hazardous chemical emissions in each ZIP CodeTM. The TRI database consists of  

self-reported releases of over 600 toxic chemicals to air, water, land, as well as underground injection 

and off site transfers. The U.S. EPA’s Risk-Screening Environmental Indicators model weights  

TRI emissions by chemical-specific estimates of toxicity based upon the single, most sensitive  

chronic-health endpoint for inhalation or oral exposure, resulting in units of hazard-pounds. EPA 

assumes a toxicity weight of zero for chemicals with no toxicity weight available.  

For the vehicular traffic exposure indicator, the California Environmental Health Tracking Program 

(CEHTP) contributed data regarding on-road, mobile sources of air pollution. The data are based on 

year 2004 traffic counts from CalTrans’ Highway Performance Monitoring System. The sum of all 

unadjusted traffic volumes (vehicles per day) within a circular buffer of 2,500 meter radius around the 

population-weighted centroid of each ZIP CodeTM was obtained from CEHTP’s traffic spatial linkage 

web service (http://www.ehib.org/traffic_tool.jsp).  

Pesticide use data were obtained from the California Department of Pesticide Regulation’s Pesticide 

Use Reporting database. Pesticide use is self-reported monthly for production agricultural applications 

at a one square kilometer resolution and at the county level for other uses such as structural and 

roadsides applications. In the pilot, only production agricultural use data were used. We standardized 

year 2007 pounds of active ingredient applied by ZIP CodeTM area.  

2.3.2. Public Health Effects 

We developed indicators for four health outcomes with strong evidence of an environmental 

etiology: low birth weight, heart disease and cancer (at the ZIP CodeTM level) and asthma (at the 

county level). For the first three indicators, three-year averages for 2006–2008 were used to address  

inter-annual instability in estimates due to low counts in some of the geographic areas. Natality data is 

acquired by the California Department of Public Health (DPH) via birth certificates. We defined low 

birth weight as <2,500 grams and divided the number of low birth weight babies by the total number of 

live births in each ZIP CodeTM to get an annual rate.  

We included cause-specific mortality measures as indicators of heart disease and cancer based on 

DPH data on the primary cause of death acquired via death certificates. Age-adjusted rates were not 
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publicly available, so we derived crude estimates using the U.S. Census year 2000 total population for 

each ZIP CodeTM.  

Age-adjusted asthma hospitalization rates for 2009 were obtained for all California counties from 

CEHTP. Asthma hospitalizations are selected based on primary discharge diagnosis coding of 

inpatient discharge records provided by hospitals to the Office of Statewide Health Planning and 

Development. CEHTP uses county population data from the California Department of Finance to 

calculate a rate from counts and performs age-adjustment using the U.S. Census 2000 population. 

Because the data were only available at the county level, ZIP CodesTM were assigned the value for the 

county in which they fell and scored was assigned based upon the county distribution. 

2.3.3. Environmental Effects 

We chose two indicators of environmental degradation: hazardous sites and hazardous spills/leaks. 

Hazardous waste facilities and brownfields pose an exposure threat to communities via contaminated 

soil, water and air and can be an indicator of community blight. The location of permitted hazardous 

waste facilities and clean-up sites, including state and federal Superfund and military sites, was 

obtained from the California Department of Toxic Substances Control’s (DTSC) online Envirostor 

database. Each site category was given a weight of 1, 2, or 3 based their status (cleaned-up, pending, or 

active), and a weighted sum of all facilities within each ZIP CodeTM was calculated.  

Spills and leaks of hazardous materials are another threat to water quality and the overall health of 

the environment. Data on sites that threaten water quality were obtained from the Geotracker database 

maintained by the State Water Resources Control Board. Geotracker includes the geographic location 

of permitted and leaking underground storage tanks, spill clean-up sites, landfills, and military sites. 

Each site was given a weight of 1 or 3 based on its clean-up status to obtain a weighted sum of all sites 

within a ZIP CodeTM.  

2.3.4. Sensitive Populations and Socioeconomic Factors 

Children and the elderly were chosen as indicators of sensitive populations. All data for the age  

and socioeconomic indicators came from the 2000 U.S. Census. The U.S. Census creates its own 

geography, the ZIP Code Tabulation Areas (ZCTAsTM), to address the issue of changing ZIP CodeTM 

boundaries by delineating areas by their most commonly occurring ZIP CodeTM. For simplicity, we 

assumed no change in ZIP CodesTM boundaries for our other data sources, and chose to assume 

equivalence between ZCTAsTM and ZIP CodesTM in order to make use of Census data. Age has been 

shown to modify susceptibility to environmental contaminants, with children and the elderly being 

generally more sensitive. The proportions of the population that are under age 5 and over age 65 were 

chosen as two indicators of sensitive populations.  

2.3.5. Socioeconomic Factors 

Income and education are important in determining the resources and capacity of a community to 

address local threats to environmental health. The percent of residents 25 and older with less than high 

school education and the median household income were chosen as two indicators of overall 
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neighborhood socioeconomic status. The percent of residents with incomes less than twice the national 

poverty level was chosen as an additional indicator of individual-level economic deprivation.  

2.4. Correlations and Sensitivity Analyses 

In order to examine the potential for double-counting or redundant indicators, a correlation analysis 

explored the strength and direction of the relationship between indicators within each component. 

Spearman’s rank correlation coefficient was calculated because it does not require that the data be 

normally distributed.  

We also undertook a sensitivity analysis to evaluate the robustness of the model results to changes 

in the equation used to combine indicators and the scoring regime. The model used was compared to 

alternative models with modifications to the range of values assigned to each component, the structure 

of the equation, or both. 

The results were compared by examining the frequency and magnitude of changes in the ranking 

order. Because we are primarily concerned with identifying the most impacted communities, we 

specifically evaluated changes among the highest ranked communities. 

3. Results and Discussion 

Descriptive statistics related to the 30 pilot ZIP CodesTM and the indicators are given in Table 1. 

Out of a possible range of 6–120, cumulative impact scores ranged from 24–96 with a median of 50 

and standard deviation of 18. The component scores for the 30 ZIP CodesTM are provided elsewhere [9]. 

Here, we provide more detail on three example communities in Figure 3. Since this screening method 

is primarily concerned with identifying potential environmental justice communities that warrant 

further investigation, we focus on high scoring communities. Because the results are currently 

preliminary and only illustrative of the methodology, the identity of the ZIP CodesTM is kept 

anonymous here. 

Table 1. Indicators included in the pilot analysis (n = 30). 

 ZIP CodesTM  MEAN (SD 1)  MEDIAN  RANGE  

 Total population  30,144 (20,989) 23,472 1,793–97,300 

 Area (km2)  341 (831) 35 2–3,678 

 Population density (per km2)  1,795 (3,082) 474 4–15,403 

 Indicators  MEAN (SD 1)  MEDIAN  RANGE  

P
o

ll
u

ti
o

n
 b

u
rd

en
 

Exposures     

PM2.5 (µg/m3)  12.1 (4.5) 10.7 5.6–20.4 

Ozone (ppb)  60.2 (12.9) 61.3 39.3–92.0 

Toxic industrial emissions (hazard-lbs)  4.9 × 1010 (2.7 × 1011) 1.4 × 105 0–1.5 × 1012 

Traffic volume (vehicles x day−1 × 1,000 km−2)  16,457 (16,359) 8,742 909–67,285 

Pesticide use (lbs active ingredient/km2)  1,710 (3,718) 13 0–16,948 

   



Int. J. Environ. Res. Public Health 2012, 9 3076 

 

 

Table 1. Cont. 

 Indicators MEAN (SD 1)  MEDIAN  RANGE  

P
o

ll
u

ti
o

n
 b

u
rd

en
 

Public health effects    

Low birth weight rate (% of live births <2,500 g/year) 7.0 (1.5) 7.2 4.0–10.3 

Heart disease mortality rate 

(deaths per 100,000 per year) 

194 (65) 197 79–338 

Cancer mortality rate(deaths per 100,000 per year) 159 (57) 149 53–260 

Asthma hospitalization rate (per 100,000 per year) 9.7 (2.8) 10.1 3.5–15.0 

Environmental effects    

Hazardous sites (EnviroStor score) 28 (37) 12 0–173 

Spills and leaks (GeoTracker score) 103 (104) 77 6–565 

P
o

p
u

la
ti

o
n

 

Sensitive populations    

% under age 5 7.3 (2.7) 6.9 2.9–11.4 

% over age 65 11.1 (4.9) 10.5 3.8–21.7 

Socioeconomic factors    

% over age 24 with less than a high school education 30.7 (23.3) 22.2 4.3–76.4 

Median household income ($) 45,978 (24,906) 37,073 21,124–119,147 

% residents below twice the federal poverty level 40.3 (22.5) 37.3 7.8–79.3 
1 Standard deviation. 

Figure 3. Calculation of the cumulative impact score for three sample communities. 
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3.1. Examples of High-Scoring Communities 

Community A is on the edge of a large urban area that borders agricultural land in the San Joaquin 

Valley of California. It had the highest cumulative impact score of our 30 pilot ZIP CodesTM. The 

population has a high proportion of Hispanic/Latino and African American residents. The exposure 

score for this community fell in the 70th percentile and the public health effect score fell in the 80th 

percentile. Pesticides and air pollution contribute most to exposure; there is relatively little traffic in 

the immediate vicinity. 

This is congruent with the fact that meteorological conditions in the San Joaquin Valley accumulate 

and trap air contaminants originating elsewhere. The low birth weight and asthma hospitalization rates 

are both in the highest quintile. Epidemiological studies have found an association between both of 

these health outcomes and air pollution [20,21]. 

Community A also contains many hazardous and clean-up sites that may imperil environmental 

quality, and the environmental effects score is in the 80th percentile. Finally, the community scores are 

high for nearly all indicators of sensitive populations and socio-economic factors. Thus the community 

exhibits the “double jeopardy” of high pollution burden coupled with population characteristics that 

may make communities more vulnerable to the health effects of contamination.  

Community B is located in a coastal urban area and was among the five highest scoring 

communities in our pilot analysis. It is more densely populated than Community A and is a primarily 

African American community. Despite high traffic and TRI emissions, ambient air quality as captured 

by our two indicators is good or fair, and the overall exposure component score is average. This may 

be an artifact of the fact that the nearest air monitor was located closer to the coast. Agricultural 

pesticide use is in the lowest percentile because this is an urban area. Nevertheless, this community 

scores nearly as high as Community A in pollution burden because of high public health and 

environmental effects. Part of the rationale in incorporating both of these components was to capture 

potential environmental health effects that are not adequately captured in existing environmental 

monitoring systems of background ambient conditions.  

Community C is a densely populated inland urban community in Southern California that is 

primarily Hispanic/Latino and was among the eight highest scoring communities in our pilot analysis. 

In this community, the public health and environmental effects contribute most in driving the high 

pollution burden score. Traffic and air pollution contribute most to the community’s sources of 

exposure, with only moderate TRI emissions and agricultural pesticide use. Asthma rates are high and 

the low birth weight rate is moderate, while the mortality measures are low. This may be related to the 

fact that age-standardized rates were not used, and this community has a younger age distribution. The 

community is home to many hazardous sites and its environmental effect score is in the 80th 

percentile. Finally, this community exhibits an average median household income but large percentage 

of people living in poverty. This is possible if there is great disparity in household income within a 

community, and illustrates the potential importance of including both indicators.  
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3.2. Indicator Correlation  

Pearson’s correlation coefficients for the 16 indicators are shown in Table 3 (n = 30 ZIP CodesTM). 

The most strongly correlated indicator pairs were: the two indicators of environmental effects  

(ρ = 0.77); heart and cancer mortality (ρ = 0.72); the mortality measures and % over 65 (ρ = 0.73 for 

heart and 0.77 for cancer mortality); and all combinations of the three indicators of socioeconomic 

vulnerability (0.72 ≤ |ρ| ≤ 0.94).  

It is possible that the environmental effects indicators are correlated because of overlap between the 

two databases, but it is also reasonable to assume that industrial and clean-up sites are in fact  

spatially clustered. Future analyses will examine the issue of double-counting by evaluating the  

degree of overlap between databases. The correlation between mortality measures, as well as their  

correlation with age, is most likely a product of the fact that age-standardization was not applied.  

Age-standardization would improve the mortality measures in terms of identifying potential 

environmental contributions to disease burden. 

The socioeconomic indicators were highly correlated (|ρ| ≥ 0.72). We believe inclusion of multiple 

indicators of socioeconomic status is appropriate despite their correlation because they measure subtle 

differences between communities. For example, neighborhoods with similar median household income 

may have different proportions of residents living in poverty depending on the degree of income disparity. 

This analysis also reveals that traffic and pesticide use are inversely correlated (ρ = −0.63), as 

would be expected given the predominance of one in urban areas and the other in rural. The two age 

indicators are also strongly negatively correlated, indicating a “canceling out” effect. That is, 

communities with a high proportion of young children do not tend to have a high proportion of older 

individuals. This may have a homogenizing effect on the overall scores of sensitive populations 

(creating many scores of 2), and a single indicator that encompasses both children and elderly may be 

more appropriate.  

It is also interesting to note that the exposure indicators were only moderately correlated with public 

health effects (|ρ| < 0.54) or environmental effects (|ρ| < 0.43). To the extent that public health and 

environmental effects reflect pollution burden, this analysis thus suggests their inclusion adds 

important additional information. 

3.3. Sensitivity Analysis 

Six alternative models were evaluated against our proposed model (see Table 2). Among the 

communities with the highest impact (top six), changing the model resulted in few changes (see  

Table 4). The magnitude and frequency of overall changes in rank however differed considerably 

among the various models (see Figure 4). The “burden only” model resulted in the greatest number of 

total changes (14) as well as the greatest number of changes in rank over six or more positions (9).  

Our scoring regime appeared to have moderate to little effect on the overall results, with both “all 

equal” models resulting in only 5 changes in the ranking order of communities. None of these were 

among the highest ranking communities. 
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Table 2. Alternative models used in the sensitivity analysis 1. 

Model Equation Component Scoring Scheme Maximum Possible Score 

Proposed (A + B + C) × (D + E) (10 + 5 + 5) × (3 + 3) 120 

Additive (A + B + C) + (D + E) (10 + 5 + 5) + (3 + 3) 26 

Exposure Heavy (×) (A + B + C) × (D + E) (20 + 5 + 5) × (3 + 3) 180 

Exposure Heavy (+) (A + B + C) + (D + E) (20 + 5 + 5) + (3 + 3) 36 

All Equal (×) (A + B + C) × (D + E) (10 + 10 + 10) × (10 + 10) 600 

All Equal (+) (A + B + C) + (D + E) (10 + 10 + 10) + (10 + 10) 50 

Burden Only (A + B + C) (10 + 5 + 5) 20 
1 A = exposure; B = public health effects; C = environmental effects; D = sensitive populations; and  

E = socioeconomic factors. 

Figure 4. Frequency and magnitude of changes in rank associated with varying the model. 
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Table 3. Pearson’s correlation coefficients between indicators (n = 30). Absolute values ≥0.6 are highlighted in bold. 

 

Exposure Public Health Effects 
Environmental Health 

Effects 
Sensitive 

Populations 
Socioeconomic Factors 

PM2.5 Ozone TRI Traffic Pesti-Cides LBW Heart Cancer Asthma 
Hazard-Ous 

Sites 
Leaks 

and spills
Under 5 Over 65 Education

Median  
Income 

Poverty 

PM2.5 1.00                

Ozone 0.58 1.00               

TRI 0.10 −0.11 1.00              

Traffic 0.12 −0.21 −0.02 1.00             

Pesticides 0.09 0.23 0.20 −0.63 1.00            

LBW −0.13 0.06 −0.09 0.23 −0.24 1.00           

Heart −0.04 0.01 −0.24 −0.07 −0.34 0.02 1.00          

Cancer −0.33 −0.37 −0.15 −0.04 −0.44 −0.08 0.72 1.00         

Asthma 0.43 0.28 0.53 0.21 0.07 0.05 −0.17 −0.40 1.00        

Hazardous sites −0.24 −0.09 0.42 0.15 0.05 0.18 −0.09 −0.08 0.34 1.00       

Leaks and spills −0.12 −0.06 0.32 0.32 −0.12 0.35 −0.08 −0.17 0.39 0.77 1.00      

Under 5 0.31 0.26 0.44 −0.19 0.46 −0.10 −0.51 −0.68 0.35 0.27 0.19 1.00     

Over 65 −0.33 −0.31 −0.45 0.13 −0.50 0.17 0.73 0.77 −0.33 −0.11 −0.05 −0.80 1.00    

Education 0.22 0.14 0.38 −0.21 0.45 −0.16 −0.38 −0.45 0.31 0.29 0.19 0.81 −0.65 1.00   

Median income −0.25 −0.14 −0.40 0.06 −0.22 0.07 0.25 0.31 −0.48 −0.48 −0.39 −0.60 0.50 −0.72 1.00  

Poverty 0.30 0.16 0.39 −0.13 0.36 −0.15 −0.35 −0.42 0.41 0.35 0.28 0.73 −0.63 0.89 −0.94 1.00 
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3.4. Limitations and Challenges 

Several challenges arose in our effort to combine disparate data sources that are likely to be 

confronted by others conducting cumulative impact assessments. The choice of geographic level of 

analysis is always difficult because data are available in different forms. We chose ZIP CodesTM 

because we felt they were of a size appropriate to capture a “community” and would be more easily 

interpreted by the public and decision-makers. We also wanted to avoid implying greater geographic 

precision than appropriate for the data sources that had coarse geographic resolution. However, ZIP 

CodeTM boundaries change according to the needs of the U.S. Postal Service, and geographic boundary 

files must be purchased from private vendors. Moreover, Census data are released as ZCTATM rather 

than ZIP CodeTM estimates. For simplicity, we therefore chose to assume perfect geographic overlap 

between ZCTAsTM and ZIP CodesTM although they in fact vary. 2010 ZCTAsTM better correspond to 

ZIP CodesTM and also exclude large uninhabited areas; using 2010 Census data will therefore serve as 

an improvement.  

Missing data was one challenge that is of particular concern for the public health indicators, where 

data need to be suppressed for confidentiality reasons and where low counts produce unstable 

estimates that vary substantially year-to-year. We took multi-year averages to help address this 

problem. We also chose to use three-year averages for the ambient air monitoring data to account for 

discontinuous monitoring and to minimize the contribution of extreme weather patterns. 

Many important facets of environmental and public health are not monitored statewide and data for 

those available statewide may not be in an easily accessible data source or format. For example, most 

of our exposure indicators are related to air pollution and we are working to identify indicators that 

address other exposure pathways. Not all health data were accessible at the ZIP CodeTM geographic 

resolution nor in the form of age-adjusted rates. Cancer incidence rather than mortality would also 

arguably be a better measure because many people with cancer die of other causes. In the future, we 

plan to request additional health data and consider sources of information not contained in this pilot. 

However, even in the face of data gaps and limitations we feel that it is important to move forward 

with using, as well as refining the data that is available in order to begin to address the needs of 

environmental justice communities.  

Our method was developed to conform with the Cal/EPA definition of cumulative impacts. In this 

way indicators of public health effects such as low birth rate were considered to be reflective of 

pollution burden. However, we recognize that the public health effects indicators we identified could 

also have served as indicators of population characteristics. Public health outcomes may also be considered 

as a combination of pollution burden and population characteristics. For example, our indicator, 

asthma hospitalization rate, can reflect environmental exposures to air pollution as well as the ability to 

manage and cope with asthma symptoms which may be reflective of socioeconomic status.  

Another challenge we encountered is in setting the relative scores or weights for the components 

and indicators. However, concern over this challenge is tempered because our overall goal is to 

identify the most impacted communities and not to discern small differences amongst communities. As 

shown as Table 4, the identification of most impacted communities is insensitive to the alternative 

model structures and weights. 
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Table 4. Changes in rank associated with varying the model. 

Model 
Changes among the Six Most 

Impacted Communities 
Total Changes (out of 30) 

Proposed vs. Additive 0 10 
Proposed vs. Exposure Heavy (×) 1 9 
Proposed vs. Exposure Heavy (+) 1 12 

Proposed vs. All Equal (×) 0 5 
Proposed vs. All Equal (+) 0 5 
Proposed vs. Burden Only 0 14 

There is also no clear way in which to validate the results of our analysis because there is no 

definitive measure of “cumulative impact”. Going forward, we consider acceptance and use of the 

method by the regulators and environmental justice community-based organizations that will use it as 

an important indication of its quality and utility. With the identification of communities that score 

high, more detailed evaluation of communities can be performed to better understand how intervention 

efforts may be best targeted. Comparing areas identified as impacted by our screening method with 

other methods, such as the Environmental Justice Screening Method or the Cumulative Environmental 

Vulnerability Assessment, for example, will provide additional information on the strength of our 

method [15,16]. 

4. Conclusions 

This pilot study successfully applied a cumulative impacts screening method to 30 communities in 

California. Using existing data, communities in California of high potential environmental justice 

concern were identified. The issues confronted when considering such a wide range of different data 

sources provides insight into ways to improve the way data are generated and collected. The ability to 

consistently identify the same communities as most impacted regardless of the model structure 

supports the use of this screening method for relative ranking. Only publicly available sources of data 

were used in this analysis in order to allow for maximum transparency. However, this resulted in 

several limitations in regards to specific indicators. Future work will include working with colleagues 

and stakeholders to improve each indicator and scaling up the analysis to the entire state.  
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