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Abstract: Cities in Taiwan are so dependent on reservoir water that preservation of the 

upstream reservoir watershed has become a significant public concern. However, due to 

the high-density development of land, resulting in rapid urban expansion, the construction 

of tunnels and elevated highways across reservoirs to better utilize the surrounding land 

has become a global trend. Based on data from long-term observation of the reservoir, this 

study verifies the difference in water quality before and after the highway construction. 

The results indicate that the total phosphorus (TP) increased on average 14 μg/L to  

36.5 μg/L per annum, and the water quality is expected to require 10 years to recover. 

During the highway development, the average TP was more than twice the normal level. 

During summer, the TP level increases 3.1-fold due to rainfall. As indicated by the results, 

the large-scale land development will harm the long-term preservation of the reservoir’s 

water quality, and therefore should be avoided. 

Keywords: reservoir water quality; Hsuehshan Tunnel; phosphorus; non-point sources 

pollution 
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1. Introduction 

In Taiwan, due to its short rivers, steep slopes, and high flow rates, drinking water availability is 

primarily contingent on the use of reservoirs. When the project to protect the water quality of the 

reservoirs was developed, the government recommended higher quality requirements and 

environmental protection measures. For example, wastewater caused by civil works projects should be 

intercepted and processed before draining into the reservoir, and the vegetation of destroyed hillsides 

should be rebuilt. Monitoring of the water quality required enforcement. However, the passiveness of 

environmental monitoring rendered assessing the actual environmental effects of the projects  

difficult [1]. Under such circumstances, there was a significant need for long-term water quality 

monitoring to clearly understand water quality variations [2]. To verify reliability, other reservoirs 

with similar conditions were utilized as the control group. 

Eutrophication can be defined as the presence of excessive nutrient substances in water, which 

stimulates biological growth of organisms such as algae and hydrophytes, and thus influences the 

water supply chain. Nutrient substances are typically derived from urban garbage, industrial 

wastewater and sewage, agricultural runoffs, forest runoffs, urban and marketplace runoffs, and 

atmospheric fallout. Nitrogen and phosphorus are the important factors that control nonpoint source 

pollution [3–6]. The most effective way to control eutrophication is to prevent nutrient substances 

from flowing into the water. According to preceding research, nonpoint source pollution is closely 

related to land use [7–11]. Land use of tunnel construction varies significantly regarding both time and 

space. To date, a relevant standard calculation formula is still unavailable. Groundwater penetration is 

quite commonplace during tunnel construction. However, not only does the groundwater penetration 

damage construction equipment and endanger construction workers, it also displaces a significant 

quantity of sediment and exacerbates soil erosion, presenting a serious hidden risk to the water quality 

of the reservoir [12]. In this case, during the construction of the Hsuehshan Tunnel, a sudden spewing 

of groundwater eroded several tea gardens and increased the likelihood that nutritive salt entered the 

reservoir. 

In Taiwan, the strategy for river pollution control is that point source pollution control takes 

precedence over nonpoint source pollution control. The upstream watershed is primarily surrounded by 

ancient forests and small villages. However, there are no countermeasures to manage nonpoint source 

pollution problems arising from the tunnel’s construction. Research by Chou et al. [11] indicates that 

without a 37% decrease of TP the oligotrophic conditions of the Feitsui Reservoir will be impossible 

to maintain. The upstream project will aggravate the trophic state of water quality in reservoir 

downstream. 

Using data from long-term monitoring, this study evaluates the long-term effects on reservoir water 

quality of constructing a highway and tunnel in an upstream reservoir watershed. Considering the few 

external pollutants and abundant vegetation of the watershed, the effects of the large-scale project can 

be clearly documented by long-term monitoring. This study attempts to confirm the hidden pollution 

hazards of the project and determine the length of their influence. 
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2. Materials and Methods 

This study categorized the water quality monitoring data of the Feitsui Reservoir as the 

experimental group and that of the Shihmen Reservoir and Tsengwen Reservoir as the control groups 

to compare the effects of the construction of highways and the Hsuehshan Tunnel on reservoir water 

quality. 

2.1. Overview of the Hsuehshan Tunnel 

With a total length of 12.942 km, the Hsuehshan Tunnel, located between Pinglin, New Taipei City, 

and Toucheng, Yilan County, is the longest tunnel in Taiwan and the fifth longest road tunnel in the 

World. The tunnel connects the city of Taipei to the northeastern Yilan County. The construction of 

the main tunnel began in July 1993, and the tunnel opened in June 2006. The Hsuehshan Tunnel is 

comprised of two main tunnels (with a length of 12,942 m and a diameter of 11.8 m) and one pilot 

tunnel (with a length of 12,942 m and a diameter of 4.8 m). The pilot tunnel, the lining of which is 30 

to 60 cm thick, is used for emergency rescues. 28 transverse walking tunnels, eight vehicle tunnels, 

and shafts and air vents (including three ventilation stations, three ventilation repeaters, 12 transverse 

ventilation tunnels, and six airshafts) comprise the exhaust system of the two main tunnels. The 

Hsuehshan Tunnel boasts the largest group of dual-bore highway tunnels in the World, and its 

construction cost 640 million USD [13]. 

Figure 1. Research area. 
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2.2. Overview of the Feitsui Reservoir, Shihmen Reservoir, and Tsengwen Reservoir 

This study primarily discusses the changes in the water quality of the upstream Feitsui Reservoir 

watershed following the construction of highways and tunnels, while using data on the water quality of 

Shihmen Reservoir and Tsengwen Reservoir as the control groups. The volume of clean water 

currently held by the Feitsui Reservoir, which is primarily supplied to people in Taipei and New Taipei 

City, is 87.1% of effective storage capacity. The upstream watershed of the Feitsui Reservoir has a 

long history of tea plantations. Due to the favorable soil and water conservation, vegetation is 

sustained [2,5,6,14]. The Shihmen Reservoir, adjacent to the Feitsui Reservoir, has similar 

meteorological and hydrological conditions, and the volume of water currently held is 49.8% of the 

effective storage capacity. Some of the areas in New Taipei City supplied with drinking water by the 

Shihmen Reservoir overlap with those supplied by the Feitsui Reservoir. The prevailing agricultural 

practices and sightseeing activities, as well as excessive deforestation of some areas in the upstream 

watershed of Shihmen Reservoir exacerbate the siltation. Additionally, the increasing water turbidity 

caused by typhoons have led to a short supply of drinking water. Taiwan’s largest reservoir, the 

Tsengwen Reservoir, is the major reservoir in the south of Taiwan. The water stored here is primarily 

used for irrigation, and the current stores are only 13.28 % of its effective storage capacity (shown in 

Table 1 and Figure 1). 

Table 1. Reservoir basic information. 

Name Feitsui Reservoir Shihmen Reservoir Tsengwen Reservoir 

Group Experimental Group Control Group 1 Control Group 2 

Watershed (km2) 303 763.4 481 

Gross Reservoir Capacity 
(m3) 

460 million 390 million 590 million 

Reservoir’s Water Quality Mesotrophic Mesotrophic to 
Eutrophic 

Mesototrophic 

Water Supply Capacity 
(CMD) 

3.45 million 1.48 million 0.35 million 

Supply Population 5.5 million 3 million 1.8 million 

Main Function Drinking, flood 
prevention, and 

electricity generation 

Irrigation, drinking, 
flood prevention, 

electricity generation, 
and sightseeing 

Irrigation, flood 
prevention, electricity 

generation, and 
sightseeing 

2.3. Reservoir Water Quality Data 

Reservoirs are important source of drinking water in Taiwan, so it is important to build a good 

reservoir water quality monitoring network, and to analyze water quality changes in different 

circumstances. The Environmental Water Quality Information Database established by Taiwan’s 
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Environmental Protection Administration (EPA) developed a database of water bodies and water 

quality monitoring data. This study obtained the reservoir monitoring data from the database, and all 

data was sampled and tested using the standard methods proposed by the EPA. Chemical analysis of 

reservoir water quality evaluated the 18 aspects of: temperature, transparency, pH, dissolved oxygen 

(DO), conductivity, turbidity, suspended solids (SS), hardness, total alkalinity, chemical oxygen 

demand (COD), ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, organic nitrogen, total phosphorus 

(TP), phosphates, chlorophyll A, and total organic carbon (TOC). Water sampling is conducted 

quarterly, and each location is sampled at depths of 0.5 m, 50 m, and 100 m. Sampling has been 

conducted since 1993 to 2011. There are six water sampling sites in each reservoir with a sampling 

frequency of four times per year during four seasons. A total of 2,927 sampling and analysis records 

were obtained for evaluating water quality. In which 1,217 records of Feitsui Reservoir, 767 records of 

Shihmen Reservoir and 943 records of Tsengwen Reservoir, respectively. 

2.4. Water Quality Trend Test  

The Mann–Kendall test is a non-parametric test which is commonly used to assess the significance 

of trends in time series such as water quality, stream flow, temperature, and precipitation. We used the 

Mann–Kendall test to detect whether the trends of the experimental group and control groups occur or 

not as the variations of water quality in each year turned slightly. This test is can use for making up 

part of incomplete or missing data. Equations (1) and (2) illustrate the process of calculating S [15,16]: 

S ∑ ∑ sign x x       x x , x , … … , x     (1) 

sign x x
1
0
1

if 

x x 0
x x 0
x x 0

     (2) 

where S is Kendall score; i is any position less than j, j is position at the jth time, sign is evaluating 

function. When the value of S is greater or less than ‘0’, and H0 is rejected (H1: S ≠ 0, at a confidence 

level of α = 0.05), the time-series trend either rises or decreases. Otherwise, if H0 is accepted (H0:  

S = 0, at a confidence level of α = 0.05) there is no correlation between the two variables, with which 

mean a negligible or nonexistent trend in the time series. This method is proved to be robust to 

determine trend of time series [17]. The Kendall Package based on R-model (Version 2.6.2) was 

applied in this study. Missing data were supplemented according to temporal coherence. A positive 

tou-value is shown as an upward trend, whereas a negative value is shown as a downward trend. The 

R-model was used to establish matrices from the program for the calculation of tou-values and  

p-values based on various water quality data collected from each year and each site. 

 

3. Results and Discussion 

3.1. Water Quality of Reservoir 

The data samples of reservoir water quality between 1993 and 2011 were statistically analyzed, as 

shown in Table 2. The data are computed as mean value ± standard deviation.  
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Table 2. Basic statistical analysis of reservoir water quality. 

 
Temperature  Transparency pH DO Conductivity Turbidity SS Hardness 

Total 
Alkalinity 

Experimental 
Group 
Feitsui 
Reservoir 

21.8 ± 3.8 3.2 ± 1.3 7.25 ± 0.59 7.1 ± 1.7 77.9 ± 12.3 5.85 ± 19.8 4.99 ± 13.9 23.38 ± 8.39 17.85 ± 5.3 

COD Ammonia 
Nitrogen 

Nitrate 
Nitrogen 

Nitrite 
Nitrogen 

Organic 
Nitrogen 

TP Phosphates Chlorophyll 
A  

TOC 

4.9 ± 4.85 0.10 ± 0.09 0.51 ± 0.19 0.008 ± 0.013 0.34 ± 0.34 26.4 ± 36.0 16.2 ± 36.19 1.7 ± 1.6 1.19 ± 0.64 

Control 
Group 1 
Shihmen 
Reservoir 

20.7 ± 4.4 1.7 ± 0.9 8.05 ± 0.56 7.7 ± 1.9 218 ± 36.0 15.24 ± 64.9 10.78 ± 60.8 94.08 ± 15.74 67.41 ± 15.9 

COD Ammonia 
Nitrogen 

Nitrate 
Nitrogen 

Nitrite 
Nitrogen 

Organic 
Nitrogen 

TP Phosphates Chlorophyll 
A  

TOC 

5.44 ± 6.29 0.064 ± 0.07 0.36 ± 0.20 0.007 ± 0.019 0.25 ± 0.19 36.8 ± 38.7 24.1 ± 22.20 3.2 ± 3.3 1.2 ± 0.51 

Control 
Group 2 
Tsengweng 
Reservoir 

24.8 ± 3.1 1.8 ± 0.8 7.98 ± 0.43 6.3 ± 2.2 279 ± 53.0 8.02 ± 12.0 7.03 ± 13.4 118.45 ± 19.17 105.6 ± 19.8 

COD Ammonia 
Nitrogen 

Nitrate 
Nitrogen 

Nitrite 
Nitrogen 

Organic 
Nitrogen 

TP Phosphates Chlorophyll 
A  

TOC 

6.34 ± 5.56 0.069 ± 0.10 0.55 ± 0.29 0.008 ± 0.018 0.28 ± 0.23 30.69 ± 33.9 18.8 ± 23.10 2.6 ± 2.7 1.52 ± 0.57 

Units: Temperature (°C), Transparency (m), DO (mg/L), Conductivity (μmho/cm 25 °C), Turbidity (NTU), SS (mg/L), Hardness (mg/L),  
Total Alkalinity (mg/L), COD (mg/L), Ammonia Nitrogen (mg/L), Nitrate Nitrogen (mg/L), Nitrite Nitrogen (mg/L), Organic Nitrogen (mg/L), TP (μg/L), 
Phosphates (mg/L), Chlorophyll A (μg/L), TOC (mg/L). 
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Total phosphorus and phosphate values indicate the level of erosion, and their low values reflect the 

high water quality of the Feitsui Reservoir. Chlorophyll A indicates a good control of algae, while 

TOC reveals the water of the Feitsui Reservoir was rarely polluted. The water quality indicators above 

comprise three assessment perspectives: biological assessment, physical assessment, and chemical 

assessment.  

3.2. Compare the Water Quality of TP 

The average TP amounts of both the experimental group and the control group are shown in Figure 2. 

The highway development began influencing the Feitsui Reservoir in 1993, and the average TP 

concentration peaked in 1996, exceeding three times the water quality standard of 20 (μg/L) for 

Taiwan’s reservoirs. The standard deviation of TP reached 101 (μg/L). Such high TP concentrations 

lead to algae breeding in the reservoir, and thus cause an eutrophication problem. Due to the clean 

water in the Feitsui Reservoir, the load caused by the highway construction can be alleviated, 

preventing the downstream area from being influenced. After 2003, the water quality of the Feitsui 

Reservoir stabilized, with the average TP below 20 (μg/L) and standard deviation of TP below  

10 (μg/L). The TP variation tendency indicates that the highway construction has, directly or 

indirectly, influenced the reservoir’s water quality for nearly 10 years.  
 

Figure 2. Water Quality Variations of Feitsui Reservoir, Shihmen Reservoir, and 

Tsengwen Reservoir from 1993 to 2011. 

 

Data from the control group showed a decrease in the TP values of Shihmen Reservoir. According 

to onsite observations, the prevailing agricultural practices and excessive deforestation in the upstream 

area have led to serious sand accretion and significant water quality variation. As shown in Figure 2, 

the water quality variation of the control group differs from that of the experimental group, and 

therefore, climate can be eliminated as a cause of water quality variation. Table 3 revealed temporal 

variations in Feitsui Reservoir, Shihmen Reservoir, and Tsengwen Reservoir from six sampling sites 

each one according to the long-time observation water quality data. All of the monitoring readings 
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showed a positive impact from construction impact. Trend of TP represented a decrease of up to 0.497 

in the tou-value (p < 0.01) at Feitsui reservoir. And the same situation in Shihmen reservoir, the  

tou-value is 0.462 (p < 0.01). This indicates that main effect was a reduction in TP occurs soon after 

the highway construction was finished. 

Table 3. Trend of water quality of TP.  

 Score Var (Score) Denominator tau 2-sided pvalue 

Feitsui 
Reservoir 

–85 817 171 –0.497 0.003 

Shihmen 
Reservoir 

–79 817 171 –0.462 0.006 

Tsengwen 
Reservoir 

–21 697 153 –0.137 0.449 

Figure 3. The average TP amount before and after seasonal influence analysis. 

 

According to water quality variation tendencies, 2003, the year the tunnels and highways were 

constructed, is the cut-off point for the original environment of reservoir water quality. Therefore, a 

comparison between the TP amount from 1993 to 2002 and that from 2003 to 2011 was made, as 

indicated in Figure 3. The periods from 1993 to 2002 are construction impact periods and the periods 

from 2003 to 2011 are non-construction impact periods. Additionally, the TP amount was judged 

seasonally [18]. During the dry season (January to June), the TP concentration after the construction 

impact period was low, approximately 2 to 2.5 times the level prior to construction, while during the 

wet season it was approximately 2.5 to 3 times. That’s indicate that the construction impact on water 

quality. 

3.3. Total Phosphorus Mass Balance in the Reservoir 

The main sources of nutrients in the reservoir catchment area are rainfall runoff entrained sediment 

of suspended particles and dissolved substances. When water flows into the river and reservoir (in 
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Feitsui Reservoir), hydraulic water residence time is about 125 days, during this period the nutrient 

substances will be affected by various biogeochemical reactions, of which adsorption and precipitation 

are the most significant influences. During the operation of the reservoir, the discharge of water stored 

will remove some of the suspended particles or dissolved nutrient substances. This can be written as a 

simple description of the mode, the output + deposition = input. Sedimentation volume in the reservoir 

can be calculated. For example, about 200,000 kg of phosphorus was washed out into Feitsui Reservoir 

and the large part accumulated in the sediments. However, water quality models estimate that only 

10% of phosphorus content was significantly underestimated in the past. Of phosphorus supply volume 

cannot reach a stable balance makes the whole environment, therefore, non-point source pollution is 

undervalued long-term. To explain this status, although phosphorus in sediments has a trend to release 

the pollutant into water bodies, this driving force is limited by a variety of other hydro activities, such 

as chemical, biological, and so many factors impact the water quality. Cause by observation catchment 

water quality not in rainy day. This leads to a large estimation error by commonly used estimation 

models. Therefore, this study suggests that developments upstream of the reservoir will make for a 

high potential for pollution of the water of the reservoir. 

4. Conclusions 

In the field of water science, numerous variable environment factors make it enormously difficult to 

select the experimental group and the control group. A complete understanding of the onsite 

environment and a significant volume of monitoring data are required to interpret the phenomena. The 

foundation of this study was the planned monitoring of water quality to establish the variation 

tendency of water quality, and thereby, serve as a reference for formulating a water pollution 

prevention strategy. In this study, due to the construction of highways in the upstream watershed, as 

well as the Hsuehshan Tunnel, the output of nonpoint source pollution rose twice the normal level, and 

the TP concentrations have also increased over the past ten years. Therefore, this study recommends 

that the project in the reservoir’s water resources protection area be developed cautiously as it could 

cause long-term water quality problems. 
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