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Abstract: This paper studies the contemporaneous relationship between S&P 500 index returns and
log-increments of the market volatility index (VIX) via a nonparametric copula method. Specifically,
we propose a conditional dependence index to investigate how the dependence between the two
series varies across different segments of the market return distribution. We find that: (a) the two
series exhibit strong, negative, extreme tail dependence; (b) the negative dependence is stronger in
extreme bearish markets than in extreme bullish markets; (c) the dependence gradually weakens
as the market return moves toward the center of its distribution, or in quiet markets. The unique
dependence structure supports the VIX as a barometer of markets’ mood in general. Moreover,
applying the proposed method to the S&P 500 returns and the implied variance (VIX2), we find
that the nonparametric leverage effect is much stronger than the nonparametric volatility feedback
effect, although, in general, both effects are weaker than the dependence relation between the market
returns and the log-increments of the VIX.

Keywords: conditional dependence index; Kendall’s tau; leverage effect; nonparametric copula; tail
dependence index; volatility feedback effect

JEL Classification: C13; C22; G1

1. Introduction

Investors witnessed severe downturn in the U.S. stock market in the second half of the year 2008
when the mood of the bearish market was often cited through an implied volatility index—the VIX,
a trade mark held by the Chicago Board Options Exchange (CBOE). The VIX is designed to retrieve the
market’s estimate of average S&P 500 index volatility over the subsequent 22 trading days. As bearish
markets frequently observed counter-movements between S&P 500 index prices and the VIX, the VIX
earned itself a reputation of market barometer of investors’ fear (see Figure 1).1 Motivated by this
observation, we join the traditional finance literature to study the leverage and volatility feedback
effects via the nonparametric method, where the asymmetric GARCH-in-mean type of models are
popularly used in such a study (see Bekaert and Wu (2000), and references therein).

1 “Fears Takes a Holiday: VIX at 7-Month Low”. The Wall Street Journal, 4 December 2010.
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Figure 1. Raw Data Plot (01/02/1990–12/29/2017; black: S&P 500 Index; red: VIX).

To explain a stylized fact of stock markets—the asymmetric volatility: Volatility responds more
to a drop in the value of a stock (index) than an increase of an equal amount in the value of the stock
(index); two popular hypotheses have been put forward such as the leverage and volatility feedback
effects hypotheses; see Black (1976); Bollerslev and Zhou (2006); Campbell and Hentschel (1992);
Christie (1982); French et al. (1987), among many others. From the empirical financial econometrics
point of view, the two hypotheses explain opposite causality between stock price movements and
volatility. So, which direction of causality is stronger? The answer is inconclusive; see, Bekaert and
Wu (2000); Bollerslev et al. (2006), among others. Moreover, there is no agreement on which data
set shall be used. For example, the literature has seen volatility measured by historical volatility,
conditional volatility, realized volatility and implied volatility. A noticeable research study has
been made to learn the information content of the four different volatility measures; for example,
Christensen and Prabhala (1998); Fleming (1998); Blair et al. (2001); Poon and Granger (2003);
Becker et al. (2009); Jiang and Tian (2005), among many others.

In this paper, we use the VIX as the measure of volatility. The VIX is published by the CBOE almost
continuously each trading day such that it is public information available to all investors. Therefore,
it will be a public interest to learn more about how the two publicly observable series, the S&P 500
index and its implied volatility index (or VIX), interact with each other. In addition, in empirical
finance literature, the relationships between VIX (or the VIX changes) and market returns are popularly
studied in semiparametric or parametric regression framework, which can potentially suffer model
misspecification problem. For example, Bollerslev and Zhou (2006) and Bekiros et al. (2017) estimate
the leverage and volatility feedback effects from several competitive parametric models and notice that
the magnitude of these effects is very sensitive to the underlying model used for the analysis. In this
paper, we therefore introduce a model-free approach to reinvestigate the causality between the implied
variance (or the changes in VIX) and the market returns, by estimating the joint density functions of
the two variables of interest. Specifically, we apply the nonparametric copula technique developed by
Wu (2010) to estimate the joint density functions.

The current paper contributes to the existing literature in two folds: a new methodology and new
empirical findings. In the aspect of a new methodology in studying the leverage and volatility feedback
effects, we attach both effects to market specific conditions by proposing a nonparametric conditional
dependence index (see Section 4). Take the leverage effect as an example. It is a common practice in the
traditional finance literature that volatility asymmetry is linked to the sign of market returns (or the
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sign of market return innovations) in asymmetric GARCH-type models, where a negative leverage
parameter is seen as an evidence supporting the leverage hypothesis. Our proposed method, however,
can be used to uncover the strength of the leverage effects across different market conditions, as we
directly measure the dependence of the implied variances on S&P 500 index returns given that S&P
500 returns fall into different segments of the return distribution. Consequently, our results enable
investors to understand under what circumstances they should pay particular attention to the leverage
effect of the market returns on the market expected future volatility. Here, the concept of the leverage
effect is extended to the impact of the (contemporaneous and lagged) S&P 500 index returns on the
implied variances.

One advantage of our research is that we attach the leverage effect with the performance of S&P
500 index, while traditional research, using asymmetric GARCH-type models to study the leverage
effect, tends to define the leverage effect with respect to a predetermined reference point, usually zero.2

Interestingly, we find that the leverage effects exhibit a W shape across different segments of S&P
500 index return distribution. To our knowledge, this is an interesting new finding that has not been
documented in the finance literature: When studying the leverage effects of market returns, one needs
to look beyond how market volatility reacts to positive or negative market returns.

The volatility feedback effect documented states that market returns are positively correlated with
market volatility, and the returns are high (low) if the anticipated volatility increases (decreases).
GARCH-in-mean type of models are usually used to test the volatility feedback effect (e.g.,
Poterba and Summers (1986); French et al. (1987); Campbell and Hentschel (1992); Glosten et al. (1993)),
where the coefficient for volatility effect is assumed to be a positive constant. Bekaert and Wu (2000)
did allow market volatility to bear a varying risk premium when modeling excess stock (index) returns
of Japanese market by assuming a conditional version of the CAPM based on the riskless debt model;
however, the volatility feedback effect is difficult to be estimated accurately as stated in their paper.
In this paper, the conditional dependence index proposed in Section 4 is a model-free measure of the
volatility feedback effect. We find that the volatility feedback effect is a U-shape curve as the squared
VIX moves across different segment of its distribution. In contrast to Bekaert and Wu’s (2000) finding,
but consistent with Engle and Ng (1993) and references in Bollerslev et al. (2006), we find that the
volatility feedback effect is generally smaller than the leverage effect.

Most researchers agree that the implied variance,VIX2, has a long-memory of its past, while S&P
500 market returns have a very short memory of its past. We therefore decompose the logarithm of the
implied variance into two components: its previous day value and its daily increment (named rvix in
this paper). We show that the log-increment of the VIX has very short memory comparable with the
market return. Since the relation between market returns and the implied variance is a balanced or net
outcome of the relation of the market returns with each component of the implied variance, we then
explore the instantaneous relation between the short-memory component of the implied variance and
the market returns. That is, we investigate not only the leverage and volatility feedback effects along
the line of the traditional finance literature, but also study the relation between the log-increments of
the VIX and the market returns. Our empirical findings are consistent with our intuition: we observe
considerable contemporaneous dependence between S&P 500 index returns and the logarithm changes
of the VIX, which is bigger than both the leverage and volatility feedback effects in terms of magnitude
in general.

The strong daily, negative, asymmetric relation between the market returns and the increments
of the market volatility is also found in Giot (2005) and Hibbert et al. (2008) in a simple linear
regression model framework and Bekiros et al. (2017) in a linear quantile regression setup. Our analysis
provides several additional noteworthy results: (a) the two series exhibit strong, negative, extreme tail

2 As an exception, Wu and Xiao (2002) studied the asymmetry of the volatility response curve via a generalized partially
linear regression model of the VIX on S&P 100 index, which is a semiparametric approach.
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dependency; (b) the negative dependency is stronger in extreme downturn markets than in extreme
bullish markets; (c) the dependency gradually weakens as the market return moves toward the center
of its distribution, or in quiet markets. These results imply that the simple linear regression model
with a dummy variable to account for positive or negative market returns may not be sufficient to
capture the extreme tail relation between the log-increments of the VIX and the S&P 500 index returns
and that the average relation implied by the linear regression model may understate the relation of the
two series in extreme market conditions.

The rest of the paper is organized as follows. Section 2 presents the data and summary statistics.
Section 3 discusses the nonparametric estimation of copula joint densities and presents the tail
dependence indexes of interest. In Section 4, we propose a conditional dependence index to study the
leverage and volatility feedback effects and the relation between market returns and the log-increments
of the VIX. To check on the robustness of the results, we conduct subsample analysis by splitting the
data into four subsample periods. We conclude in Section 5.

2. Data and Descriptive Statistics

We downloaded daily S&P 500 index prices from DataStream and daily implied volatility (or VIX)
from the CBOE. The data span from 2 January 1990 (the first date that the VIX is available) to 29
December 2017. The VIX is designed to provide a benchmark market volatility index measuring
the market’s aggregate view of the average market volatility over the subsequent 22 trading days,
calculated from both at-the-money and out-of-the-money S&P 500 option contracts satisfying some
volume conditions (Whaley 1993, 2000) via a model-free method developed by Demeterfi et al. (1999)
and originated from the seminal work of Breeden and Litzenherger (1978). Detailed information about
the VIX can be found at http://www.cboe.com.

The VIX is frequently cited as a barometer of investors’ fear, and this view of the implied volatility
has found strong popularity among the investor community. A high VIX beyond 40 is usually linked
to a severe bear market while a low VIX value to a market with more confidence. The first time that the
VIX surpassed the value of 40 was on 31 August 1998, a year marked by Russia’s currency devaluation
and national debt moratorium and the collapse of the Long Term Capital Management in the U.S.A.
The number of transaction days with the VIX value exceeding 40 is 15, 4, 10, 63, 61, 3, 11, and 1 in
the year of 1998, 2001, 2002, 2008, 2009, 2010, 2011, and 2015, respectively. On 20 November 2008,
the VIX reached its record high of 80.86, marking an unprecedented financial crisis faced by global
financial markets.

We plot the two data series in Figure 1. For the data period under consideration, the two indexes
moved in opposite directions in 77.68 percent of the total transaction days. Splitting the data according
to the directions of the S&P 500 index price movements, we observe this: of 77.08 percent of the
total 3285 transaction days that the S&P 500 index fell, the VIX gained; of 78.30 percent of the total
3765 transaction days that the S&P 500 index gained, the VIX fell. We also see a significant increase in
counter-movements between the two indexes during extremely bearish market periods; for example,
the two series move in opposite directions 84.92%, 88.93%, and 80.15% of the transaction days in the
year of 1998, 2008, and 2009, respectively.

Let Pt and VIX2
t be the S&P 500 index price and the implied variance at date t, respectively.3

We construct the daily S&P 500 index return and the log-increment of the VIX as follows:

rspt = 100× ln (Pt/Pt−1) and rvixt = 100× ln (VIXt/VIXt−1) . (1)

3 The VIX is the implied standard deviation of near future average market index volatility. Therefore, the implied variance
equals the squared value of the VIX.

http://www.cboe.com
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Table 1 reports the summary statistics of the implied variance, S&P 500 index returns,
and log-changes of the VIX. It is noted that rvixt has a slightly lower average but significantly higher
variation than rspt during the sample period. We then split the data according to the sign of rspt and
calculate the upside and downside averages and sample standard deviations for both rspt and rvixt.
Interestingly, we observe that both series exhibit stronger volatility in the downturn markets than in
the upturn markets. In the downturn markets, the market index performed considerably worse than in
the upturn markets, and the opposite holds true for the VIX index. In addition, the implied variance,
VIX2

t , is on average lower and less volatile when the S&P 500 index prices went up than when the
S&P 500 index prices came down.4

Table 1. Summary Statistics (01/02/1990–12/29/2017).

Variable x̄ x̄− x̄+ σ̂ σ̂− σ̂+

VIX2 450.178 492.787 412.208 479.277 538.629 415.808
rvix 0.018 3.410 −3.010 5.888 5.432 4.454
rsp 0.019 −0.791 0.742 1.137 0.882 0.802

ρ (1) ρ (2) ρ (3) ρ (4) ρ (5) ρ (6)
VIX2 0.971 0.947 0.933 0.916 0.908 0.896
rvix −0.091 −0.081 −0.033 −0.034 −0.014 −0.030
rsp −0.049 −0.069 0.024 −0.025 −0.035 0.005

a. x̄ = average return, x̄− = downside average return over times when rsp < 0, x̄+ = upside average return
over times when rsp ≥ 0; b. σ̂ = sample standard deviation, σ̂− = downside sample standard deviation over
times when rsp < 0, σ̂+ = upside sample standard deviation over times when rsp ≥ 0. c. ρ̂ (h) is the sample
autocorrelation of lag h and the 5% critical value equals 0.023. Also, the Ljung-Box statistics with six lags are
Qrsp(6) = 45.58, Qrvix(6) = 110.72, and QVIX2 (6) = 36769, where the 1% critical value equals 16.811.

Next, we use three dependence measures between rsp and rvix to examine the counter-movements
between the S&P 500 index prices and the VIX values, including Pearson’s correlation coefficient,
Kendall’s tau,5 and λ = Pr (rspt × rvixt < 0). Kendall’s tau reveals a strong negative (or positive)
association between the two series if it is close to negative (or positive) one, and a weak association if
it is close to zero. Kendall’s tau equals zero, if the two series are independent, but it may not hold true
vice versa. As for λ ∈ [0, 1], the probability that the two series move in opposite directions, the closer λ

is to one, the stronger is the negative association between rspt and rvixt. We report our estimates in the
fourth to sixth columns in Table 2. The sample correlation between rvixt and rspt ranges from −0.878
in 2015 to −0.450 in 1995 and Kendall’s tau ranges from −0.727 in 2015 to −0.295 in 1995. The negative
dependence was more prominent in the past 18 years of the 21th century than in the 1990s. For the
entire sample period under consideration, there is a 77.7 percent chance that the S&P 500 index prices
and the VIX values moved in opposite directions, and this number peaked at 88.9 percent in 2008
and bottomed at 63.9 percent in 1995. Roughly speaking, the worse the market is, the stronger is the
negative dependence.

4 Some results are studied but not reported in the main text for brevity. We constructed two optimal portfolios of S&P 500
index and VIX based on minimum variance criterion and maximum Sharpe ratio criterion. The results show that the optimal
portfolios enjoy much smaller volatility than the market index, but little improvement on average returns. In addition,
the optimal portfolios allocate a higher percentage of investment to the VIX in bearish markets than in bullish markets.

5 Kendall’s tau is given by

τ = Pr[(X1 − X2)(Y1 −Y2) > 0]− Pr[(X1 − X2)(Y1 −Y2) < 0]

= 2 Pr[(X1 − X2)(Y1 −Y2) > 0]− 1,

where (X1, Y1) and (X2, Y2) are continuous random vectors drawn from the same joint cumulative distribution F(x, y); see
Nelsen (1999, chp. 5).
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Table 2. Sample Correlation, Kendall’s τ, λ, Average Compound Return of the S&P 500 Index,
and Average VIX.

Year Sample Correlation Kendall’s τ Sample Correlation Kendall’s τ λ Average S&P 500 Return Average VIX

(V IX2, rsp) (rvix, rsp)

ALL −0.135 −0.065 −0.707 −0.539 0.777 0.028 19.37

1990 −0.19 −0.109 −0.537 −0.353 0.71 −0.034 23.09
1991 −0.051 −0.066 −0.557 −0.362 0.727 0.092 18.38
1992 −0.164 −0.084 −0.547 −0.351 0.673 0.017 15.45
1993 −0.182 −0.099 −0.51 −0.362 0.672 0.027 12.69
1994 −0.29 −0.17 −0.724 −0.496 0.75 −0.006 13.93
1995 −0.3 −0.212 −0.45 −0.295 0.639 0.116 12.39
1996 −0.316 −0.193 −0.687 −0.457 0.713 0.073 16.44
1997 −0.117 −0.154 −0.701 −0.53 0.771 0.107 22.38
1998 −0.183 −0.106 −0.819 −0.641 0.849 0.094 25.60
1999 −0.28 −0.18 −0.799 −0.6 0.829 0.071 24.37
2000 −0.247 −0.134 −0.784 −0.571 0.81 −0.042 23.32
2001 −0.159 −0.044 −0.82 −0.6 0.794 −0.056 25.75
2002 −0.129 −0.09 −0.818 −0.646 0.81 −0.106 27.29
2003 −0.111 −0.081 −0.642 −0.462 0.746 0.093 21.98
2004 −0.25 −0.136 −0.759 −0.539 0.806 0.034 15.48
2005 −0.253 −0.163 −0.831 −0.621 0.813 0.012 12.81
2006 −0.262 −0.179 −0.822 −0.564 0.737 0.051 12.81
2007 −0.195 −0.093 −0.85 −0.672 0.813 0.014 17.54
2008 −0.141 −0.109 −0.847 −0.69 0.889 −0.192 32.69
2009 −0.19 −0.08 −0.755 −0.556 0.802 0.084 31.48
2010 −0.3 −0.171 −0.848 −0.604 0.813 0.048 22.55
2011 −0.189 −0.085 −0.867 −0.664 0.821 0.000 24.20
2012 −0.223 −0.139 −0.761 −0.548 0.764 0.050 17.80
2013 −0.322 −0.147 −0.83 −0.603 0.798 0.103 14.23
2014 −0.269 −0.139 −0.853 −0.644 0.817 0.043 14.18
2015 −0.251 −0.113 −0.878 −0.727 0.865 −0.003 16.67
2016 −0.246 −0.122 −0.813 −0.624 0.774 0.036 15.83
2017 −0.334 −0.196 −0.746 −0.476 0.745 0.071 11.09

The compound return of the S&P500 index is the log-difference of market indexes observed at the ending and
starting date of the period under consideration multiplied by 100; λ gives the relative frequency that the market
index and market volatility index moved to opposite directions for the period of time under consideration.

The second and third columns of Table 2 report the sample correlation and Kendall’s tau of
(VIX2

t , rspt), which give an overall measure of the relation between the expected near future market
aggregate risk and current market aggregate return. All these statistics are negative and significantly
different from zero at the 5% level, but less prominent than those between rvixt and rspt. The overall
lower negative relation between rspt and VIX2

t is not a surprise, given the fact that the VIX2
t is a

long-memory process while the rspt has a very short serial correlation with itself; see Table 1.
To sum up, Table 2 indicates a significant negative relation between the market returns and the

log-increments of the VIX (and market implied variance). At the same time, we also notice that the
negative relation is stronger when the market index performs poorly than when the market index
performs well. It implies that an overall negative association between the two series cannot tell the full
story of how the two series relate. This observation motivates us to examine the joint distribution of
the two series in the next section.

3. Copula Function and Tail-Dependence Index

To further our understanding of the dependence relationship between the S&P 500 returns and
the log-increments of the VIX and between the S&P 500 returns and the VIX2, we use the device of
copula to decompose their joint probability density functions (or p.d.f.’s). According to the Skalar’s
theorem, the joint density of two continuous random variables X and Y can be written as

f (x, y) = fX (x) fY (y) c (FX (x) , FY (y)) , (2)

where X has a marginal p.d.f. fX (x) and a cumulative distribution function (or c.d.f., hereafter)
FX (x), and Y has a marginal p.d.f. fY (y) and a c.d.f. FY (y). As a function of the c.d.f.’s of X and Y,
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the copula density function, c (FX (x) , FY (y)), captures completely the dependence structure between X
and Y. We refer interested readers to Nelsen (1999) for a thorough treatment of the copula method and
Cherubino et al. (2004) for applications in finance.

As a powerful tool to measure extreme co-movement across different international stock markets
and different assets, copulas have been widely used in empirical finance literature to explore nonlinear
tail dependence; e.g., Chollete et al. (2011); Liu et al. (2017) and references therein. However, it is
common practice for researchers to assume a certain parametric copula function in their analysis,
which can create a model misspecification problem. The commonly used parametric copula families
(e.g., Gaussian copula, Student’s t copula, and Fréchet copula) implicitly impose a specific dependence
structure between X and Y, which may not be supported by empirical data. For example, Gaussian
copula density assumes that the two variables have a constant correlation regardless of whether X and
Y are around the median or tails of their respective distributions. This dependence structure imposed
by Gaussian copula evidently is not consistent with the fact documented in the preceding section
that the dependence between the S&P 500 index returns and the implied variance is stronger during
severe bearish market periods, which is featured with unusually high implied variance and low S&P
500 index returns, than during quiet market periods with relatively low implied variance. Therefore,
in this paper, to avoid misspecifying the dependence structure of

(
rspt, VIX2

t
)

and of (rspt, rvixt),
we shall adopt a nonparametric copula method proposed by Wu (2010) to estimate their copula density
functions. Allowing the data to speak out their true relation, Wu (2010) proposes an exponential series
copula density estimator (henceforth, ESE) without preassuming the parametric form of dependence
structure between two series of interest.

Below, we briefly explain the ESE estimator, denoting u = FX (x) and v = FY (y) to simplify our
notation. Firstly, to guarantee a positive copula density function, we approximate it by

c (u, v; θ) = exp

(
∑

0<i+j≤m
θijuivj + θ0

)
, 0 ≤ u, v ≤ 1, (3)

where m is a positive integer, and θ0 = − ln
∫ 1

0

∫ 1
0 exp

(
∑0<i+j≤m θijuivj

)
dudv is a constant to ensure

that c(u, v; θ) integrates to unity. The ESE can be viewed as a series approximation of the log density,
and the functional form of c (u, v; θ) is determined by m, which is the order of polynomials of the log
copula density.

Secondly, to estimate the parameters, θ =
(
θ0,
{

θi,j : 1 ≤ i + j ≤ m
})

, in (3), we apply Jaynes’ (1957)
famous Maximum Entropy (ME) Principle, which minimizes Shannon’s information entropy

max
θ
−
∫ 1

0

∫ 1

0
c(u, v; θ) log c(u, v; θ)dudv (4)

subject to the following integration-to-unity condition and m moment conditions

∫ 1

0

∫ 1

0
c(u, v; θ)dudv = 1 (5)∫ 1

0

∫ 1

0
uivjc(u, v; θ)dudv = E

(
uivj

)
, 0 < i + j ≤ m. (6)

Finally, in practice, letting the number of moments increase with sample size at an appropriate rate
and replacing the population moments in (6) with their corresponding sample moments, one obtains a
consistent nonparametric estimator of the underlying copula density function. The sample moments
are sufficient statistics of the underlying distribution, and the MLE estimator of the ME density can be
shown to be asymptotically efficient (Crain 1974).

Jaynes’ (1957) ME Principle suggests that one can use a number of sufficient statistics that depict
the copula density function. For example, if X and Y are drawn from a bivariate normal distribution,
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it is well-known that knowing the mean and variance suffice to identify the Gaussian copula density
function; i.e., m will be two. As one does not know the true copula density function in practice,
an incorrectly selected set of sufficient statistics would lead to misleading inference on the dependence
relation between variables of interest. How does the choice of the set of sufficient statistics affect our
estimation of the copula density function? The intuition is this: a smaller set of sufficient statistics may
omit important, relevant information associated with some missing sufficient statistics, which will
evidently lead to biased inference on the true dependence structure between the two variables of
interest; on the other hand, a larger than necessary set of sufficient statistics will incorporate redundant
information associated with the inclusion of some non-useful extra moments, inflating the variation in
the estimation of θ’s because of the loss of degree of freedoms. Therefore, the set of sufficient statistics,
or more precisely, the order of m of polynomial in the exponent of Equation (3) shall be selected
carefully. In fact, one can view m as a smoothing parameter in the framework of nonparametric density
estimation. In this paper, m is selected in a data-driven manner according to the Akaike Information
Criterion (AIC), an information criterion balances the trade off between accuracy and complexity in
model construction.6

Now, let the marginal cumulative distribution functions of rvixt, VIX2
t and rspt denoted by

urvix,t ≡ Frvix(x), uVIX2,t ≡ FVIX2(x), and vt ≡ Frsp(x), respectively.7 Since these quantities are
usually unknown, we replace them by their frequency estimates, i.e., F̂rvix (x) = 1/T ∑T

t=1 I(rvixt ≤ x),
F̂VIX2 (x) = 1/T ∑T

t=1 I(VIX2
t ≤ x), and F̂rsp = 1/T ∑T

t=1 I(rspt ≤ x), respectively. Several benefits
could result from the one-to-one transformation of the variable of interest via its cumulative distribution
function: (a) it can effectively mitigate potential outlier problems in the nonparametric estimation;
(b) as a measure of the likelihood of the occurrence of an event, probability provides a more direct
way of capturing market relative status than the raw data value does across time, which is of the
upmost important in our study of the relationship between the two indexes in a quick-changing market
environment. Furthermore, the study of the transformed data (v, urvix) and (v, uVIX2), instead of the
raw data, provides a key tool to consolidate historical study of similar situations so that we can discuss
the relation between two series according to event probabilities. This point will be illustrated in the
next section where we discuss the full sample and subsample results.

In Figure 2, we plot the estimated copula density functions for (v, urvix) with m = 5 and for
(v, uVIX2) with m = 7, where m’s are selected to minimize the AIC. The preliminary results in Section 2
indicate a strong negative association between rspt and rvixt without identifying the sources of the
observed relation. The left panel in Figure 2 suggests that the negative dependence between the S&P
500 index returns and the log-increments of the VIX is largely driven by the counter-movements at
the two tails, since the bulk of the copula density is along the anti-diagonal line and spikes up at the
two corners. In other words, the co-movements of the opposite tails of the two marginal distributions
contribute significantly to the negative dependence between the S&P 500 index returns and the
log-increments of the VIX. In addition, the density at the upper left corner in this graph, corresponding
to the case of low market index returns and high VIX changes, is larger than its counterpart associated
with high market index returns and low VIX changes. Except for the two tails along the anti-diagonal
line in the [0, 1]2 unit square, the copula density appears to be rather symmetric.

6 Of course, one can also apply other nonparametric methods to estimate c (u, v). For example, one can use a kernel estimator
or an empirical distribution based estimator. We choose to use the ESE estimator as Wu (2010) suggests that the ESE
estimator suffers less bias than the kernel estimator when (u, v) taking values near the boundary of the space of unit square
[0, 1]2. In addition, the empirical distribution based estimator may be less smooth than the ESE estimate.

7 To simplify our notation, we will drop the subscript t from urvix,t, uVIX2 ,t, and vt when we detract no confusion resulting
from its omission.
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Figure 2. Joint Copula Density Functions Estimated by Nonparametric Copula Method (Left: rvixt

and rspt; Right: VIX2
t and rspt).

The right panel in Figure 2 plots the estimated copula density for (v, uVIX2), where we observe
that the S&P 500 index returns and the VIX2 are strongly dependent when the implied variance is
extremely high or its c.d.f. is close to one. The dependence is stronger when the market returns are
extremely low and the implied variance is very high than when both the market returns and implied
variance are extremely high. Or, put in other words, the estimated copula density indicates that
the S&P 500 index returns and the VIX2 is highly dependent during high volatile markets and the
dependency is stronger in a panic triggered high volatile market than an exhilarated high volatile
market. On the other hand, we observed that the dependence between the two variables flattens out
when the implied variance locates between its 10th percentile to its 80th percentile. We also note that
the estimated copula density humps up a bit when the implied variance locates to its left tail.

To sum up, the two joint copula densities consistently show that in a low volatility market
environment, which usually accompanies limited movements in the changes of the VIX level,
the dependencies between S&P 500 index returns and implied variance and between the market
returns and log-increments of the VIX is less noticeable.

3.1. Tail Dependence Index Between rsp and rvix

The joint copula density of (rsp, rvix) in Figure 2 clearly exhibits the left-right and right-left
tail dependence between the S&P 500 index returns and log-increments of the VIX. To quantify
the prominent tail dependence between the two series, one naturally wants to investigate the
probability with which rvix lies to the lower or upper tail area when rsp resides in the opposite
tail area.8 As the dependence occurs at the tails, such probability is usually called tail dependence
index (or TDI, henceforth). This idea is not new and has been studied in different fields. For example,
Poon et al. (2004) studied one particular tail index using extreme value theory, although they focus
on the limited cases; that is, TDI(α) = Pr

(
Y < F−1

Y (α) |X < F−1
X (α)

)
when α → 1 or α → 0, where

F−1
X (α) and F−1

Y (α) are the (100× α)th percentile of X and Y, respectively. Taking clues from the

8 We also calculated the tail dependence index on the conditional probability that rsp lies to its tail area given that rvix resides
in the opposite tail area. As this mirror relation to the one reported in the paper does not bring extra light to our findings,
we choose not to report the result, although the results are available upon request from the authors.
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estimated copula density seen in the left panel of Figure 2, we focus on the following two TDIs that
capture the co-movements of opposite tails of (rsp, rvix):

TDI1(α) = Pr
(
rvix < rvixα|rsp > rsp1−α

)
= Pr (urvix < α|v > 1− α) , (7)

TDI2(α) = Pr (rvix > rvix1−α|rsp < rspα) = Pr (urvix > 1− α|v < α) , (8)

where rvixα and rspα are the (100× α)th percentile of the return series rvix and rsp, respectively.
Taking α = 0.01 and α = 0.05 respectively, we obtain TDI1(0.01) = 0.078, TDI2(0.01) = 0.101,

TDI1(0.05) = 0.285, and TDI2(0.05) = 0.354 from the estimated copula density exhibited in Figure 2.
If the two series were independent, we would obtain TDIj(α) = α for j = 1, 2. Therefore, the fact that
TDIj(α) is substantially higher than α indicates strong negative tail dependence between rsp and rvix
series. In particular, our results suggest that extreme movements in the S&P 500 index are associated
with extreme movements of the VIX to the opposite direction with high probabilities.

In addition, the fact that TDI1(α) < TDI2(α) for both α = 0.01 and α = 0.05 reveals that the VIX
asymmetrically responds to extreme movement of the S&P 500 index prices. The probability that the
VIX increases abruptly when the market index faces free-fall is much higher than the probability that
the VIX falls back when the market index price enjoys strong rebound. The asymmetry is consistent
with the stylized fact frequently documented in the finance literature that the market tends to respond
more to bad news than to good news of equal magnitude, although this stylized fact is described from
our point view of tail dependence indexes.

The fact that the tail dependence is more pronounced when the market is in turmoil explains why
the VIX is dubbed as the Investor Fear Gauge.

3.2. Tail Dependence Index Between rsp and VIX2

As the right panel of Figure 2 exhibits a prominent dependence between the S&P 500 index
returns and implied variances when the latter reside at the right tail of its distribution, we introduce
the following four TDIs:

T̃DI1(α) = Pr
(

rsp > rsp1−α|VIX2 > VIX2
1−α

)
= Pr (v > 1− α|uVIX2 > 1− α) (9)

T̃DI2(α) = Pr
(

rsp < rspα|VIX2 > VIX2
1−α

)
= Pr (v < α|uVIX2 > 1− α) (10)

T̃DI3(α) = Pr
(

VIX2 > VIX2
1−α|rsp > rsp1−α

)
= Pr (uVIX2 > 1− α|v > 1− α) (11)

T̃DI4(α) = Pr
(

VIX2 > VIX2
1−α|rsp < rspα

)
= Pr (uVIX2 > 1− α|v < α) (12)

where VIX2
α is the (100× α)th percentile of the VIX2 series. We use α = 0.01 to illustrate the meaning

of each index. First, T̃DI1(0.01) and T̃DI2(0.01) measure the probabilities that the S&P 500 returns
reside to the respective right and left 1% tail of the return distribution in an extremely volatile market
condition. Second, T̃DI3(α) and T̃DI4(α) give the probabilities that the market sees extremely high
volatility with the implied variance falling to its upper 1% tail of its distribution in an extremely high
and low market return periods.

By construction, T̃DI1(α) and T̃DI2(α) reflect the volatility feedback effect of market volatility on
market returns at extreme situation, while T̃DI3(α) and T̃DI4(α) reflect the leverage effect of market
returns on market volatility at extreme situations. Of course, the leverage and volatility feedback
effects referred to here are extended from the traditional meaning of the two effects.

Again, we take α = 0.01 and 0.05. From the estimated copula density function shown in Figure 2,
we calculate T̃DI1(0.01) = 0.089, T̃DI2(0.01) = 0.137, T̃DI1(0.05) = 0.198, T̃DI2(0.05) = 0.307,
T̃DI3(0.01) = 0.076, T̃DI4(0.01) = 0.119, T̃DI3(0.05) = 0.199, and T̃DI4(0.05) = 0.308. As T̃DIj (α) > α

for all the cases studied, we see apparent tail dependence between the market returns and market
implied variances, although the tail dependence of the implied variances on the market returns is
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generally weaker than that of the changes of VIX on the market returns. In addition, T̃DI1(α) < T̃DI2(α)

and T̃DI3(α) < T̃DI4(α) for both α = 0.01 and α = 0.05, indicating asymmetric tail dependence
between the market returns and implied variances; i.e., the TDIs are stronger when the market returns
lie to the left tail of rather than to the right tail of the return distribution.

3.3. Contemporaneous and Lagged Conditional Distributions

The tail dependence index only describes the probability of the occurrence of one rare event
given that of another rare event. In this section, we aim to extract more information from the
data by estimating the conditional cumulative distribution (or c.c.d.f., henceforth) functions via the
nonparametric copula method. Specifically, let A be a subset of [0, 1]. We are interested in estimating
the conditional c.d.f.’s listed in Table 3.

Table 3. The List of Conditional Cumulative Distributions of Interest.

Case Conditiondal c.d.f. Description

C1 F
(
urvix,t|vt−h ∈ A

)
the conditional c.d.f. of urvix,t given vt−h ∈ A

C2 F
(
vt|urvix,t−h ∈ A

)
the conditional c.d.f. of vt given uvix,t−h ∈ A

C3 F
(
uVIX2,t|vt−h ∈ A

)
the conditional c.d.f. of uVIX2,t given vt−h ∈ A

C4 F
(
vt|uVIX2,t−h ∈ A

)
the conditional c.d.f. of vt given uVIX2,t−h ∈ A

Note: h = 0 and 1; A = [0, 0.05], [0.45, 0.55], and [0.95, 1]

Figure 3 plots the estimated conditional c.d.f.’s for cases C1 and C2, while Figure 4 for cases
C3 and C4, wherein the results for h = 0 and h = 1 are in color blue and red respectively. Taking
A = [0, 0.05], [0.95, 1], and [0.45, 0.55], we aim to study the behavior of the conditional c.d.f.’s under
extreme and moderate market conditions. If each pair of variables among v, urvix and uVIX2 were
drawn from a bivariate normal distribution, one would expect the conditional c.d.f. invariant with
respect to the choice of A. In addition, the choice of h = 0 or 1 is used to measure the strength of
contemporaneous relation relative to lag-one relation. Examining Figures 3 and 4, we aim to visually
test two hypotheses summarized in Table 4.
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Figure 3. Conditional Ccumulative Distribution Function Estimates (blue: h = 0; red: h = 1) (Upper
row: rvix|rsp; Lower row: rsp|rvix. Left: A = (0, 0.05]; Middle: A = [0.45, 0.55]; Right: A = [0.95, 1)).
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Table 4. The Hypotheses of Interest.

The Null Hypothesis on F(yt|xt−h ∈ A) Implication

H1
0: F(yt|xt−h ∈ A) coincides with the 45-degree line yt is independent of xt−h when xt−h ∈ A

H2
0: F(yt|xt−h ∈ A) does not vary with A (xt−h, yt) are jointly normally distributed

Note: (xt, yt−h) =
(
urvix,t, vt−h

)
,
(
vt, urvix,t−h

)
,
(
uVIX2,t, vt−h

)
, or

(
vt, uVIX2,t−h

)
;

h = 0, 1; A = [0, 0.05], [0.45, 0.55], and [0.95, 1]

Reading Figure 3, we observe that both the hypotheses H1
0 and H2

0 fail to hold for all the
contemporaneous c.c.d.f.’s. Evident deviations of the c.c.d.f.’s from the 45-degree line result from
strong tail dependence between the log-increments of the VIX and the market returns. On the other
hand, the inter-dependence between the two series are rather mild during quiet market periods.
Evidently, the results in Figure 3 support the varying dependence relation between the two series
across different market conditions, which suggests the inadequacy of fitting the data with bivariate
normal distribution with a constant correlation. When h = 1, the hypothesis H1

0 holds roughly true
for all the lag-one conditional c.d.f.’s (or l.c.c.d.f.’s, hereafter), as they are all close to the 45-degree
line. Combining our observations, we see strong daily contemporaneous dependence between the
market returns and log-increments of the VIX and very weak if nothing at all one-day lag dependence.
Actually, when we push h up to 20, we did not see significant lag dependences between the two series.
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Figure 4. Conditional Cumulative Distribution Function Estimates (blue: h = 0; red: h = 1) (Upper
row: VIX2 |rsp; Lower row: rsp|VIX2; Left: A = (0, 0.05]; Middle: A = [0.45, 0.55]; Right: A = [0.95, 1)).

Let us next look at Figure 4. Different from Figure 3, the c.c.d.f.’s and l.c.c.d.f.’s are very close to
each other, which is especially true for the conditional c.d.f.’s of uVIX2,t given vt−h ∈ A (in the first row
of Figure 4), implying a strong persistent dependence of the implied variance (VIX2) on the current
and one-day lagged S&P 500 index returns. Again, as in Figure 3, Figure 4 rejects the hypothesis H2

0
for all the cases. The hypothesis H1

0 seems to hold only for the c.c.d.f.’s and l.c.c.d.f.’s of vt given
uVIX2,t−h ∈ [0.45, 0.55]. Overall, the c.c.d.f.’s and l.c.c.d.f.’s of uVIX2,t given vt−h ∈ A deviate from the
45-degree line more than those of vt given uVIX2,t−h ∈ A.



J. Risk Financial Manag. 2018, 11, 29 13 of 20

To sum up, we observe strong contemporaneous left-right and right-left tail dependence between
rsp and rvix, significant contemporaneous and lagged tail dependence of the VIX2 on the market
returns, and mild tail dependence of the market returns on the VIX2. Although useful, these qualitative
assessments are largely based on smoothing and visualization of data. In the next section, we propose
a conditional dependence index to formally quantify the conditional dependence between each pair of
series of interest among the market returns, the log-increments of the VIX, and the VIX2.

4. Conditional Dependence Index

As we discuss above, Figures 3 and 4 plot several estimated conditional distribution functions of
u given v ∈ A, where A is a nonempty subinterval of the interval [0, 1]. If u and v are independent of
each other when v ∈ A, we have F(u|v ∈ A) = F(u) for all u ∈ [0, 1] so that knowing the information
{v ∈ A} does not help us make better predictions about u. On the other hand, the further is the
conditional c.d.f. away from the 45-degree line, the higher is the dependency between u and v ∈ A.
Therefore, it is natural to use the area between the conditional c.d.f. and the 45-degree line as a proxy of
the predictive power of v ∈ A on u. In doing so, we are able to learn under what circumstances u and v
are most dependent as v moves across its distribution function. Consequently, we can make inference
on the relation between the pair of variables of interest conditional across different market status.

Hence, we propose a conditional dependence index (or CDI, henceforth) which equals twice of
the area between a conditional c.d.f. and the 45-degree line, given the fact of v ∈ A. Thus, the index is
defined as a functional of A:

G (A) = 2
∫ 1

0
|F (u|v ∈ A)− u| du = 2E [|F (u|v ∈ A)− u|] . (13)

Evidently, for any given sub-interval A ⊂ [0, 1], 0 ≤ G(A) ≤ 1, where G (A) = 0 means
independence between u and v given v ∈ A, and the dependence of u on v ∈ A grows as G (A) gets
closer to the unity. Partitioning the [0, 1] interval into 20 equal-width intervals, we calculate G(A) for
each interval and report the results in Table 5 for both h = 0 and h = 1.

Table 5. Conditional Dependence Indexes.

A rvixt|rspt V IX2
t |rspt rspt|V IX2

t rvixt|rspt−1 V IX2
t |rspt−1 rspt|V IX2

t−1

(0, 0.05) 0.787 0.686 0.213 0.138 0.669 0.179
[0.05, 0.1) 0.671 0.383 0.191 0.108 0.364 0.174
[0.1, 0.15) 0.555 0.197 0.143 0.087 0.194 0.129
[0.15, 0.2) 0.450 0.094 0.142 0.039 ∗ 0.089 0.136
[0.2, 0.25) 0.359 0.045 ∗ 0.124 0.053 ∗ 0.043 ∗ 0.096
[0.25, 0.3) 0.285 0.108 0.085 0.052 ∗ 0.109 0.107
[0.3, 0.35) 0.233 0.141 0.080 0.042 ∗ 0.143 0.052 ∗

[0.35, 0.4) 0.202 0.201 0.045 ∗ 0.045 ∗ 0.194 0.057 ∗

[0.4, 0.45) 0.171 0.229 0.053 ∗ 0.025 ∗ 0.225 0.039 ∗

[0.45, 0.5) 0.158 0.241 0.041 ∗ 0.025 ∗ 0.243 0.045 ∗

[0.5, 0.55) 0.158 0.278 0.025 ∗ 0.090 0.268 0.018 ∗

[0.55, 0.6) 0.206 0.276 0.065 0.047 ∗ 0.273 0.033 ∗

[0.6, 0.65) 0.217 0.205 0.039 ∗ 0.087 0.189 0.048 ∗

[0.65, 0.7) 0.278 0.164 0.070 0.088 0.153 0.071
[0.7, 0.75) 0.307 0.146 0.081 0.032 ∗ 0.146 0.070
[0.75, 0.8) 0.362 0.080 ∗ 0.101 0.046 ∗ 0.081 ∗ 0.087
[0.8, 0.85) 0.424 0.052 ∗ 0.124 0.025 ∗ 0.051 ∗ 0.109
[0.85, 0.9) 0.480 0.046 ∗ 0.169 0.028 ∗ 0.046 ∗ 0.146
[0.9, 0.95) 0.611 0.195 0.197 0.022 ∗ 0.201 0.190
[0.95, 1) 0.680 0.537 0.297 0.027 ∗ 0.539 0.284

‘ ∗’ marks the CDIs that are insignificant at the 5% level.
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Now, we illustrate the estimation method and the test for G (A) = 0 for the case that
G (A) = 2E [|F (urvix,t|vt−h ∈ A)− urvix,t|], the CDI of the log-increments of the VIX on the market
returns. (The method is also applied to the other cases). We denote the estimator of G (A) by Ĝ (A),
which is given by

Ĝ (A) =
2
n

n

∑
t=h+1

∣∣F̂ (ut|vt−h ∈ A)− ut
∣∣ , (14)

where we replace the unknown conditional c.d.f. F (ut|vt−h ∈ A) = Pr (urvix,t ≤ ut, vt−h ∈ A)

/ Pr (vt−h ∈ A) by its empirical conditional distribution,

F̂ (ut|vt−h ∈ A) =
n−1 ∑n

t=1 I (urvix,t ≤ ut, vt−h ∈ A)

n−1 ∑n
t=1 I (vt−h ∈ A)

=
n−1 ∑n

t=1 I
(

rvixt ≤ F−1
rvix,t (ut) , rspt−h ∈ F−1

rspt−h
(A)

)
n−1 ∑n

t=1 I
(

rspt−h ∈ F−1
rspt−h (A)

) , (15)

with the total sample size, n = 7055, I (·) being the indicator function, and Frvix,t (·) and Frspt−h (·) being
the unconditional c.d.f.’s of rvixt and rspt−h, respectively.

Ĝ (A) is a consistent estimator of G (A) as supu∈[0,1]

∣∣F (u|v ∈ A)− F̂ (u|v ∈ A)
∣∣ = op (1) and

the sample mean is a consistent estimator of a population mean, given the fact that both series are
stationary. Actually, Ĝ (A) = G (A) + Op

(
n−1/2

)
.

Next, we are interested in testing the null hypothesis of G (A) = 0 against the alternative
hypothesis of G (A) > 0. If the null hypothesis holds true, we can show that

√
n
(

F̂ (u|v ∈ A)− u
)

converges to a normal random variable with zero mean and finite variance. Under the alternative
hypothesis, we expect

√
n
(

F̂ (u|v ∈ A)− u
)
= Op

(√
n
)
. Therefore, we expect

√
nĜ (A) = Op (1)

under the null hypothesis and
√

nĜ (A) = Op
(√

n
)

under the alternative hypothesis. However, to
conduct the test, we need to obtain proper critical values. As the distribution of Ĝ (A) under the null
hypothesis does not have a simple formula, we propose to use bootstrap critical values.

Bootstrap critical values. Should the alternative hypothesis hold true, the realization of the
log-increment of the VIX is affected by the realization of the market return. Therefore, the temporal
ordering of the market return matters in the calculation of Ĝ (A). However, should the null hypothesis
hold true, we have F̂ (u|v ∈ A) = n−1 ∑n

t=1 I
(

rvixt ≤ F−1
rvix,t (u)

)
, the empirical c.d.f. of rvixt,

which does not depend on the realization of the market returns, nor does Ĝ (A). Therefore, the temporal
ordering of the market returns should not matter in the calculation of Ĝ (A), should the null hypothesis
hold true. Based on these observations, we propose to obtain bootstrap samples by randomly shuffling
the market returns while keeping the order of the log-increments of the VIX. As a result, the bootstrap
sample contains the raw data on rvix and the randomly shuffled market return data, rsp∗, and the
bootstrap sample size is the same as the original sample size, n = 7055. To obtain the bootstrap critical
value at the significance level of 5% for example, we repeat 500 bootstrap procedures and use the 95th
percentile of the 500 bootstrap statistics, Ĝ∗ (A), to approximate the critical value, where Ĝ∗ (A) is the
bootstrap estimate of G (A) using (15).

In Table 5, we report Ĝ (A) for six cases: the CDIs of rvixt given rspt−h, VIX2
t given rspt−h, rspt

given VIX2
t−h for h = 0 (capturing contemporaneous dependence) and for h = 1 (capturing one day

lagged dependence).9 We divide the interval [0, 1] into 20 intervals with equal increments of 0.05.
In Table 5, we marked the insignificant CDI estimates at the 5% level with an asterisk. The fifth column
of Table 5 indicates little dependence of the log-increments of the VIX on the previous day’s market

9 We calculated but decided not to report the CDIs of rspt given rvixt−h as the extra results do not add more information to
the relation of the market returns and the log-increments of the VIX, and the intuition of which can be seen from Figure 3.
However, these results can be obtained from the authors upon request.
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index performance. Combining the second and fifth columns, we see close contemporaneous but
less noticeable lagged relation between the changes of the VIX and the market returns. In contrast,
the relation between implied variance and market returns are rather persistent but become weaker in
general over time, where the persistent relation may result from the long-memory properties of the
implied variance.

To enhance the readability of the results given in Table 5, we plot the contemporaneous CDIs
in Figure 5. The black line shows how the distribution of the log-increments of the VIX depends on
the market return as the market return moves from its lower 5% tail, (0.05, 0.10], (0.10, 0.15,], ..., to its
upper 5% tail, where each probability interval contains equally 5% of the data. It shows a general
U-shape curve, bottoming at the interval of (0.45, 0.50]—around the median of the market returns.
The dependence of the distribution of the log-increments of the VIX on the market returns grows as
market returns go farther away from its median, although the dependences grow faster with steeper
slope when the market return falls below its median value than when the market return grows above
its median value (for the full sample, the daily market average return is 0.04584%). At the extreme
market cases, the CDI of the log-increments of the VIX takes the highest value .787 when the market
return falls below its lower 5% tail, which is higher than .680 when the market return grows beyond
its upper 5% tail. The finding reflects the market’s asymmetric attitude toward an extreme down
market and an extreme upper market: investors in general feel more nervous in the former than the
latter situation.
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Figure 5. Full Sample Conditional Dependence Index Estimates (black: rvix|rsp; red: VIX2|rsp; green:
rsp|VIX2).

Below, we will link our empirical results found in this section to the traditional findings on the
leverage and volatility feedback effects. Here, we refer to the leverage effect as the dependence of the
implied variance on the market returns at lag one and the volatility feedback effect as the dependence of
the market returns on the implied variance at lag one.

The leverage effect. The red line in Figure 5 shows how the distribution of the VIX2
t depends on

rspt−1 as the market returns move from the lower 5% tail to the upper 5% tail of the return distribution.
Surprisingly, we observe that the CDIs exhibit a W shape. The leverage effect is strongest when
the market return falls below its 5% lower tail. If we call the volatility resulting from the market’s
expectation of a bright and a dismal future as good volatility and bad volatility, respectively, our results
indicate that the dependence of the good volatility on market return is evidently lower than that of
the bad volatility. This is consistent with the “asymmetric volatility” phenomenon documented in the
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literature (e.g., Aboura and Wagner 2016). We also observe strong leverage effect over the probability
intervals, [0.4, 0.45), [0.45, 0.5), [0.5, 0.55), and [0.55, 0.6), and the noteworthy leverage effect when the
market return falls into its [0.5, 0.55] probability interval dominates the relation of the log-increments
of the VIX on the market return in the same probability interval. As the middle segment of the market
return distribution symbolizes a very quiet market state; during which period, the market participants
have the most uncertainty over the prediction of the direction of future market returns. Our conjecture
is this: The uncertainty over future market direction may cause variance premium to dominate the
conditional variance of market returns as the latter can be relatively accurately estimated during quiet
market periods, where the implied variance equals the sum of variance premium and the conditional
variance of market returns as defined in Bekaert and Hoerova (2014) who found that the variance
premium is a component of the implied variance to predict future market returns.

The volatility feedback effect. The green line in Figure 5 shows how the distribution of rspt

depends on VIX2
t−1, where we see a much flatter convex curve than the black curve. The right most

column of Table 5 shows that the volatility feedback effects are insignificant at the 5% significance level
when the market return falls into the probability interval of [0.3, 0.35) to [0.6, 0.65). This means that we
would not find a noticeable volatility feedback effect if we fit the data with a mean regression model.
This result may be used to explain why empirical works cannot find volatility feedback effects with
GARCH-in-mean model; e.g., Campbell and Hentschel (1992).

Comparing the three curves, we find noticeably higher dependence between the market returns
and log-increments of the VIX than the leverage and volatility feedback effects, except for a higher
leverage effect when the market return is moving around its medium value. This result encourages
the econometric modeling of the market returns and log-changes of the VIX besides the leverage
and volatility feedback effects. In addition, the volatility feedback effect is weaker than the
leverage effect with some exceptions. This result may support the findings in Christie (1982) and
Bekaert and Wu (2000) that neither the leverage effect nor the volatility feedback effect can be the sole
explanation of the volatility asymmetry observed from stock markets.

To sum up, we find strong dependence between rvix and rsp and the dependence is stronger in
volatile market periods than in relatively quiet market periods. As the VIX reveals market’s expectation
on the future 30-day volatility, our results indicate that investors make sharp revision on their belief of
market risks during extreme volatile market periods, and that the revision is less noticeable during
tranquil market periods. This again confirms that the negative association between the S&P 500 index
prices and the VIX mainly come from tail events.

To check on how robust our findings are, we also conduct subsample analysis, where we split
the sample period into five subperiods: 2 January 1990 to 31 December 1994; 1 January 1995 to
31 December 1999; 1 January 2000 to 31 December 2004; 1 January 2005 to 31 December 2009; 1 January
2010 to 31 December 2017.10 Figure 6 plots the estimated CDIs for the four subsample periods.
In general, the subsample results are similar to the full sample results shown in Figure 5, except for the
first subperiod.

10 Readers can certainly split the whole data period differently from ours.
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Figure 6. Subsample Conditional Dependence Index Estimates (black: rvix|rsp; red: VIX2|rsp; green:
rsp|VIX2).

5. Concluding Remarks

Both leverage and volatility feedback hypotheses are developed to explain the stylized fact
that volatility reacts asymmetrically to positive and negative stock returns. We re-examine the
relationship between daily S&P 500 index returns and implied variance via the nonparametric method.
By proposing a nonparametric conditional dependence index, we document three findings. First,
the nonparametric leverage effect exhibits a W-shape curve as the implied variance moves from the left
to the right tail of its distribution. Second, nonparametric volatility feedback exhibits a U-shape curve
as the S&P 500 index returns moves across the return distribution. Third, the nonparametric leverage
effect in general is higher than the nonparametric volatility feedback effect, except in relatively quiet
market conditions.

The VIX index squared, as a risk-neutral measure of market volatility, is the market’s best estimate
of average future realized volatility over the ensuing 22 trading days plus a volatility risk premium,
as documented by Todorov (2009); Bollerslev and Zhou (2006), among many others for other implied
volatility indexes than S&P 500 implied volatility. Bakshi and Madan (2006) provide a theoretical
model to explain that the VIX squared (or the implied variance) depends on historical skewness and
kurtosis of return distributions and market risk aversions. Therefore, the log-increments of the VIX
may reflect the market’s revision on risk aversion and average future realized volatility as the S&P 500
index price changes. The empirical results in this paper indicate that the contemporaneous dependence
between the market’s revision on risk aversion and average future realized volatility and the market
returns are stronger than the leverage and the volatility feedback effects when the market’s movement
deviates from its medium range.

Applying Wu’s (2010) ESE nonparametric copula estimator in Section 3, we find strong tail
dependency among the market returns, log-increments of the VIX and the VIX2. From Figures 3 and 4,
we get an impression that the dependence relations among each pair of the three series vary with
market conditions and are strongest during extreme bearish markets.

We focus on the discovery of some noteworthy asymmetric and dynamic features between the
stock returns and VIX in this study. The scope of investigation in this study is certainly limited. There are
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alternative nonparametric methods that can be used to conduct the analysis in this study. For example,
Racine (2015) and Ho et al. (2016) study kernel-based estimation of copula models. This method is also
used by Ho et al. (2018) in an in-depth analysis of tail dependence and co-movements of crude oil price.
Bhatti and Nguyen (2012); Chaturvedi et al. (2012); Nguyen and Bhatti (2012); Nguyen et al. (2016);
Al Rahahleh and Bhatti (2017), and Al Rahahleh et al. (2017) study the international equity market
using a variety of copula-based models, with particular attention to tail dependence and extreme
values. Validation and comparisons of our results with these alternative methods might provide new
insight into the stock return and VIX relationship. This can be a possible topic for future research.
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