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Abstract: In this paper, we let the data speak for itself about the existence of volatility feedback and
the often debated risk–return relationship. We do this by modeling the contemporaneous relationship
between market excess returns and log-realized variances with a nonparametric, infinitely-ordered,
mixture representation of the observables’ joint distribution. Our nonparametric estimator allows for
deviation from conditional Gaussianity through non-zero, higher ordered, moments, like asymmetric,
fat-tailed behavior, along with smooth, nonlinear, risk–return relationships. We use the parsimonious
and relatively uninformative Bayesian Dirichlet process prior to overcoming the problem of having
too many unknowns and not enough observations. Applying our Bayesian nonparametric model
to more than a century’s worth of monthly US stock market returns and realized variances, we find
strong, robust evidence of volatility feedback. Once volatility feedback is accounted for, we find
an unambiguous positive, nonlinear, relationship between expected excess returns and expected
log-realized variance. In addition to the conditional mean, volatility feedback impacts the entire
joint distribution.
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1. Introduction

In this paper, we investigate the risk–return relationship, along with the impact of volatility
feedback, by estimating a Bayesian nonparametric model of the joint distribution of market excess
returns and realized variance. In contrast to the existing risk–return literature where the conditional
mean of excess stock market returns is modeled as a linear relationship with the conditional
volatility, we allow the observed monthly returns and realized variances calculated from daily
returns to determine the relationship between the conditional mean of excess returns and the
contemporaneous log-realized variance.1 Distinguishing between lagged and contemporaneous
relationships has implications for the risk–return relationship which can be indirectly derived from the
contemporaneous model.

Past risk–return research finds conflicting evidence on the direction and level of significance
a change in a GARCH model’s conditional variance can have on the conditional mean return.2

Recent results on risk and return has helped to resolve some of these conflicts. Scruggs (1998) and

1 Ludvigson and Ng (2007) also utilize realized variance as a measure of conditional volatility. As we will show using realized
variance provides additional flexibility in modeling the joint distribution and provides a better signal on volatility by using
daily data to estimate monthly ex post variance.

2 A good summary of this research is found in Lettau and Ludvigson (2010).
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Guo and Whitelaw (2006) show that additional predetermined conditional variables can affect the
sign and significance of risk. Lundblad (2007) argues that longer samples are necessary in order
to find a significant relationship between the market risk premium and expected volatility with
GARCH specifications. Bandi and Perron (2008) document a long-run relationship between expected
excess market returns and past market variance, while Maheu and McCurdy (2007) find the long-run
component of realized variance is priced in annual data. Recently, Ghysels et al. (2013) established a
positive risk and return relationship over sample periods that excluded financial crises.3

Most of the research on risk–return assumes excess returns are conditionally normally distributed.
Harvey (2001) argues one should dispense with the parametric assumptions around the conditional
expectations given the contemporaneous log realized variance that normality assumes. Gaussianity
also ignores the potential role higher order moments like skewness and leptokurtosis play in the
predictability of returns (see Campbell and Hentschel 1992). Using daily data, Maheu et al. (2013) find
the conditional variance and conditional skewness, due to jumps in returns, is significantly priced.
Hence, ignoring the higher ordered moments for excess returns may confound the evidence of a
positive risk and return relation.

In this paper, we relax the normality assumption and let the data determine the joint
distribution between excess returns and volatility.4 This borrows from the parametric approach
of Brandt and Kang (2004) by jointly modeling the distribution of returns and log-volatility but
now nonparametrically. A nonparametric estimate of the joint distribution also allows us to study
the risk–return relationship from a flexible uninformed standpoint and to avoid having to address
those issues pointed out by Scruggs (1998) and Guo and Whitelaw (2006) over which predetermined
conditioning variables to include.

Our nonparametric estimator is an extension of the Bayesian Dirichlet process mixture (DPM)
model (see Lo (1984)). Most DPM models consist of an infinite mixture of normal distributions whose
means, covariances, and mixture probabilities are estimated by applying the relatively uninformative
Dirichlet process (DP) prior to the infinite number of unknowns (see Ferguson (1973)). Being almost
surely a discrete distribution, the DP prior essentially shrinks the number of unknowns down to just a
few important mixture clusters, thus enabling us to overcome the common nonparametric problem of
having more unknowns than observations. For conditional distributions, which govern the risk–return
relationship, the DPM is an infinite mixture of conditional normals but whose mixture probabilities,
means and variances all depend on the value of the conditioning variables (see Muller et al. (1996) and
Taddy and Kottas (2010)). The DPM representation and estimation of the conditional distribution allows
for a more flexible relationship between the conditional mean of excess returns and contemporaneous
realized variance than is possible under Gaussianity.

Because of its straightforward nature and good empirical performance, the DPM approach
has become the gold standard for Bayesian nonparametric estimation of unknown distributions.5

For investigating the risk–return relationship, we extend the DPM by assuming the means of the infinite
mixture of normals depend on intertemporal variables. Rather than modelling the joint distribution of
excess returns and log realized variances as a mixture over the unconditional bivariate mean vectors,
we include contemporaneous and lagged excess returns and log realized variances in the means and
mix over each covariates coefficient. By including contemporaneous and lagged variables in the
mixture, our bivariate DPM model is a semi-nonparametric estimator since it accounts for structural
economic relationships like volatility feedback and known empirical regularities like persistence in
volatility, while not imposing any fixed parametric relationship over the risk premium or volatility

3 Ghysels et al. (2013) updates the results in Ghysels et al. (2005) which had a coding error.
4 Harrison and Zhang (1999) also relaxes the normality assumption by applying Gallant and Tauchen (1989) semi-

nonparametric estimator but only to the conditional distribution of excess returns.
5 For example, see Chib and Hamilton (2002); Burda et al. (2008); Conley et al. (2008); Delatola and Griffin (2013); Griffin and

Steel (2004); and Chib and Greenberg (2010); Jensen and Maheu (2010, 2013, 2014) for recent applications of the DPM model.
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feedback. We design a Markov chain Monte Carlo (MCMC) algorithm that uses the slice sampler
methodology of Walker (2007) to deliver posterior draws of the unknowns from which estimates are
obtained that account for uncertainty in the risk–return trade-off and volatility effect through the
unknown joint distribution.

Volatility feedback is the causal relationship between the variance and price changes and can be
an important source of asymmetry in returns. Campbell and Hentschel (1992) show that volatility
feedback plays an important role in finding a positive risk and return relationship. They find a
positive relationship with a model derived from economic restrictions that linearly relate log-returns
to log-prices and log-dividends.6

Our nonparametric approach differs in several important ways from the existing volatility
feedback literature. First, while almost all the literature has studied volatility feedback from a
tightly parameterized model, we use a flexible approach with no economic restrictions. Second,
we use realized variance which is an accurate ex post measure of the variance of returns and permits
the joint modelling of returns and variance. Third, we nonparametrically model the relationship
between contemporaneous excess returns and log-realized variance. Volatility feedback implies an
instantaneous causal relationship between volatility innovations and price levels or returns and our
contemporaneous model is designed to investigate this relationship directly. Fourth, our nonparametric
approach allows for conditioning on predetermined conditioning variables.

Using a long calender span of monthly US stock market data, we find strong robust evidence
of volatility feedback. Expected excess returns are always positive when volatility shocks are small;
however, they become negative once the volatility shock becomes larger. This risk–return relationship
is very nonlinear and depends on the current level of expected volatility. Ignoring these dynamics will
result in confounding evidence for risk and return. Once volatility feedback is accounted for, there
is an unambiguous positive relationship between expected excess returns and expected log-realized
variance. Conditional quantile and contour plots support these findings and display significant
deviations from the monotonic changes in the conditional distribution of the parametric model.
We find strong evidence of the volatility feedback affecting the whole distribution of excess returns
and not just its conditional mean.

This paper is organized as follows. The data and construction of realized variance are discussed in
the next section followed by Section 3, which motivates our model and the link to risk and return and
volatility feedback. The nonparametric model for excess market returns and log-realized variance is
introduced in Section 4. Section 5 discusses estimation of the conditional distribution and conditional
mean of excess returns given log-realized variance. Empirical results are found in Section 6 followed
by the conclusions.

2. Return and Realized Variance Data

Using high frequency daily returns permits the construction of monthly realized variance—an
ex post, observable variance that is the focus of our study. Although the realized variance has
been used in empirical finance for some time French et al. (1987), there exists a strong theoretical
foundation for using it as an essentially nonparametric measure of ex post volatility (for recent reviews,
see Andersen and Benzoni (2008) and McAleer and Medeiros (2008)). For example, in the factor
analysis investigation of the risk–return trade-off by Ludvigson and Ng (2007), the nonparametric
realized variance affords them the luxury of not having to specify a potentially restrictive parametric
form for volatility. For our purpose, the strength of realized variance is it being a consistent estimate of

6 The approximation is based on Campbell and Shiller (1988). Additional papers that build on this approach and find empirical
support for volatility feedback include Turner et al. (1989); Kim et al. (2004); Kim et al. (2005); Bollerslev et al. (2006);
and Calvet and Fisher (2007).
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return volatility. This property means that we can directly model the distribution of return volatility
by treating the realized variances as a time series of observed volatilities.

To compute the monthly realized variances, we obtain daily price data from Bill Schwert7 for
February 1885–December 1925, and from CRSP for January 1926–December 2011 on the value-weighted
portfolio with distributions for the S&P500. The price data is converted to continuously compounded
daily returns. If rt,ι denotes the continuously compounded return for day ι in month t, then we
compute month t’s realized variance according to

RVq
t = γ̂0 + 2

q

∑
j=1

(1− j/(q + 1))γ̂j, γ̂j =
Nt−j

∑
ι=1

rt,ιrt,ι+j, j = 0, . . . , q, (1)

where Nt denotes the number of daily returns in month t. This estimate of return volatility contains a
bias adjustment of order q to account for market microstructure dynamics and stale prices and follows
Hansen and Lunde (2006). The Bartlett weights in Equation (1) ensure that RVq

t is always positive.
In this paper, we set q = 1 and let RVt ≡ RVq

t .
Monthly returns are taken from the associated monthly files from Schwert and CRSP S&P500.

The risk-free rate is obtained from Amit Goyal’s website for February 1885–December 1925, and, after
this time period, the risk-free rate equals the one-month rate from the CRSP Treasury bill file.

Our risk–return analysis dataset thus consists of monthly excess returns rt and monthly
realized variance RVt from January 1885–December 2011 for a total of 1519 monthly observations.
Returns are scaled by 12 and RVt by 144 in order for our findings to be interpreted in terms of annual
returns. When estimating the model, we reserve the first 22 observations as conditioning variables.
The information set is denoted by It = {r1, RV1, . . . , rt, RVt}, for t = 1, . . . , T.

Table 1 reports various summary statistics for monthly excess returns and realized variance.
Compared to squared returns, realized variance is less noisy. Returns standardized by realized
variance are approximately normal with sample skewness of 0.003 and sample kurtosis of 2.6856.
Log-realized variance is closer to being bell-shaped than the levels of RVt. Figure 1 displays a scatter
plot of market excess returns and log(RVt) which is the basis of our time-series models.

Table 1. Summary statistics.

Mean Variance Skewness Kurtosis Min Max

rt 0.0514 0.3884 −0.4047 10.0461 −4.0710 4.1630
r2

t 0.3907 1.3474 9.7037 119.5948 0.0000 17.3300
RVt 0.3790 0.5611 7.0305 69.4529 0.0116 11.3000

log(RVt) −1.5602 0.8846 0.8051 4.2910 −4.4595 2.4245
z = rt/

√
RVt 0.2296 1.0789 0.0030 2.6856 −2.4080 2.8580

This table reports summary statistics for the monthly data on excess returns rt and monthly realized volatility
RVt. Data is from January 1885–December 2011 giving 1519 observations.

7 For details on the construction of these data, see Schwert (1990).
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Figure 1. Excess return versus log(RVt).

3. Risk Return and Volatility Feedback

This section will provide some motivation for the econometric model studied in this paper.
Consider the following specification based on Equation (7) from French et al. (1987) for excess returns

rt = E[rt|It−1] + α1(RVt − E[RVt|It−1]) + errort. (2)

The first term on the RHS is the expected excess return conditional on the information set It−1.
Hence, it can be a function of E[RVt|It−1]. In French et al. (1987), the first term comes from an
ARMA model on realized variance or standard deviation. This component is ex ante and captures the
traditional positive risk–return relationship that the literature has focused on.

The second term of Equation (2) is the volatility innovation and is the ex post adjustment that
volatility feedback operates through. If variance risk is priced, an unexpected increase in stock
market volatility raises future required stock returns, and thus lowers stock prices (see Campbell and
Hentschel (1992)). In this case, α1 < 0 would hold. Therefore, if volatility is priced, a positive shock to
volatility will have a positive impact on the first term and a negative effect on the second term. Thus,
volatility feedback obscures any risk–return relationship. Note that, in this specification, only when
the variance shock is zero (RVt = E[RVt|It−1]) does the conditional mean of excess returns contain a
pure risk–return effect.

Our goal is to nonparametrically model these two components of excess returns. To fully
capture the two opposing effects on excess returns, it is critical to jointly model excess returns and
the contemporaneous variance. In addition, the conditional mean of excess returns should be a
function of the ex post variance. The other conditional expectations we will model nonparametrically.
These considerations lead to a nonparametric joint model of excess returns and log-realized variance.

4. Nonparametric Model of Market Excess Returns and Realized Variance

In this section, we provide the intuition behind the nonparametric model that we will use to
flexibly estimate the joint relationship between excess returns and contemporaneous realized variance.
As pointed out by Brandt and Kang (2004), there are no theoretical reasons that a particular parametric
relationship should hold between the conditional mean and variance of excess returns. Without a
theoretical relationship to guide us, we choose to let the data inform us about the risk–return trade-off
by modeling the joint probability distribution of excess returns and realized variance as an unknown
distribution and fitting it nonparametrically.
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Our nonparametric approach consists of approximating the unknown joint distribution’s density
with the infinite mixture of bivariate densities

p(rt, log(RVt)|It−1, Ω, Θ) =
∞

∑
j=1

ωj f (rt, log(RVt)|θj, It−1), (3)

where Ω = (ω1, ω2, . . . , ) are the mixture probabilities such that ωj ≥ 0, j = 1, . . . , ∞, and ∑∞
j=1 ωj = 1,

and Θ = (θ1, θ2, . . .) are the mixture parameters. The function f (·, ·|θj, It−1) is the jth mixture
components smooth, bivariate, probability density function given the mixture parameter θj and
information set It−1.

It it well understood that any continuous bivariate distribution can be approximated to arbitrary
accuracy by selecting an appropriate density function for f (·, ·|θj, It−1) and by estimating the unknown
mixture weights ωj and mixture parameters θj, for j = 1, . . . , ∞ (Ghosal et al. 1999). In the next section,
we discuss how the infinite number of unknowns can be estimated with a finite number of observation.
For now, we only consider how we can obtain a nonparametric representation of the risk–return
relationship from Equation (3) through the conditional distribution of excess returns given log-realized
variance. To reduce the clutter from carrying around excessive notation on the conditional mixture
arguments, we drop Θ and Ω from p(rt, log(RVt)|It−1, Ω, Θ) when it is clear to do so.

By the law of total probability, the joint distribution in Equation (3) can be written as the product
of the marginal and conditional distributions

f (rt, log(RVt)|θj, It−1) ≡ f (rt| log(RVt), θj, It−1) f (log(RVt)|θj, It−1). (4)

Drawing on the theoretical considerations of Andersen et al. (2003), the known empirical
bell-shaped distribution of log(RVt), and the approximately normally distributed standardized excess
returns, we choose to let the conditional and marginal probability density functions be

f (rt| log(RVt), θj, It−1) = fN

(
rt|α0,j + α1,jRVt, η2

1,jRVt

)
, (5)

f (log(RVt)|θj, It−1) = fN

(
log(RVt)

∣∣∣γ0,j + γ1,j log(RVt−1) +
γ2,j

6 ∑6
i=1 log(RVt−i)

+ γ3,j
rt−1√
RVt−1

+ γ4,j

∣∣∣∣ rt−1√
RVt−1

∣∣∣∣ , η2
2,j

)
,

(6)

where fN(·|µ, σ2) is the normal density function with mean µ and variance σ2. The jth-cluster’s
mixture parameter vector is θj = (α0,j, α1,j, η1,j, γ0,j, . . . , γ4,j, η2,j)

′ and the conditioning set is It−1 =

(RVt−1, RVt−2, . . . , RVt−5, rt−1). Although the jth mixture component in Equations (5) and (6) are
normally distributed, mixing them over the infinite set of different valued θjs produces joint
distributions of excess returns and log-realized variances with non-zero higher ordered moments,
multiple modes, and a wide variety of curvatures.

What is novel about Equations (5) and (6) is that their mixture locations and scales are functions of
contemporaneous and lagged realized variances and lagged returns. Previous infinite mixture models
directly mix over the conditional means and variances and do not allow for covariates in the mixture
moments. By including contemporaneous and intertemporal variables, our mixture model’s means and
covariances explicitly depend on intertemporal values of returns and volatility and contemporaneous
values of volatility. For example, the values of RVt can impact the mixture means and variances of
excess returns. Note that, under certain conditions, RVt will be an unbiased estimate of the variance of
returns, but we allow for deviations that are captured by the η1,js in the mixture model.

Although not the focus of this study, the model allows for a leverage effect or asymmetric response
of past return shocks to future log(RVt). This occurs in Equation (6) through the terms rt−1√

RVt−1
and

| rt−1√
RVt−1

| and, since this enters the mixture, allows for a general nonlinear leverage effect.
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The intertemporal form of Equations (5) and (6) is not based on theory, but on empirical regularities
known to exist in stock market returns and their volatility. For instance, the conditional mean of
log(RVt) in Equation (6) is along the lines of the models found in Andersen et al. (2007), Corsi (2009)
and the joint models of Maheu and McCurdy (2007, 2011), as adapted to monthly data. It features an
expected volatility comprised of an intertemporal six month component that captures the significant
persistence known to exist in realized variances.8 The last two terms of the conditional mean in
Equation (5) also accounts for an asymmetric volatility relationship by including an asymmetric
response in the mixture means of log-realized variances to lagged returns.

In the conditional density of Equation (5), any potentially nonlinear function of log(RVt) can
be conditioned on; eg., log(RVt) or RVt = exp(log(RVt)). This conditional density function of
excess returns captures the empirical regularity of excess returns being normally distributed when
standardized by

√
RVt. The conditional mixture mean implicitly includes a risk–return relationship

(positive) as well as a volatility feedback effect (positive or negative).9 As a result, the signs of the
mixture parameters α1,js are left ambiguous. Essentially, we are nonparametrically modeling through
Equation (3), Campbell and Hentschel (1992) reduced form equation of excess returns without imposing
any theoretical restrictions. For this reason, we place no restrictions on the α0,j and α1,j, j = 1, . . . , ∞.
The implications for the risk–return trade-off can be indirectly derived from the contemporaneous
model and are discussed later.

4.1. Conditional Distribution of Returns Given Realized Variance

From the mixture representation of the joint distribution of excess returns and realized variances
in Equation (3), it directly holds that the probability density function of excess returns conditional on
contemporaneous log-realized variance equals

p(rt| log(RVt), It−1) =
p(rt, log(RVt)|It−1)

p(log(RVt)|It−1)
=

∑∞
j=1 ωj f (rt, log(RVt)|θj, It−1)

∑∞
j=1 ωj f (log(RVt)|θj, It−1)

(7)

=
∞

∑
j=1

qj(log(RVt)|Θ, It−1) f (rt| log(RVt), θj, It−1), (8)

where f (rt| log(RVt), θj, It−1) ≡ f (rt, log(RVt)|θj, It−1)/ f (log(RVt)|θj, It−1) is the conditional
probability density function of the jth cluster and f (log(RVt)|θj, It−1) is the associated marginal
density function for log(RVt).

The mixture weights in Equation (8) have the particular form

qj(log(RVt)|Θ, It−1) =
ωj f (log(RVt)|θj, It−1)

∑∞
i=1 ωi f (log(RVt)|θi, It−1)

,

∝ ωj fN

(
log(RVt)

∣∣∣∣∣γ0,j + γ1,j log(RVt−1) +
γ2,j

6

6

∑
i=1

log(RVt−i) (9)

+ γ3,j
rt−1√
RVt−1

+ γ4,j

∣∣∣∣ rt−1√
RVt−1

∣∣∣∣ , η2
2,j

)
,

so that they sum to one. From Equation (10), we see that those clusters providing a better fit of log(RVt)

receive more weight in the mixture representation. Components whose γ·,j and η2
2,j result in larger

likelihoods play a bigger role in accounting for the risk–return trade-off and the volatility feedback

8 A preliminary analysis showed the importance of a six-month component.
9 Several different functional forms for the conditional mean of rt given log(RVt) result in similar findings and are discussed

in Section 6.4. The current specification provides flexibility in modeling.
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effect. Note that different values of log(RVt) produce smooth changes in the conditional distribution
of excess returns and, hence, in its mean.

Our interest rests in the risk–return and volatility feedback relationship; in other words,
the conditional expectation of market excess returns given log-realized volatility. Since the expectation
of a mixture distribution is equivalent to the mixture of the expectations, from the conditional mixture
means of excess returns in Equation (5), the expectation of Equation (8) is the conditional expectation

E[rt| log(RVt), It−1] =
∞

∑
j=1

qj(log(RVt)|Θ, It−1)E[rt| log(RVt), θj, It−1] (10)

=
∞

∑
j=1

qj(log(RVt)|Θ, It−1)
[
α0,j + α1,jRVt

]
. (11)

A linear parametric risk–return relationship is nested in Equation (11) by simply letting there
be only one mixture component. As more mixture components are added and a greater mixture of
differently valued α0,js and α1,js are included, the conditional mean of excess returns as a function of
RVt, moves away from linearity. This mixing allows Equation (11) to become more flexible and capable
of modeling a wider array of different types of risk–return and volatility feedback relationships.

Being a function of realized variance, the mixture representation in Equation (11) differs from
previous work by nonparametrically modelling excess returns and ex post variance. The conditional
mean of excess returns given realized variance will contain an ex ante risk–return component and an
ex post volatility feedback component.

A plot of the conditional expectation of excess returns as a function of log(RVt) will be a smoothly
changing function that weights each of the cluster specific conditional expectations according to
how the weight function qj(log(RVt)|Θ, It−1) changes as log(RVt) changes. This is true even if each
cluster’s expectation, E[rt| log(RVt), θj, It−1], is constant. In this way, we can see the contemporaneous
relationship of log-volatility on the conditional mean of excess returns. As mentioned above, volatility
feedback occurs simultaneously and this specification is designed to shed light on it.

4.2. Dirichlet Process Prior for the Infinite Number Of Unknowns

Because our nonparametric model of excess returns and log-realized variance joint probability
distribution consists of an infinite number of unknown mixture weights, ωj, and parameter vectors,
θj, we resort to a Bayesian prior to shrink the number of unknowns to a feasible number while not
forsaking the flexibility that comes from an infinite mixture model. The prior we choose is the Dirichlet
process prior (DP). The Dirichlet process prior has a long history, beginning with Ferguson (1973),
of use in Bayesian nonparametric problems. It was used as a prior in countable infinite mixtures
for density estimation in Ferguson (1983) and Lo (1984), but applications were limited until modern
computational techniques. The seminal paper by Escobar and West (1995) shows how to perform
Bayesian nonparametric density estimation with Gibbs sampling.

The DP prior essentially partitions the parameter space into a finite number of sets such that
parameter vectors drawn from a particular set all have the same unique value. Such a prior promotes
clustering among the mixture components resulting in only having to estimate a few unknown mixture
parameter vectors. The probability of a particular mixture parameter vector occurring is equal to the
probability over a member set of the partition as defined by the DP prior.
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To be explicit, we assume the Dirichlet process prior, DP(G0, κ), for the unknown ωj and θj,
j = 1, . . . , ∞ of Equation (3). Sethuraman (1994) shows that a DP(G0, κ) prior for the mixture unknowns
has the representation of being almost surely draws from

ω1 = v1, ωj = vj

j−1

∏
i=1

(1− vi), vj
iid∼ Beta(1, κ), (12)

θj
iid∼ G0, (13)

for j = 1, . . . , ∞. In Equation (13), each mixture cluster parameter vector θj is a unique vector
independently drawn from the base distribution G0. This base distribution is our best guess at how
the θjs are distributed. In Equation (12), the mixture weights are drawn from what is referred to as
a stick breaking process since the unit interval is successively broken into the mixture weights, ωj,
j = 1, . . . , ∞, by breaking off random Beta(1, κ) portions of the remaining part of the unit length stick.
This stick breaking process ensures the mixture weights sum to one while also promoting clustering in
the θs.

The positive scalar κ, known as the Dirichlet processes’ concentration parameter, controls the
degree of clustering in the mixture components. A κ close to zero results in only a few mixture weights
being nonzero, putting most of the weight on only a few unique draws from G0. As κ gets larger
more ωjs become nonzero, and, hence, there is less clustering and more unique θjs. In the limit as
κ approaches infinity, the partition of the mixture parameter space is no longer finite and discrete.
Instead, the parameter sets within the partition becomes so fine and large in number that the θjs no
longer cluster to a finite set of unique value but instead will be continuously distributed as G0. In other
words, when κ → ∞, the mixture weights are uniformly distributed, no clustering occurs and the prior
for the θs is essentially G0.

4.3. Hierarchical Representation

The Dirichlet process mixture model defined in Equations (3)–(6), (12) and (13) also has the
hierarchical representation where rt, log(RVt)|θ∗t , It−1 is distributed

rt, log(RVt)|θ∗t , It−1 ∼ f (rt, log(RVt)|θ∗t , It−1), t = 1, . . . , T, (14)

θ∗t |G
iid∼ G, t = 1, . . . , T, (15)

G|G0, κ ∼ DP(G0, κ). (16)

In Equation (15), the distribution of the parameter vector θ∗t = (α∗0,t, α∗1,t, η∗1,t, γ∗0,t, . . . , γ∗4,t, η∗2,t)
′

is the unknown distribution, G, whose prior is modeled in Equation (16) by the Dirichlet process
prior DP(G0, κ). Given the stick breaking definition of the Dirichlet process in Equations (12) and (13),
the prior distribution for G is almost surely equal to the discrete distribution

G(θ∗t ) =
∞

∑
j=1

ωjδθj(θ
∗
t ), (17)

where δθj(·) denotes a point mass at θj, and ωj and θj are the random realizations defined in
Equations (12) and (13).

Equation (17) helps us better appreciate the clustering behavior of the DP prior. Since G is almost
surely a discrete distribution, there will be duplicates among the θ∗t , t = 1, . . . , T. As a result, several of
the observations will share the same mixture parameter vector, θj.

If volatility risk is priced, a positive volatility shock requires an increase in returns which discounts
all future cash flows at a higher rate. This discounting results in a drop in the current price. As a result,
if any unexpected news arrives be it good or bad, uncertainty increases causing the innovation to
volatility, vt, to be positive. If a volatility feedback effect exists the effect good news has on returns
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will be dampened, whereas the effect of the bad news will be amplified. Therefore, a price increase
from good news will be less than what would occur without volatility feedback while a price decrease
from bad news will be steeper. Dynamics of this sort occur when α∗1,t is negative. On the other hand,
if volatility shocks are small, the net impact on the conditional mean of excess returns will be a reward
for risk which can be captured by a positive (α∗0,t + α∗1,tRVt).

By connecting the clustering property of the DP with the volatility feedback parameter, α∗1,t,
our nonparametric model will have a unique α1,j during similar market environments. Two months
with similar market behavior will have the same volatility feedback, α1,j. However, the volatility
feedback for months where the market dynamics are different will not equal α1,j.

4.4. Posterior Simulation

To sample the posterior density of our nonparametric joint distribution model, we will exploit the
mixture representation in Equation (3) and a slice sampler based on Walker (2007); Kalli et al. (2011);
and Papaspiliopoulos (2008).10 This Markov chain Monte Carlo (MCMC) algorithm introduces a
random auxiliary, latent, variable, ut ∈ (0, 1), which slices away any mixtures clusters with a weight
ωj less than ut. In this way, the infinite mixture model is reduced to a finite mixture.

Introducing the latent variable ut, we define the joint conditional density of the observed variables
(rt, log(RVt)) and ut as,

p(rt, log(RVt), ut|Ω, Θ, It−1) =
∞

∑
j=1

1(ut < ωj) f (rt, log(RVt)|θj, It−1). (18)

This infinite mixture is truncated to only include alive clusters with ut < ωj while dead clusters
have a weight of 0 and can be ignored. If ut has a uniform distribution, then integration of
p(rt, log(RVt), ut|Ω, Θ, It−1) with respect to ut gives back the original model p(rt, log(RVt)|Ω, Θ, It−1).
On the other hand, the marginal density of ut is ∑∞

j=1 1(ut < ωj).
We augment the parameter space to include estimation of S = (s1, . . . , sT). Let U = (u1, . . . , uT),

ΩK = (ω1, . . . , ωK) and ΘK = (θ1, . . . , θK), then the full likelihood is

T

∏
t=1

p(rt, log(RVt), ut, st|ΩK, ΘK, It−1) =
T

∏
t=1

1(ut < ωst) f (rt, log(RVt)|θst , It−1) (19)

and the joint posterior is

p(ΩK)

[
K

∏
i=1

p(θi)

]
T

∏
t=1

1(ut < ωst) f (rt, log(RVt)|θst , It−1), (20)

where the number of mixture clusters, K, is the smallest natural number that satisfies the condition
∑K

j=1 ωj > 1−min{U}. This value of K ensures that there are no ωk > ut for k > K. In other words,
we have the set of all clusters that are alive, {j : ut < ωj}.

Posterior simulation consists of sampling from the following densities:

1. π(θj|r, RV , S) ∝ g0(θj)∏{t:st=j} f (rt, log(RVt)|θj, It−1), j = 1, . . . , K.

2. π(vj|S) ∝ Beta(vj|aj, bj), j = 1, . . . , K, with aj = 1 + ∑T
t=1 1(st = j), bj = κ + ∑T

t=1 1(st > j).
3. π(ut|ΩK, S) ∝ 1(0 < ut < ωst), t = 1, . . . , T.
4. Find the smallest K such that ∑K

j=1 ωj > 1−min{U}.
5. P(st = j|r, RV , ΘK, U, ΩK) ∝ ∑K

j=1 1(ut < ωj) f (rt, log(RVt)|θst , It−1).

10 Alternative methods Escobar and West (1995) based on the hierarchical form of the model in Equation (14) are more difficult
as our model and prior are non-conjugate.



J. Risk Financial Manag. 2018, 11, 52 11 of 29

where r = (r1, . . . , rT)
′ and RV = (RV1, . . . , RVT)

′.
The first step depends on the model and the base density g0(·) to the DP priors’ base measure, G0.

For the kernel densities in Equations (5) and (6), specifying a normal prior for the regression coefficients
and an independent inverse gamma prior for the variance, in other words, defining G0 ≡ N(b, V)×
G(v/2, s/2), we can employ standard Gibbs sampling techniques in Step 1 (see Greenberg (2013) for
details on the exact form of these conditional distributions). Step 2 results from the conjugacy of the
generalized Dirichlet distribution and multinomial sampling Ishwaran and James (2001). Given ΩK
and S, each ut is uniformly distributed on (0, ωst). The next step updates the truncation parameter K.
If K is incremented, Step 4 will also involve drawing additional ωj and θj from the DP prior. The final
step is a multinomial draw of the cluster assignment variable st based on a mixture with equal weights.

Repeating all these steps forms one iteration of the sampler. The MCMC sampler yields the
following set of variables at each iteration i,

{(θi,j, vi,j), j = 1, 2, . . . , Ki; (si,t, ui,t), t = 1, . . . , T}. (21)

Note that vi,j, j = 1, 2, . . . , Ki, implies ωi,j, j = 1, 2, . . . , Ki, through Equation (12). After dropping
the burn-in phase from the above sampler, we collect i = 1, . . . , N samples.

Each ith iteration of the algorithm produces a draw of the unknown mixing distribution G from
its posterior [G|r, RV ] as

Gi =
Ki

∑
j=1

ωi,jδθi,j +

(
1−

Ki

∑
j=1

ωi,j

)
G0(θ). (22)

We will make use of these posterior realizations of G to form the predictive density and conditional
expectations.

5. Nonparametric Conditional Density Estimation

To flexibly estimate the conditional density p(rt| log(RVt), It−1) found in Equation (8), or the
conditional mean in Equation (11), we use the method of Muller et al. (1996). This is an elegant
approach to nonparametric estimation that allows the conditional density and expectation of excess
returns to depend on covariates, in this case log(RVt). The method requires the joint modeling of the
predictor variable and its covariates and uses well know estimation methods for Dirichlet process
mixture models. We extend Muller et al. (1996) to the slice sampler to accommodate the non-Gaussian
data densities and nonconjugate priors found in our nonparametric model of market excess returns
and realized variances.11

Based on the previous section, and given Gi, the ith realization from the posterior of the joint
conditional predictive density for the generic return, log-realized variance combination, (r, log(RV)), is

p(r, log(RV)|Gi, It−1) =
∫

f (r, log(RV)|θ, It−1)Gi(dθ), (23)

where the predictive is conditional on the information set It−1 = {rt−1, RVt−1, . . . , r1, RV1}.

11 Additional papers that also build on Muller et al. (1996) are Rodriguez et al. (2009); Shahbaba and Neal (2009); and Taddy
and Kottas (2010).
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Substituting in the stick breaking representation for Gi found in Equation (22), the posterior draw
of the predictive density has the equivalent representation

p(r, log(RV)|Gi, It−1) =
Ki

∑
j=1

wi,j f (r, log(RV)|θi,j, It−1)

+

(
1−

Ki

∑
j=1

wi,j

)
p(r, log(RV)|G0, It−1), (24)

where p(r, log(RV)|G0, It−1) =
∫

f (r, log(RV)|θ, It−1)G0(dθ) is the expectation of Equation (14) over
G0. To integrate out the uncertainty associated with G, one averages Equation (24) over the posterior
realizations, Gi ∼ [G|r, RV ], i = 1, . . . , N, to obtain the posterior predictive density

p(r, log(RV)|r, RV) ≈ 1
N

N

∑
i=1

p(r, log(RV)|Gi, It−1). (25)

Now, the predictive density of r given log(RV) can be estimated as well. For each draw of Gi,
we have

p(r| log(RV), Gi, It−1) =
p(r, log(RV)|Gi, It−1)

p(log(RV)|Gi, It−1)
,

=
p(r, log(RV)|Gi, It−1)

∑Ki
j=1 wi,j f (log(RV)|θi,j, It−1) + (1−∑Ki

j=1 wi,j) f (log(RV)|G0, It−1)
,

=
Ki

∑
j=1

qi,j(log(RV)) f (r| log(RV), θi,j)

+

(
1−

Ki

∑
j=1

qi,j(log(RV))

)
f (r| log(RV), G0, It−1), (26)

where f (r| log(RV), θi,j, It−1) is the conditional density of Equation (5), f (log(RV)|θi,j, It−1) is the
marginal density of Equation (6) and

qi,j(log(RV)) = wi,j f
(
log(RV)

∣∣θi,j, It−1
)/[

Ki

∑
l=1

wi,l f (log(RV)|θi,l , It−1)

+

(
1−

Ki

∑
l=1

wi,l

)
f (log(RV)|G0, It−1)

]
. (27)

The denominator of qi,j(log(RV)) is the marginal of Equation (24) obtained by integrating out
r. f (log(RV)|θi,j, It−1) is the marginal data density of log(RV) for the jth cluster with the marginal
cluster parameter θj and f (log(RV)|G0, It−1) is the marginal data density with mixing over the base
measure. The terms in Equations (26) and (27) involving G0 are defined as follows:

f (r| log(RV), G0, It−1) =

∫
f (r, log(RV)|θ, It−1)G0(dθ)∫
f (log(RV)|θ, It−1)G0(dθ)

, (28)

f (log(RV)|G0, It−1) =
∫

f (log(RV)|θ, It−1)G0(dθ). (29)

Assuming that the marginal data density f (log(RV)|θ, It−1) is available in analytic form,
both of these expressions can be approximated by the usual MCMC methods. For instance,
f (log(RV)|G0, It−1) ≈ N−1 ∑N

i=1 f (log(RV)|θ(i), It−1), where θ(i) ∼ G0, with a similar expression
for the numerator of Equation (28).
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The posterior predictive conditional density is estimated by averaging Equation (26) over the
posterior simulations of Gi as

p(r| log(RV), It−1, r, RV) ≈ 1
N

N

∑
i=1

p(r| log(RV), Gi, It−1). (30)

Using this approximation, features of the conditional distribution such as conditional quantiles
can be derived.

5.1. Nonparametric Conditional Mean Estimation

Our focus will be on the conditional expectation that can be estimated from these results. First,
the conditional expectation of r given log(RV), Gi and the information set It−1 is

E[r| log(RV), Gi, It−1] =
Ki

∑
j=1

qi,j(log(RV))E[r| log(RV), θi,j, It−1]

+

(
1−

Ki

∑
j=1

qi,j(log(RV))

)
E[r| log(RV), G0, It−1], (31)

where E[r| log(RV), G0, It−1] is taken with respect to Equation (28). Note that this final term is only a
function of G0 and can be computed once, at the start of estimation, for a grid of values of log(RVt).
It is estimated as12

E[r| log(RV), G0, It−1] =

∫
E[r| log(RV), θ, It−1] f (log(RV)|θ, It−1)G0(dθ)∫

f (log(RV)|θ, It−1)G0(dθ)
, (32)

≈ N−1 ∑N
i=1 E[r| log(RV), θ(i), It−1] f (log(RV)|θ(i), It−1)

N−1 ∑N
i=1 f (log(RV)|θ(i), It−1)

(33)

for θ(i) ∼ G0, i = 1, . . . , N.
Given Gi, Equation (31) shows the conditional expectation of r is a convex combination of cluster

specific conditional expectations E[r| log(RV), θj, It−1], j = 1, . . . , Ki, along with the expectation taken
with respect to the base measure G0. The weighting function changes with the conditioning variable
log(RV), which in turn changes for each It−1.

Finally, with this, we can obtain the posterior predictive conditional mean estimate by averaging
over Equation (31) as follows:

E[r| log(RV), It−1, r, RV ] ≈ 1
N

N

∑
i=1

E[r| log(RV), Gi, It−1], (34)

in order to integrate out uncertainty concerning G.13 Point-wise density intervals of the conditional
mean can be estimated from the quantiles of E[r| log(RV), Gi, It−1].

We evaluate the predictive conditional mean for a grid of values over log(RV). This will produce a
smooth curve and we will have a unique curve for each information set It−1 in our sample t = 1, . . . , T.

12 This result makes use of expressing the numerator as
∫

xp(x, y|θ)p(θ)dθdx =
∫

xp(x|y, θ)p(y|θ)p(θ)dθdx =
∫

E[x|y, θ]p(y|θ)p(θ)dθ.
13 Note that the quantity E[rt| log(RVt), It−1] in (11) assumes parameters are known. In our case, they need to be estimated by

the posterior density using the full sample of data r, RV . Therefore, our estimate implicitly conditions on the observed r and
RV in E[r| log(RV), It−1].
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6. Empirical Findings

For our empirical analysis, we specify the following priors. The base measure G0 contains priors

for each regression parameter in Equations (5) and (6) as independent N(0, 1) while η−2
1,j

iid∼ G(5/2, 5/2)

and η−2
2,j

iid∼ G(6/2, 3/2), j = 1, . . . , ∞, where G(a, b) denotes a gamma distribution with mean a/b.

Note that we expect the η2
1,js to be close to 1 and the prior reflects this with E[η−2

1,j ] = 1 but allows
for deviations from this. These prior beliefs cover a wide range of empirically realistic values and
robustness to other choices is discussed below. The concentration parameter of the Dirichlet process, κ,
is estimated and has a prior G(2, 10). Each cluster contains the nine parameters found in θj.

We use 5000 initial iterations of the posterior sampler for burn-in and then collect the following
20,000 for posterior inference. The Markov chain mixes well and the posterior mean (0.95 density
interval) for κ is 0.2046, (0.0439, 0.4831) and the posterior mean (0.95 density interval) for the number
of alive clusters is 2.6, (2, 4). In other words, about 2.6 components are used to fit the joint model of rt

and log(RVt).
Before we turn to the estimates from our nonparametric DPM model, a parametric version of the

model is reported in Table 2. This is a one state model. The coefficient α1 on RVt in the excess return
equation is significantly negative and hence evidence of the volatility feedback mechanism at work.
η2

1 is close to 1 and indicates no systematic bias in RVt. The estimates of γ1 and γ2 indicate persistence
in log(RVt). The lagged standardized excess return terms entering the log-volatility equation show
asymmetry. A negative return shock results in a larger conditional mean for log-volatility next period
compared to a positive shock.

Table 2. Parametric model estimates.

Mean 0.95 Density Interval

α0 0.1922 ( 0.1672, 0.2171 )
α1 −0.2801 (−0.3895, −0.1748 )
η2

1 1.0177 ( 0.9460, 1.0962 )
γ0 −0.3319 (−0.4151, −0.2470 )
γ1 0.3766 ( 0.3179, 0.4329 )
γ2 0.4505 ( 0.3817, 0.5180 )
γ3 −0.1518 (−0.1842, −0.1170 )
γ4 0.1258 ( 0.0680, 0.1861 )
η2

2 0.3981 ( 0.3702, 0.4278 )

This table reports posterior summary statistics for the parametric model: rt = α0 + α1RVt + η1
√

RVtzt, zt ∼

NID(0, 1); log(RVt) = γ0 + γ1 log(RVt−1) + γ2
1
6 ∑6

i=1 log(RVt+1−i) + γ3
rt−1√
RVt−1

+ γ4

∣∣∣∣ rt−1√
RVt−1

∣∣∣∣+ η2vt, vt ∼

NID(0, 1).

Figure 2 displays the contemporaneous relationship between expected excess returns and log(RV)

for the estimated parametric model.14 The conditional expectation of excess returns given log-realized
variance is computed over a grid of 100 log-variance values between −4.0 to 2.0. Using a straight
line, we interpolate between the values of E[r| log(RV), It−1, r, RV ] at the different values of log
variance in order to approximate the smooth relationship between E[r| log(RV), It−1, r, RV ] and
log(RV). Although the estimated model is a fixed linear relationship between excess returns and RV,
this parametric model yields the nonlinear relations between the conditional mean of excess returns
and log-realized variance found in Figure 2.

14 For convenience, our figures drop the conditioning set r, RV .
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Figure 2. Expected excess return given log realized variance for the parametric model. This figure
displays the expected excess return and 0.90 density intervals as a function of log realized variance for
the parametric model.

In Figure 3, the conditional expectation of excess returns as a function of log-realized variance
for our nonparametric model is plotted for every information set, It−1, t = 1, . . . , T, in our dataset.
Note that the parametric relationship in Figure 2 is the same for every information set and is not
affected by low or high volatility periods. Overall, there is a general increase in the conditional mean
of excess returns in Figure 3 as log-realized variance increases from low levels of volatility to a point
where expected returns become negative. This is a general pattern found in all of the plots of Figure 3.
However, the log-variance argument that causes the conditional mean of excess returns to begin to
decline does differ for the different information sets It−1. It is clear that, if one averaged over these
expectations, you could obtain a positive value for expected excess returns or a negative value.15

To really understand the relationship between the conditional mean of excess returns and log-realized
variance, we need to consider the conditional expectation and the innovation of log-volatility as well.

To do this, we isolate three months in our sample where market volatility is low (October, 1964),
average (February, 1996) and high (December, 2008) and plot in Figures 4–6 the conditional expectations
of excess returns against different values of log-realized variance during these three months. In addition
to plotting the conditional expectation of market excess returns, the three figures also include the
conditional expectation of log-realized variance, E[log(RVt)|It−1, r, RV ], as a vertical blue line, and the
observed realized value of log-realized variance for that month, log(RVt), as a vertical dashed line.
Point-wise 90% probability density intervals are included for the expected excess return.

15 In fact, averaging the curves from the nonparametric model would give something close to the parametric model in Figure 2.
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Figure 3. Expected return given log realized variance for each of the information sets It−1, t = 2, . . . , T.
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Figure 4. Expected excess return given log realized variance for the information set It−1 where
volatility is low. This figure displays the expected excess return and 0.90 density intervals as a function
of log(RV) conditional on the information set It−1, t = 1964 : 10, which is a low volatility period.
The expected log-realized volatility based on the model is blue, while the actual log-realized volatility
for t = 1964 : 10 is the black vertical line.
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Figure 5. Expected excess return given log realized variance for the information set It−1 where volatility
is near its average level. This figure displays the expected excess return and 0.90 density intervals as a
function of log(RV) conditional on regressors in the information set from It−1, t = 1996 : 2, which is an
average volatility period. The expected log-realized volatility based on the model is blue while the
actual log-realized volatility for t = 1996 : 2 is the black vertical line.
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Figure 6. Expected excess return given log realized variance for the information set It−1 where volatility
is high. This figure displays the expected excess return and 0.90 density intervals as a function of
log(RV) conditional on regressors in the information set from It−1, t = 2008 : 12, which is a high
volatility period. The expected log-realized volatility based on the model is blue while the actual
log-realized volatility for t = 2008 : 12 is the black vertical line.
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6.1. Volatility Effect

Recalling our discussion on volatility feedback, if volatility is priced and a positive volatility
shock arrives, then, all things being equal, the required rate of return increases which discounts all
future cash flows at a higher rate and results in a simultaneous drop in the current price so as to deliver
a higher future return consistent with the increase in risk. Only when the observed log-variance is
equal to its expected value will the volatility feedback effect be zero. Hence, if volatility risk is priced,
values of log-variance greater (less) than its expected value will cause current prices to fall (rise).

This is exactly what we find in Figures 4–6 for an unexpected positive volatility shock where
log-variance is greater than the expected value of log-realized variance. For instance, consider Figure 4,
which conditions on the low volatility information set, I1964:10.16 In this month of low market volatility,
the model’s expected log-realized variance is −3.158. The expected excess return is positive for values
of log-variance below and slightly above this expected value, but eventually the expected excess return
becomes negative as log(RV) increases above −2.25. In other words, when market volatility is low,
if the volatility shock is sufficiently larger than zero, we expect a contemporaneous decrease in prices
from the volatility feedback effect.

Figure 5 displays a similar pattern for the month where volatility is not unusual but typical for
the equity market. The period is for the information set I1996:2 and our model finds the expected value
of log(RV) to be −2.117. As before, expected excess returns are positive for values of log-variance less
than and slightly greater than −2.117, but eventually becomes negative when log-realized variance is
larger than −1.5. If the log-volatility shock is sufficiently large (about +0.68), then the expected excess
return is negative and continues to decrease as the size of the volatility shock grows. In addition, notice
that the whole posterior curve of E[r| log(RV), I1996:2, r, RV ] has shifted rightward as the expected
log(RV) has increased from Figures 4 to 5 (low to average log(RV)). This suggests an increase in
compensation for the higher perceived volatility risk when the market moves from an unusually calm
market to one that is typical.

A highly volatility market corresponding to the information set I2008:12 is found in Figure 6. Just as
before, E[r| log(RV), I2008:12, r, RV ] is essentially linear and flat for values of log(RV) smaller than
E[log(RV)|I2008:12, r, RV ]. In other words, the expected excess returns do not respond to negative
volatility shocks. However, for values of log(RV) greater than 0.5, expected excess returns start to
decline and become negative when log-realized variance is almost one.17 This is consistent with the
volatility feedback effect. Note that, in each of these three figures, the effect of volatility feedback on
returns gets stronger where the impact of a positive volatility shock on expected returns increases
as the the market moves from a low volatility state to a market with average volatility and then to a
market where volatility is exceptionally high.

Figure 7 plots E[r| log(RV), It−1, r, RV ] for each of the three information sets, I1964:10, I1996:2

and I2008:12. As E[log(RV)|It−1, r, RV ] increases, the conditional expectation of excess returns shifts
rightward and up. This is consistent with a positive and increasing reward for bearing higher levels
of risk.

In summary, we find a robust volatility feedback effect that is most notable for positive shocks
to volatility. Expected excess returns are positive below E[log(RV)|It−1, r, RV ] but after this value
eventually become negative. Thus, small news events have little effect on expected returns, whereas
large news events cause expected excess returns to decline. This suggests that risk is priced and the
previous figure is consistent with this.

16 From Table 1, average log(RV) is −1.5602 with a minimum of −4.4595 and maximum of 2.4245.
17 E[log(RV)|It−1, r, RV ] denotes the in-sample Bayesian estimate of the expectation of log(RV) given It−1. This conditions

on regressors in the information set t− 1 but uses the full posterior density based on r,RV for the model parameters to
integrate out parameter uncertainty.
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Figure 7. Expected excess return given log(RV) for various periods. This figure displays the expected
excess return as a function of log(RV) conditional on regressors It−1 taken from t = 1964 : 10 “Low
Log-RV”, t = 1996 : 2, “Average Log-RV” and t = 2008 : 12 “High Log-RV”.

6.2. Risk and Return Trade-Off

To focus on risk and return, we need to account for the volatility feedback effect. In each
of our figures, the point on the E[r| log(RV), It−1, r, RV ] line that corresponds to log(RV) =

E[log(RV)|It−1, r, RV ] is exactly the point with no volatility feedback. This point is where the investor
receives exactly the reward for risk with no adjustment for volatility feedback because the volatility
shock is zero. This will be at a different place in each of our curves of E[r| log(RV), It−1, r, RV ]. Using
interpolation between each of the grid values, we can estimate the value of E[r| log(RV), It−1, r, RV ]

at log(RV) = E[log(RV)|It−1, r, RV ] for each time period t. This represents a pure risk and return
relationship which nets out volatility feedback.

Figure 8 displays the equity risk premium over time from the nonparametric model when volatility
feedback has been removed. The premium is everywhere positive. Figure 9 displays the pure risk
and return relationship. It shows the expected excess return as a function of expected log-realized
variance according to our model estimates when volatility feedback is removed. Each dot represents
the point of E[r| log(RV), It−1, r, RV ] in which volatility feedback is zero given the information set It−1.
The relationship is unambiguously positive and increasing in log(RV), which accords with theory. The
relationship is nonlinear. It is approximately linear for a small value of log-volatility but increases
sharply as expected log-volatility surpasses zero.

In contrast to Campbell and Hentschel (1992) and the subsequent literature on volatility feedback,
we find evidence of a positive risk and return relationship and a volatility feedback effect without
imposing any economic restrictions. The key is flexibly modeling the contemporaneous distribution of
market excess returns and log-realized variance and accounting for the volatility shock.
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Figure 9. Expected excess return when volatility feedback is zero.



J. Risk Financial Manag. 2018, 11, 52 21 of 29

6.3. Conditional Quantiles and Contour Plots

Figures 10–13 display conditional quantile plots of the distribution of excess returns given different
values of log(RV) for the parametric model and several cases of the nonparametric model. In each
figure, the green line is the conditional mean that was discussed above.

For the parametric model, as before, the conditional quantiles do not change for different
information sets. The estimated weights and component densities in the mixture model of Equation (8),
however, are sensitive to the information set and result in very different conditional distributions.
Each of the conditional quantile plots show a highly nonlinear distribution that is at odds with the
parametric model.

Recall from the previous discussion that the conditional expectations of the low, average and
high levels of log(RVt) were −3.158, −2.117 and 0.509, respectively. In Figures 11–13, the bulk of
the distribution is above zero at each of these points. Investors are most likely to receive a positive
excess return from the market at the value of the expected value of log-realized variance. As log(RV)

increases and the volatility shock becomes larger, most of the mass in each conditional density is over a
negative range of excess returns. Here, investors are likely to have a loss from investing in the market.

The upper quantiles show the most nonlinear behavior given low (Figure 11) and average
(Figure 12) levels of volatility. Volatility feedback has an impact on the whole distribution and not
just the conditional mean. The changes in the density, as log(RV) increases, are non-monotonic.
In Figures 11 and 12, there is an increase in the spread of the density followed by a decrease and final
increase. The point of these changes in the conditional density is to the right of the conditional mean
of log(RVt). The parametric quantile plot is inconsistent with these features.

Although volatility feedback is the most likely explanation of our results, Veronesi (1999) shows
that, in the presence of uncertainty about the economic regime, prices overreact to bad news in good
times and underreact to good news in bad times. This results in negative returns coupled with high
volatility such as seen in the conditional quantile plots.

-6

-4

-2

 0

 2

 4

-4 -3 -2 -1  0  1  2

[r
 |
 L

o
g
(R

V
)]

Log(RV)

0.025

0.05

0.1

0.5

0.75

0.9

0.975

Figure 10. Quantiles of excess returns given log(RV) for the parametric model. This figure displays
the quantiles of the distribution of excess returns conditional on log(RV) for the parametric model.
The green dotted line is the expected excess return given log(RV).
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Figure 11. Quantiles of excess returns given log(RV) for low volatility. This figure displays the
quantiles of the distribution of excess returns conditional on log(RV) for It−1, t = 1964 : 10. The green
dotted line is the expected excess return given log(RV).
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Figure 12. Quantiles of excess returns given log(RV) for average volatility. This figure displays the
quantiles of the distribution of excess returns conditional on log(RV) for It−1, t = 1996 : 2. The green
dotted line is the expected excess return given log(RV).

Contour plots of the conditional joint predictive density for excess returns and log-realized
variances, for the three different months of market volatility, are found in Figures 14–16. Each of the
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figures are consistent with deviations from Gaussian behavior in the conditional bivariate distribution.
It is clear that the conditional distribution changes a great deal over time and is not a result of changes
in location and/or scale. There is a thick tail for small values of r and larger values of log(RV) in
each figure, but the shape of the distributions tail is very different depending on It. These important
changes in the conditional density are the features that our nonparametric model are designed to
capture. Conventional parametric approaches cannot accommodate these features.
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Figure 13. Quantiles of excess returns given log(RVt) for high volatility. This figure displays the
quantiles of the distribution of excess returns conditional on log(RV) for It−1, t = 2008 : 12. The green
dotted line is the expected excess return given log(RV).
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6.4. Parameter Estimates and Robustness

Figures 17 and 18 display the posterior mean of each of the model parameters contained in the
vector θ∗t for t = 1, . . . , T. A parametric model would be a straight line. We see considerable switching
between clusters in all the plots and the size of the change between the cluster’s parameter values is
often large. This shows that multiple mixture components in our nonparametric model is a significant
feature of the data. Compared to the parametric model results found in Table 2, α∗1,t, the coefficient
on RVt is negative and positive over different time periods. The variability of the parameters in
the figures is well beyond the 95% density intervals for the parametric model reported in Table 2.
Although the parametric model estimate of η2

1 is close to one, the nonparametric parameter estimates,
η∗1,t, t = 1, . . . , T, varies between 0.4 to 0.85. This is due to the significantly improved fit that the
nonparametric model offers in the conditional mean, which contributes to a lower innovation variance.

Our results are robust to changes in the priors and the model for the data density. For instance,
we obtain the same qualitative results for E[r| log(RV), It−1, r, RV ] if we omit from Equation (5) RVt

by setting α1,j = 0, j = 1, . . . , ∞, or drop the lagged return terms from Equation (6) by making
γ3,j = γ4,j = 0 for j = 1, . . . , ∞. Although our priors are quite diffuse and provide a wide range of
empirically realistic parameter values, making them more diffuse produces similar results, but the
density intervals for E[r| log(RV), It−1, r, RV ] are generally larger. If RVt is replaced by log(RVt) in the
conditional mean of excess returns (5), we obtain the same results for E[r| log(RV), It−1, r, RV ].
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7. Conclusions

This paper nonparametrically models the contemporaneous relationship between market excess
returns and realized variances. An infinite mixture of distributions is given a flexible Dirichlet process
prior. From this, the nonparametric conditional distribution of returns given realized variance consists
of an infinite mixture representation whose probabilities and arguments depend on the value of
realized variance. This allows for a smooth nonlinear relationship between the conditional mean of
market excess returns and realized variance. The model is estimated with MCMC techniques based on
slice sampling methods that extends the posterior sampling methods in the literature.

Applied to a long span of monthly data, we find strong robust evidence of volatility feedback.
Once volatility feedback is accounted for, there is an unambiguous positive relationship between
expected excess returns and expected log-realized variance. In contrast to the existing literature, we find
evidence of a positive risk and return relationship and a volatility feedback effect without imposing
any economic restrictions. We show that the volatility feedback impacts the whole distribution and
not just the conditional mean.

Due to the nonlinear risk and return relationship and the presence of volatility feedback, simple
regression techniques or models that ignore these facts are likely to give misleading estimates of risk.

Several questions remain from our work. Would higher frequency data also display a positive risk
and return relationship once volatility feedback is modeled? Would more accurate ex post variance
measures computed from intraday data improve estimation accuracy? We leave these questions for
future work.
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