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Abstract: Cryptocurrencies such as Bitcoin rely on a proof-of-work system to validate transactions
and prevent attacks or double-spending. A new proof-of-work is introduced which seems to be the
first number theoretic proof-of-work unrelated to primes: it is based on a new metric associated
to the Collatz algorithm whose natural generalization is algorithmically undecidable: the inflation
propensity is defined as the cardinality of new maxima in a developing Collatz orbit. It is numerically
verified that the distribution of inflation propensity slowly converges to a geometric distribution of
parameter 0.714 ≈ (π−1)

3 as the sample size increases. This pseudo-randomness opens the door to a
new class of proofs-of-work based on congruential graphs.
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1. Introduction

A decentralized electronic payment system relies on a ledger of transactions shared on a network.
The decentralization of a transaction ledger raises the question of security and integrity of the ledger.
In the original Bitcoin protocol, the problem of double-spending or alteration of the ledger is solved
by the use of blockchain, a system that requires proof-of-work by a network of computers to confirm
transactions. In cryptography, intensive computation as proof-of-work allows one party to verify
with little computational effort that a counterparty has spent a large amount of computational
effort. The concept was originally developed by Dwork and Naor (1992) as a spam prevention
technique. Nakamoto (2008) used, for Bitcoin, a proof-of-work based on Back (2002). The protocol
consists in finding a nonce value such that the application of the SHA-256 hashing algorithm to
a combination of that nonce and a block of information gives a hash starting with series of zeroes by
targetting a given threshold. The idea behind the proof-of-work is that participants have an incentive
to cooperate rather than to cheat because the computational power required to cheat is too large.
However, as cryptocurrencies became more popular and diverse, an over-reliance on mainstream
proof-of-work protocols, such as hashcash-SHA256, Ethash (Wood 2014) or hashcash-Scrypt based
proof-of-work (Percival 2009) creates a new type of systemic risk in which a cryptographic breakdown
would jeopardize cryptocurrencies that rely on these standard proofs-of-work. A weakness of
proofs-of-work in cryptocurrency applications is the threat that a single individual (or a coordinated
group) would be able to generate blocks faster than 50% of the network. In that case, this entity would
completely control the blockchain-based validation system of transactions. In practice, attacks on hash
functions could prevent new transactions or alter past ones. In financial markets, exchanges have
the possibility to cancel trades in case of infrastructure breakdown or malfunction. By opposition,
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a systemic failure of the proof-of-work system in decentralized cryptocurrency markets could mean
the destruction of the whole history of transactions. Potential risks clouding the proof-of-work system
include innovation in technology, mathematics and cryptography that could compromise the existing
protocols. Proofs-of-work entirely based on existing hash algorithms such as SHA-256 have been under
stress in recent years. Rubin (2017) documented a well-known mining optimization (“ASIC-BOOST”)
that allowed to mine Bitcoin blocks faster than the network average by taking advantage of a technical
flaw in SHA-256. A specific optimization of the mining instruments allowed reducing the problem’s
complexity by exploiting collision attacks on the SHA-256 hash algorithm. The multiplication of
proofs-of-work help mitigate this type of hyper-specialized hardware attack. Bitcoin, Ethereum,
Bitcoin Cash and Litecoin overwhelmingly dominate the market capitalization of minable coins.
Such concentration of the volumes into a few cryptocurrencies represent equally a significant systemic
risk. When looking at the top 25 cryptocurrencies by diluted market capitalization (see Table 1),
eight of them use Scrypt as underlying hash algorithm for proof-of-work. Introducing new types of
proof-of-work is needed to help networks diversifying the protocols in case of increased concentration
of hyper-specialized computational power.

Table 1. The 25 top cryptocurrencies as of 15 October 2018 as can be seen on https://onchainfx.com/
v/SMT45r.

Name ∼Fully Diluted (Y2050) Marketcap/15 October 2018 Underlying Algorithm

Bitcoin (BTC) $134,308,812,450 SHA-256
Ethereum (ETH) $29,787,293,584 SHA-3

Bitcoin Cash (BCH) $9,225,442,784 SHA-256
Litecoin (LTC) $4,430,985,913 Scrypt
Dash (DASH) $2,956,683,098 X11

Monero (XMR) $2,300,499,210 CryptoNight
ZCash (ZEC) $2,262,517,311 Equihash

Ethereum Classic (ETC) $2,161,731,159 SHA-3
Dogecoin (DOGE) $1,402,169,807 Scrypt

Siacoin (SC) $564,862,312 Blake-2b
Bitcoin Gold (BTG) $526,927,423 Equihash

Digibyte (DGB) $483,402,492 SHA-256 and others
ReddCoin (RDD) $447,635,857 Scrypt

Bitcoin Diamond (BCD) $343,664,370 X13
ZenCash (ZEN) $275,245,426 SHA-3

Verge (XVG) $229,929,732 Scrypt
Zcoin (XZC) $194,506,940 Equihash

Monacoin (MONA) $124,690,762 Scrypt
Syscoin (SYS) $81,207,881 Scrypt
Zclassic (ZCL) $67,149,925 Equihash
Vertcoin (VTC) $53,917,212 Lyra2REv2

Bitcoin Private (BTCP) $51,124,537 Equihash
LBRY Credits (LBC) $41,220,511 LBRY
Einsteinium (EMC2) $25,808,910 Scrypt

GameCredits (GAME) $13,734,781 Scrypt

So, even though there exist hundreds of different hash functions already, more diversification
of proofs-of-work could further mitigate cryptographic risks and improve robustness of the nascent
crypto-economy. Several types of proof-of-work have been designed using new hash functions, such as
prime numbers verification (King 2013), graph-theoretic proof-of-work (Tromp 2015) or proof-of-work
based on the generalized birthday problem (Biryukov and Khovratovich 2017). Post-quantum
algorithms are currently being developed in the field of security, see, for example, Bae et al. (2017).
In particular, Kiktenko et al. (2018) propose a quantum-safe blockchain that utilizes quantum key
distribution. The application presented in the following sections seems to be the first documented
attempt to establish a number theoretic proof-of-work unrelated to primes. The hash proposed is based
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on properties of the Collatz algorithm. In order to describe this algorithm, consider the following
function from N0 to N0 :

T(x) =

{
x/2 if x is even

(3x + 1)/2 if x is odd
(1)

Now, apply the following iterate of T:{
T0(x) = x

T(k+1)(x) = T(Tk(x))
(2)

The Collatz conjecture states that ∀ x ∈ N0, ∃ a finite k such that Tk(x) = 1. Lagarias (2010)
uses the following terminology: the “total stopping time” is defined as σ∞(x) = inf{k : Tk(x) = 1}.
The “stopping time” σ(x) is inf{k : Tk(x) < x}. The “gamma value” is defined as γ(x) = σ∞(x)

log(x) .
For instance, let us consider the case for x = 3:

T0(3) = 3,

T1(3) = (3× 3 + 1)/2 = 5,

T2(3) = (5× 3 + 1)/2 = 8,

T3(3) = 8/2 = 4,

T4(3) = 4/2 = 2,

T5(3) = 2/2 = 1.

(3)

In this example, the Collatz sequence1 is
{

3, 5, 8, 4, 2, 1
}

and σ∞(3) equals to 5 while σ(3) = 4.

By definition, the value of σ∞(x) depends on the starting point of the algorithm. For example ∀ α ∈ N0,
σ∞(2α) = α as

Tα(2α) = 1. (4)

Analyzing the total stopping time ∀ x ∈ N0 has proven challenging: the lack of clear patterns
and the absence of an analytical shortcut to estimate σ∞(x) have left practitioners with numerical
methods to compute it and verify the conjecture. e Silva (2010) proved computationally that the
conjecture holds up until x = 20× 258. Current computational capabilities have allowed confirming
the conjecture for very large numbers. For example, Honda et al. (2017) introduced a GPU-based
method to verify the Collatz algorithm. The authors could verify 1.31e12 64-bit numbers per second.
A probabilistic approach is also a frequent workaround to justify the validity of the Collatz conjecture:
assuming function Tk(x) is “random enough”, Crandall (1978) showed that half of the time, the next
number in the sequence will be (3x + 1)/2, then for the next iteration, 1/4 of the time it will be
(3x + 1)/4, then for the next iteration, 1/8 of the time it will be (3x + 1)/8 and so on so that the
average growth in the sequence will be ( 3

2 )
1/2( 3

4 )
1/4( 3

8 )
1/8( 3

16 )
1/16( 3

32 )
1/32... = 3

4 < 1. Terras (1976)
demonstrated that the set of integers {x:- x has stopping time ≤ k} has a limiting asymptotic density
F(k) with F(k)→ 1 as k→ ∞. These elements tend to indicate that Tk(x) does not diverge to infinity
as k grows. Using Minsky (1961) machines, Conway (1972) showed that a problem generalizing
the Collatz conjecture is not algorithmically decidable. Kurtz and Simon (2007) extended the proof
to show that this generalization is Π2

0 complete. If the problem is truly algorithmically undecidable,
then no information about the future inflation of the Collatz map is passed from one step k to the next
step k + 1. To explore that hypothesis and the properties of this “pseudo-randomness”, let us define

1 also called “trajectory” or “forward orbit”.
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the inflation propensity of order K ξ(x, K) as the cardinality of the set of steps that lead to a number
strictly larger than all previous numbers in the same sequence:

ξ(x, K) = card
{

k : Tk(x) > max(Mx,k)

}
, k = 1, ..., k, ...K, (5)

where Mx,k =
{

T0(x), T1(x), ..., Tk−1(x)
}

. ξ(x, σ∞(x)) is a particular case. For the ease of notation:
ξ(x) = ξ(x, σ∞(x)). In the above example of x = 3, ξ(3) = 2. Indeed, the set of numbers strictly
larger than the previous maxima in the sequence are {5, 8} so that ξ(3) = card{5, 8} = 2. In the other
example presented supra with x = 2α, ξ(2α) = 0 ∀ α ∈ N0 since no number in their sequences can be
strictly larger than the initial one.

This research paper investigates the distribution of ξ(x), the inflation propensity as a deterministic
variable that resembles a random behavior. If past maxima anywhere in the sequence are independent
from new maxima later computed in that orbit, we should have that ξ(x) ∼ G(ρ), a geometric
distribution of parameter ρ with density f (ξ(x) = y) = ρy(1− ρ). The interests of fitting a density
distribution to ξ(x) are multiple. First, in absence of proof of the Collatz conjecture, numerical analysis
of the problem stays relevant towards resolving the question. Second, by properly addressing the
behavior of the series for large numbers, one can help anticipate the computational challenges related to
exploring the orbits of the Collatz map. Third, identifying pseudo-random behavior of Collatz inflation
propensity directly leads to a new class of proofs-of-work for blockchain applications. The remainder
of this document is built as follows. The next section discusses the empirical distributions of σ∞(x),
σ(x) and ξ(x) ∀ x ∈ N0. The third section details the observed density of ξ(x). The density parameter
of a geometric distribution is estimated using all natural numbers up to 1×1011 as sample. The fourth
section presents a new proof-of-work based on inflation propensity, while the last section is a
conclusion.

2. Inflation Propensity

Lagarias (1985) describes the 3x + 1 conjecture as “a deterministic process that simulates random
behavior” and goes further to mention that the problem seems “structureless”. Urvoy (2001) formally
proves the non-regularity of the Collatz’s graph. As a visual illustration of this “structurelessness”,
the total stopping time for the first 1×106 natural numbers as a function of their value is presented
in Figure 1. The equally “structureless” empirical distribution of the total stopping time for the
same numbers is presented in Figure 2. In this context, “structureless” means that it is impossible to
anticipate the frequency of the total stopping time. This is unfortunate since it means observing the
total stopping times over a region of N0 gives no information whatsoever on the Collatz problem apart
from strictly verifying its convergence. The mean of the total stopping time totally depends on the
region over which it is computed, and, even when considering a closed subset of N0, the distribution of
the total stopping time appears to be erratic and does not seem to follow any regular pattern. As such,
the total stopping time has no apparent statistical properties that could be useful in applications such
as, for instance, generating random numbers.
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Figure 1. “Structureless” total stopping time for the first 1×106 natural numbers.

Figure 2. “Structureless” distribution of the total stopping time for the first 1×106 natural numbers.
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Precisely because the Collatz graph is non-regular, its complexity gives rise to a pseudo-random
behavior. Nichols (2018) and Kontorovich and Lagarias (2010) explore similarities between the Collatz
model and the following dynamical system:

log2 TK(x) ≈ log2x− K + b3

K

∑
k=0

Yk, (6)

where b3 is a constant and Yk are IID (independent and identically distributed) Bernouilli random
variables. The stochastic models predict that all orbits converge to a bounded set and that the total
stopping time σ∞(x) for the 3x + 1 map of random starting point x is about 6.95212 log x steps,
as x → ∞ have a normal distribution centered around that value. The authors point out that a suitable
scaling limit for the trajectories is a geometric Brownian motion. This approach is extended in the
current research in order to find a discrete metric that could exhibit some type of consistency and
is independent from the starting point x. If a geometric Brownian motion can properly describe
trajectories of large orbits, it means its Markov property can be exploited: each marginal step in the
orbit is independent from the previous step. As a consequence, the probability to find new maxima
after any random point Tk(x) of a large orbit does not depend on how many new maxima were
discovered before that point. In other words, for any x >> 4 ∈ N:

P
(

ξ(x) > M | ξ(x) ≥ ξ(x, k)
)
= P

(
ξ(x) > M− ξ(x, k)

)
, (7)

where M > ξ(x, k) and M ∈ N. If the inflation propensity is memoryless as described by Equation (7),
it directly implies that the density f (ξ(x) = y) follows a geometric distribution. It would mean that

f (ξ(x) = y) = ρy(1− ρ) (8)

with ρ ∈ ]0; 1[ and y ∈ N. The moment generating function is

µn = Li−n(ρ)− ρLi−n(ρ), (9)

where Lin(ρ) is the nth polylogarithm of ρ and

ρ̂ =
µ1

1 + µ1
(10)

is the corresponding estimator of ρ based on Equation (9). It is also the maximum likelihood estimator.
The empirical distribution of ξ(x) defined in (5) is presented in Figure 3. The next step is to test the
hypothesis that ξ(x) ∼ G(ρ).
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Figure 3. Quasi-geometric distribution of the inflation propensity for the first 1×106 natural numbers.

3. Empirical Results

The samples consist in the first 1×108 , 1×109, 1×1010 and 1×1011 positive integers. For each
sample, the maximum likelihood estimator of ρ is computed, then tests are performed to see if elements
of the distribution follow a geometric distribution of parameter ρ:

H0 : P(ξ(x) = n) = (1− ρ)n−1ρ ∀n = 1, ..., q (11)

H1 : P(ξ(x) = n) 6= (1− ρ)n−1ρ ∀n = 1, ..., q (12)

where q ∈ [0, N] and N is the largest observed maximum in the sample. When q = N, the entire
distribution is tested for goodness of fit with a geometric distribution of parameter ρ̂. The tests are
performed using Pearson’s χ2 test at a 10% confidence level. Table 2 summarizes the results of the
tests. As the sample size increases, the hypothesis is not rejected when it comes to considering the
first quantiles of the distribution. For the last sample (1 × 1011), the hypothesis that the distribution of
the inflation propensity follows a geometric distribution cannot be rejected up to the 91th percentile,
compared to the 49th percentile for the 1 × 109 sample. Computational limitations prevent at this stage
investigating larger sample sizes so that the geometric behavior of the inflation propensity over the
entire domain (N0) needs to be conjectured. Interestingly, the estimator for ρ seems also to converge to
a given value as the size of the sample increases and is very close to π−1

3 , which is coincidentally the
solution to the equation 3x + 1 = π (see Figure 4). Table A1 in Appendix A indicates the distribution
of inflation propensities for the first 1 × 1011 integers.
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Table 2. Pearson’s χ2 tests for goodness of fit with a geometric distribution.

Sample 1×108 Sample 1×109 Sample 1×1010 Sample 1×1011

ρ̂ 0.7133482 0.7135956 0.713667 0.713681

q Percentile p-Value p-Value p-Value p-Value

0 29 0.01 0.15 0.70 0.64
1 49 0.04 0.19 0.70 0.14
2 64 0.09 0.00 0.23 0.25
3 74 0.15 0.00 0.36 0.39
4 82 0.08 0.00 0.11 0.35
5 87 0.05 0.00 0.01 0.37
6 91 0.07 0.00 0.00 0.13
7 93 0.11 0.00 0.00 0.03
8 95 0.00 0.00 0.00 0.04
9 97 0.00 0.00 0.00 0.03

10 98 0.00 0.00 0.00 0.00
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Figure 4. ρ̂ as a function of the sample size (log10-scale).

4. Application

4.1. Collatz-Based Proof-of-Work

Because the distribution of the inflation propensity of Collatz orbits can be assumed to be
geometric over large samples, and that a natural generalization of the Collatz algorithm has been
proven to be undecidable, the inflation propensity can be considered as a new candidate to generate
proofs-of-work, conjecturing the Collatz algorithm is also undecidable. Consider the following
problem: find any set X made of n natural numbers {X1, ..., Xi, ..., Xn}whose values are between B and
B∗ = B + α, a larger number, and that have inflation propensities of given values {Q1, ..., Qi, ..., Qn}
with n << α. In other terms, find a solution to the problem

Qi = ξ(Xi) ∀i ∈ {1, ..., n}, (13)
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where Qi is known, Xi ∈ [B, B∗] and Xi 6= Xj ∀i 6= j ∈ {1, ..., n}. α, B, B∗, Q, X ∈ N0. B is the unsigned
integer value corresponding to a 256 bits block of hashed information. α is set to an arbitrarily large
value, for example α = 264. Note that this is still a fraction of the value for B so that pre-computation is
virtually impossible in practice.

Since P(ξ(Xi) = Qi) ≈ (π−1
3 )Qi (1 − π−1

3 ) the difficulty to the problem can be designed in
a straightforward manner: solutions for higher targets Qi will be exponentially more difficult to
find. Nevertheless, verifying the proof given inputs X and B is immediate, a desirable property for
a proof-of-work. Once a valid solution set X has been found, the nounce ν is simply:

ν = X− B, (14)

which in practice is an array if X is a set and is an integer if X is a scalar. At the exception of the
nonce and the target Q, the remainder of blockchain application based on Collatz is identical to the
existing Bitcoin protocol. In practice, the target set Q can be selected by the network so that, similar to
Bitcoin, six blocks are mined per hour. Every 2016 blocks, clients can compare the performance of
the network and adjust the difficulty accordingly. Thanks to the geometric nature of the inflation
propensity, a protocol for this adjustment is straightforward. Let us assume U0 is the average amount
of time required by the network to find any single value ξ(x). Any total computational time UT ≥ U0

can be easily selected by finding a set Q solving the following problem:

UT = ∑
q∈Q

1
ρq U0 + ε. (15)

Two additional constraints must be considered for the protocol to be properly defined: the set Q
must be chosen so that 0 ≤ ε ≤ U0 and the cardinality of the set must be as small as possible.

4.2. Example: Bitcoin Genesis Hash

A new Bitcoin genesis hash is created using original inputs by Nakamoto (2008), but exploiting
inflation propensity proof-of-work instead of hashcash. The inputs are: a hash merkle root that
condenses all information related to the first Bitcoin transaction, a version number, a public key, a date,
a time stamp that is used as coinbase parameter, and a target for complexity. A genesis block is the
first block of a blockchain. Figure 5 illustrates the proof-of-work system. To create a genesis hash
using inflation propensity as proof-of-work, only two adjustments to the Bitcoin protocol are required.
First, the target for complexity is expressed with an integer, which is the targeted inflation propensity.
This directly relates to a specific probability of occurrence. Second, the hashcash is replaced with the
inflation propensity algorithm. In practice, the block header is hashed using SHA-256 then converted
into an integer using hexadecimal encoding. This corresponds to B in Equation (14). The target set
Q is arbitrarily set to a single value of 40 for the generation of this first hash, which corresponds to
a probability of occurence of ∼ 4 × 10−7. The value of B given Nakamoto’s other initial inputs is of
∼ 2.52 × 1076. The X nonce is then incrementally added to the integer B and inflation propensity
is computed until the target of 40 is reached. The values obtained from each iteration are hereafter
named “Xis”. In the Python implementation of the algorithm, 2056 Xis are computed per second on an
Intel Core i7-4700MQ CPU with 8 × 2.40 GHz. After 28 min of computation, the solution is found.
Verification of the solution is done in ≈ 5 × 10−4 seconds on the same machine. Table 3 describes
diagnostics and results of the genesis hash. Using this first instance to calibrate the computational
difficulty, the smallest set Q that solves Equation (15) that would yield an expected computational time
of 10 min for the next block would be {2, 6, 16, 19, 22, 26, 31, 36, 41}. The Python code to generate the
Genesis Hash is provided in Appendix B.
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Figure 5. Proof-of-work system in the blockchain.

Table 3. A genesis hash based on original Bitcoin’s inputs for genesis but using inflation propensity as
proof-of-work.

block header hash 37d25f7f472fde7bb5b84f4bb319097c580383911b45eff10e68afa06073d6c0
corresponding integer 25248903652996148805237565338196318809513309980842754974279018460154571249344

merkle hash 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
pszTimestamp The Times 3 January 2009 Chancellor on brink of second bailout for banks
pubkey 04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f

35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f
time 1231006505
inflation propensity target 40 (0 × 28)
nounce 3420991

genesis hash 9ed4d59e375c60e568524ac7fdfcce2c36dd8d449a20b0be8c9f6f9dbd2f8709
computational time 28 min

4.3. Advantages of the Collatz-Based Proof-of-Work

The advantages of a Collatz-based proof-of-work are many. From a practitioner perspective,
the algorithm is easy to implement in code since the underlying problem is made of simple arithmetic
operations, however, bigint arithmetics are needed in case values inflate beyond 2256. Also, the natural
generalization of the Collatz algorithm is known to be algorithmically undecidable. If this holds for
Collatz algorithm, asymmetry is guaranteed: it is difficult to find the targeted value but easy to verify.
From an engineering point of view, difficulty control based on a geometric distribution is significantly
more complex than one based on hashcash, however, from a statistical perspective, the geometric
distribution allows a very convenient tailoring of the computational complexity. It is very easy to
adjust a specific targeted inflation-propensity, or a combination of targets. The same algorithm can
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also be indefinitely extended to meet new computational improvements since the upper bound of the
orbits is infinity. In addition to this scalability, it could be possible to generalize the 3x + 1 algorithm to
other congruential graphs exhibiting the same properties (for example, the 5x + 1 graph). Provided
further research confirms this hypothesis, such a feature could allow more possibilities to generate
new proofs-of-work.

5. Conclusions

For the classical 3x + 1 map, it is conjectured that inflation propensity ξ(x) = card
{

k : Tk(x) >

max(Mx,k)

}
, k = 1, ..., k, ...σ∞(x) has a geometric density distribution whose parameter’s value

ρ ≈ π−1
3 . This has been verified numerically for the first 1 × 1011 integers. The inflation propensity

of Collatz orbits is a new metric that exhibits properties particularly well suited to be the base for
new cryptography applications. A new proof-of-work is suggested: finding a set X of n integers
greater than a hashed block of information B but smaller than a threshold B∗ such that their inflation
propensities be of n given values Q1, ..., Qn. Advantages of this approach are multiple, including an
infinite scalability and the possibility to easily tune complexity of the algorithm. This work seems to be
the first number theoretic proof-of-work unrelated to primes. Further research is needed to generalize
this type of proof-of-work to a larger class of congruential graphs.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Distribution of Inflation Propensity for the First 1 × 1011 Integers

Table A1. Distribution of inflation propensity ξ(x) for the first 1 × 1011 integers.

ξ(x) Observations

0 28,631,964,381
1 20,434,254,718
2 14,583,348,496
3 10,407,804,534
4 7,427,954,284
5 5,301,161,512
6 3,783,166,989
7 2,699,976,430
8 1,927,052,441
9 1,375,229,862

10 981,424,318
11 700,353,911
12 499,868,474
13 356,795,944
14 254,706,290
15 181,761,315
16 129,757,032
17 92,628,127
18 66,127,176
19 47,199,172
20 33,676,458
21 24,024,158
22 17,138,021
23 12,231,945
24 8,727,118
25 6,225,787
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Table A1. Cont.

ξ(x) Observations

26 4,432,544
27 3,162,432
28 2,251,004
29 1,599,248
30 1,139,341
31 814,975
32 583,455
33 416,994
34 298,683
35 212,914
36 150,443
37 106,613
38 76,749
39 55,452
40 39,947
41 28,495
42 20,259
43 14,253
44 10,396
45 7791
46 5431
47 3690
48 2640
49 1984
50 1448
51 1041
52 745
53 595
54 467
55 347
56 234
57 170
58 127
59 72
60 41
61 21
62 20
63 17
64 17
65 9
66 2
67 0
68 1
69 0
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Appendix B. Python Code for Genesis Block

Modified from Hartikka (2017).

import hashlib, struct, binascii, time, sys, optparse

from construct import *

def main():
options = get_args()
input_script = create_input_script(options.timestamp)
output_script = create_output_script(options.pubkey)
tx = create_transaction(input_script, output_script,options)
hash_merkle_root = hashlib.sha256(hashlib.sha256(tx).digest()).digest()
print_block_info(options, hash_merkle_root)
block_header = create_block_header(hash_merkle_root, options.time, options.bits, options.nonce)
genesis_hash, nonce = generate_hash(block_header, options.nonce, options.bits)
announce_found_genesis(genesis_hash, nonce)

def get_args():
parser = optparse.OptionParser()
parser.add_option("-t", "--time", dest="time", default=int(1231006505), type="int", help="the (unix) time
when the genesisblock is created")
parser.add_option("-z", "--timestamp", dest="timestamp", default=
"The Times 03/Jan/2009 Chancellor on brink of second bailout for banks",
type="string", help="the pszTimestamp found in the coinbase of the genesisblock")
parser.add_option("-n", "--nonce", dest="nonce", default=0,
type="int", help="the first value of the nonce that will be incremented
when searching the genesis hash")
parser.add_option("-p", "--pubkey", dest="pubkey", default="04678afdb0fe5548271967f1a67130b7105cd6a828e03909
a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f",
type="string", help="the pubkey found in the output script")
parser.add_option("-v", "--value", dest="value", default=5000000000,
type="int", help="the value in coins for the output, full value (exp. in bitcoin 5000000000
- To get other coins value: Block Value * 100000000)")
parser.add_option("-b", "--bits", dest="bits",
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type="int", help="the target in compact representation, associated to a difficulty of 1")
(options, args) = parser.parse_args()
if not options.bits:
options.bits = 40
return options

def create_input_script(psz_timestamp):
psz_prefix = ""
if len(psz_timestamp) > 76: psz_prefix = ’4c’
script_prefix = ’04ffff001d0104’ + psz_prefix + chr(len(psz_timestamp)).encode(’hex’)
print (script_prefix + psz_timestamp.encode(’hex’))
return (script_prefix + psz_timestamp.encode(’hex’)).decode(’hex’)

def create_output_script(pubkey):
script_len = ’41’
OP_CHECKSIG = ’ac’
return (script_len + pubkey + OP_CHECKSIG).decode(’hex’)

def create_transaction(input_script, output_script,options):
transaction = Struct("transaction",
Bytes("version", 4),
Byte("num_inputs"),
StaticField("prev_output", 32),
UBInt32(’prev_out_idx’),
Byte(’input_script_len’),
Bytes(’input_script’, len(input_script)),
UBInt32(’sequence’),
Byte(’num_outputs’),
Bytes(’out_value’, 8),
Byte(’output_script_len’),
Bytes(’output_script’, 0x43),
UBInt32(’locktime’))

tx = transaction.parse(’\x00’*(127 + len(input_script)))
tx.version = struct.pack(’<I’, 1)
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tx.num_inputs = 1
tx.prev_output = struct.pack(’<qqqq’, 0,0,0,0)
tx.prev_out_idx = 0xFFFFFFFF
tx.input_script_len = len(input_script)
tx.input_script = input_script
tx.sequence = 0xFFFFFFFF
tx.num_outputs = 1
tx.out_value = struct.pack(’<q’ ,options.value)
tx.output_script_len = 0x43
tx.output_script = output_script
tx.locktime = 0
return transaction.build(tx)

def create_block_header(hash_merkle_root, time, bits, nonce):
block_header = Struct("block_header",
Bytes("version",4),
Bytes("hash_prev_block", 32),
Bytes("hash_merkle_root", 32),
Bytes("time", 4),
Bytes("bits", 4),
Bytes("nonce", 4))

genesisblock = block_header.parse(’\x00’*80)
genesisblock.version = struct.pack(’<I’, 1)
genesisblock.hash_prev_block = struct.pack(’<qqqq’, 0,0,0,0)
genesisblock.hash_merkle_root = hash_merkle_root
genesisblock.time = struct.pack(’<I’, time)
genesisblock.bits = struct.pack(’<I’, bits)
genesisblock.nonce = struct.pack(’<I’, nonce)
return block_header.build(genesisblock)

#Collatz inflation propensity
def inflation_propensity(x):
xMax=x
stepToMaximum=0
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while x > 1:
if x % 2 == 0:
x = x / 2
else:
x = (3 * x + 1) / 2
if x > xMax:
xMax=x
stepToMaximum+= 1
return stepToMaximum

def generate_hash(data_block, start_nonce, bits):
print ’Searching for genesis hash..’
nonce = start_nonce
last_updated = time.time()
header_hash = generate_hashes_from_block(data_block)
print(binascii.hexlify(header_hash))
orbitTrajectory=int(header_hash.encode(’hex_codec’), 16)
print(orbitTrajectory)
timeInit=time.time()
while True:
xi=inflation_propensity(orbitTrajectory)
last_updated = calculate_hashrate(nonce, last_updated, orbitTrajectory,timeInit)
if xi==bits:
return (generate_hashes_from_block(data_block), nonce)
else:
nonce = nonce + 1
orbitTrajectory += 1
data_block = data_block[0:len(data_block) - 4] + struct.pack(’<I’, nonce)

def generate_hashes_from_block(data_block):
header_hash = hashlib.sha256(hashlib.sha256(data_block).digest()).digest()[::-1]
return header_hash

def calculate_hashrate(nonce, last_updated, orbitTrajectory, timeinit):
if nonce % 10000 == 0:
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now = time.time()
hashrate = round(10000/(now - last_updated))
sys.stdout.write("\r%s Xis/s, Orbit: %s, Total time: %s minutes "
%(str(hashrate), str(orbitTrajectory), str((now-timeinit)/60)))
sys.stdout.flush()
return now
else:
return last_updated

def print_block_info(options, hash_merkle_root):
print "merkle hash: " + hash_merkle_root[::-1].encode(’hex_codec’)
print "pszTimestamp: " + options.timestamp
print "pubkey: " + options.pubkey
print "time: " + str(options.time)
print "bits: " + str(hex(options.bits))

def announce_found_genesis(genesis_hash, nonce):
print "genesis hash found!"
print "nonce: " + str(nonce)
print "genesis hash: " + genesis_hash.encode(’hex_codec’)

main()
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