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Abstract: This study conducts a systematic survey on whether the pricing behavior of cryptocurrencies
is predictable. Thus, the Efficient Market Hypothesis is rejected and speculation is feasible via trading.
We center interest on the Rescaled Range (R/S) and Detrended Fluctuation Analysis (DFA) as well as
other relevant methodologies of testing long memory in returns and volatility. It is found that the
majority of academic papers provides evidence for inefficiency of Bitcoin and other digital currencies
of primary importance. Nevertheless, large steps towards efficiency in cryptocurrencies have been
traced during the last years. This can lead to less profitable trading strategies for speculators.
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1. Introduction

Since its introduction by Nakamoto (2008), the exponential growth of Bitcoin and other digital
currencies has aroused sparkling interest concerning governments, academics, investors, traders and
portfolio managers. This very new type of money carries characteristics both of commodity and
money (Selgin 2015; Ammous 2018) and is tagged with the all-encompassing label of “cryptocurrency”.
Bitcoin, the most popular among cryptocurrencies, has aroused a proliferating bulk of academic work
studying its returns and volatility characteristics, such as in Dyhrberg (2016a, 2016b), Fry and Cheah
(2016), Katsiampa (2017), Urquhart (2016, 2017), Corbet et al. (2018, 2019), Bouri et al. (2017a, 2017b),
Baur et al. (2018a, 2018b) and Beneki et al. (2019). One of the fundamental aspects of digital currencies
that has attracted increasing attention is whether such markets are consistent with the Efficient Markets
Hypothesis (EMH).

One of the most radical perspectives of modelling financial data are the three forms of the Efficient
Markets Hypothesis, as has been expressed by Fama (1970), in order to detect the existence of any
predictable patterns that could form the basis for profitable trading strategies. The Efficient Market
Hypothesis constitutes the cornerstone of financial economics and is based on the seminal work of
Bachelier in the early 20th century and Fama (1970). Fama defines informational efficiency in a market
as the status when “prices reflect full information” in this market.

These are the main forms of informational efficiency most commonly expressed. Firstly, weak-form
efficiency in quotes of assets depict all the information inhibited in past prices of these assets. Secondly,
semi-strong efficiency stands for present prices reflecting all information easily accessible to public.
Thirdly, strong-form efficiency represents the situation where quotes nowadays reflect all public and
private information.

Among the three forms of the EMH, the most commonly employed is the weak-form EMH,
which represents the inability of interested investors to take advantage of information about past
quotes of investible assets in order to envision the future values of these assets. When the Efficient

J. Risk Financial Manag. 2019, 12, 67; doi:10.3390/jrfm12020067 www.mdpi.com/journal/jrfm

http://www.mdpi.com/journal/jrfm
http://www.mdpi.com
http://dx.doi.org/10.3390/jrfm12020067
http://www.mdpi.com/journal/jrfm
https://www.mdpi.com/1911-8074/12/2/67?type=check_update&version=2


J. Risk Financial Manag. 2019, 12, 67 2 of 17

Markets Hypothesis is valid, there cannot be long memory in time series concerning financial assets.
Therefore, no abnormal returns can be achieved by investors should they try to follow a profitable
investing strategy with minimum risk. Differently said, speculation based on long-range dependence
in returns is not applicable when EMH holds.

To the best of our knowledge, no study until now has investigated the full spectrum of academic
literature on profitable trading based on cryptocurrencies. Differently said, the present study is the
first one to conduct a thorough and integrated review of the existing empirical work on whether
cryptocurrency markets can outperform the market, thereby leading to abnormal profit-making
by investors. A small but upcoming number of important papers such as Urquhart (2016),
Nadarajah and Chu (2017) and Bariviera (2017) have paved the way for a more mature viewpoint in
the efficiency of digital coin markets.

The remainder of this paper is structured as follows. Section 2 lays out the studies about efficiency
in Bitcoin markets. Section 3 provides an overview of the nascent but already very informative
domain of Efficient Market Hypothesis testing in a broader spectrum of cryptocurrencies. In Section 4,
the conclusions are discussed.

2. Studies about Efficiency in Bitcoin Markets

An important number of academic papers have investigated long-range dependence and whether
this could co-exist with the Efficient Market Hypothesis. A battery of tests have been employed in
order to measure whether weak-form efficiency in the Bitcoin market is valid. Empirical findings by
the great majority of papers about Bitcoin provide evidence of inefficiency, thereby profitable trading
opportunities. It should be emphasized though that the capacity to outperform the market by investing
in Bitcoin fades out as the Bitcoin market renders more mature. Table 1 provides the prestigious
studies with examination of the Efficient Market Hypothesis in cryptocurrency markets that have been
conducted so far, the relevant data sources as well as the methodologies adopted and whether they
detect inefficiency or not.

Table 1. Studies about EMH in cryptocurrency markets with data sources, methodology and conclusions
about level of inefficiency.

Study Data Source Methodology Efficiency or Not

Aggarwal (2019) www.coindesk.com

Augmented Dickey-Fuller test based on
Dickey and Fuller (1979)

Phillips-Perron test in Phillips (1987)
Kwiatkowski et al. (1992) test

Zivot and Andrews (2002) structural
breakpoint test

Lo and MacKinlay (1988) multiple variance
ratio (MVR) test

BDS test by Brock et al. (1996)
ARCH by Engle (1982)

GARCH by Bollerslev (1986)
E-GARCH by Nelson (1991)
TARCH by Zakoian (1994)

Inefficiency

Almudhaf (2018)
http://grayscale.co/
bitcoin-investment-

trust
OLS with Newey-West’s covariance estimator Inefficiency

Alvarez-Ramirez et
al. (2018) www.coindesk.com

Detrended Fluctuation Analysis (DFA)
Scaling Exponent over Sliding Window

Asymmetric Scaling Exponent
Inefficiency

Al-Yahyaee et al.
(2018)

Datastream
Coindesk Price Index

website

Multifractal Detrended Fluctuation Analysis
(MF-DFA) Inefficiency

www.coindesk.com
http://grayscale.co/bitcoin-investment-trust
http://grayscale.co/bitcoin-investment-trust
http://grayscale.co/bitcoin-investment-trust
www.coindesk.com
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Table 1. Cont.

Study Data Source Methodology Efficiency or Not

Bariviera (2017) Datastream Hurst (1951) exponent
Detrended Fluctuation Analysis (DFA)

Inefficiency but
decreasing

Bariviera et al.
(2017) Datastream Hurst (1951) exponent

Detrended Fluctuation Analysis (DFA)
Inefficiency/
Efficiency

Bouri et al. (2019)
Bitstamp

Coindesk Price Index
website

ARIMA (parametric, semiparametric d
estimations)

Bai and Perron (2003) structural break tests
Inefficiency

Bouri et al. (2018) www.coinmarketcap.
com

Copula-Granger Causality in Distribution
(CGCD) by Lee and Yang (2014) Inefficiency

Brauneis and
Mestel (2018) Coinmarketcap.com

Ljung and Box (1978) test
Wald and Wolfowitz (1940) runs-test

Variance ratio test by Lo and MacKinlay
(1988)

Kim (2009) wild bootstrap automatic variance
ratio test based on Chow and Denning (1993)

Bartels (1982) test
Hurst (1951) exponent

Higher efficiency in
Bitcoin

Caporale et al.
(2018) Coinmarketcap.com R/S analysis

Fractional integration Inefficiency

Chaim and Laurini
(2018)

Coinmetrics.io
FRED database Laurini et al. (2016) model Inefficiency

Chaim and Laurini
(2019) Coinmetrics.io Laurini et al. (2016) model Inefficiency

Charfeddine and
Maouchi (2018) Coinmarketcap.com

Geweke and Porter-Hudak (1983) (GHP) test
Gaussian semi parametric (GSP) test of

Robinson (1995a)
Local Whittle (LW) of Robinson (1995b)

Exact Local Whittle (ELW) of Shimotsu and
Phillips (2005)

R/S test of Lo (1991)
Rescaled Variance (V/S) test of Giraitis et al.

(2003)

Inefficiency,
Efficiency (ETH)

Cheah et al. (2018) www.bitcoincharts.
com FCVAR by Johansen and Nielsen (2012) Inefficiency

El Alaoui et al.
(2018)

www.
cryptocompare.com

Multifractal Detrended Cross-correlations
Analysis (MF-DCCA) by Zhou (2008) Inefficiency

Hattori and Ishida
(2019) Bloomberg Regression Inefficiency

Ji et al. (2018) www.coindesk.com

Directed Acyclical Graph (DAG) by Spirtes et
al. (2000)

Vector Autoregression (VAR)
Error Correction Model (ECM)

Forecast Error Variance Decomposition
(FEVD)

Very weak
inefficiency

Jiang et al. (2018) www.bitcoinaverage.
com

Hurst (1951) exponent and rolling windows
Ljung -Box test

AVR test
Inefficiency

Kaiser (2018) Coinmarketcap.com

Bid-ask spread estimation as by Abdi and
Ranaldo (2017)

Volatility estimation as by Rogers and
Satchell (1991)

GARCH by Bollerslev (1986)

Efficiency

Khuntia and
Pattanayak (2018) www.coindesk.com Dominguez- Lobato (DL) test

Generalized Spectral (GS) test

Efficiency
evolving-(Adaptive

Market)

www.coinmarketcap.com
www.coinmarketcap.com
Coinmarketcap.com
Coinmarketcap.com
Coinmetrics.io
Coinmetrics.io
Coinmarketcap.com
www.bitcoincharts.com
www.bitcoincharts.com
www.cryptocompare.com
www.cryptocompare.com
www.coindesk.com
www.bitcoinaverage.com
www.bitcoinaverage.com
Coinmarketcap.com
www.coindesk.com
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Table 1. Cont.

Study Data Source Methodology Efficiency or Not

Köchling et al.
(2018)

www.bitcoinaverage.
com

Ljung and Box (1978) test
Escanciano and Lobato (2009) automatic

portmanteau test
Wald and Wolfowitz (1940) runs-test

Bartels (1982)
Durlauf (1991) spectral shape test

Escanciano and Velasco (2006) generalized
spectral test

Kim (2009) wild bootstrap automatic variance
ratio test

Brock et al. (1996) BDS test
Hurst (1951) exponent

Inefficiency but
decreasing

Köchling et al.
(2019) Coimarketcap.com 3 delay measures by Hou and Moskowitz

(2005)
Inefficiency but

decreasing

Kristoufek (2018) www.coindesk.com Efficiency Index of Kristoufek and Vosvrda
(2013)

Inefficiency
Efficiency only

after cooling down
of bubbles

Kurihara and
Fukushima (2017)

www.bitcoinaverage.
com

Ordinary Least Squares (OLS)
Robust Least Squares (RLS) Inefficiency

Lahmiri and
Bekiros (2018) www.coindesk.com

Largest Lyapunov Exponent (LLE)
Shannon entropy (SE)

Multi-fractal Detrended Fluctuation Analysis
(MF-DFA)

Inefficiency

Lahmiri et al.
(2018) data.Bitcoinity.org

Fractionally integrated GARCH (FIGARCH)
by Baillie et al. (1996)

Shannon entropy by Shannon (1948)
Inefficiency

Mbanga (2018) www.bitcoincharts.
com Huber (1964) M estimations Inefficiency

Nadarajah and Chu
(2017)

www.bitcoinaverage.
com

Ljung and Box (1978) test
Runs test by Wald and Wald and Wolfowitz

(1940)
Bartels (1982) test

Wild-bootstrapped AVR test by Kim (2009)
Spectral shape tests by Durlauf (1991) and

Choi (1999)
BDS test by Brock et al. (1996)

Portmanteau test by Escanciano and Lobato
(2009)

Generalized spectral test by Escanciano and
Velasco (2006)

Inefficiency

Phillip et al. (2018a)
Brave New Coin

(BNC) Digital
Currency indices

Ljung and Box (1978) test
Kolmogorov-Smirnov test by Massey (1951)

Generalized long-term memory by Gray et al.
(1989)

Generalized long memory (GLM)- stochastic
volatility (SV)- leverage (LVG) and heavy

tails (HT) model

Inefficiency

Phillip et al.
(2018b)

Brave New Coin
(BNC) Digital

Currency indices

Jump BAR SV Gegenbauer Log Range
(JBAR-SV-GLR) model, as combination of

Zhu et al. (2014) and Taylor (2007)
Inefficiency

Sensoy (2018) 64 Bitcoin exchanges Matilla-García and Marín (2008)
López et al. (2010)

Inefficiency
More efficient since

2016

Takaishi and
Adachi (2018)

www.coindesk.com
Histdata.com Autocorrelation tests Inefficiency

www.bitcoinaverage.com
www.bitcoinaverage.com
Coimarketcap.com
www.coindesk.com
www.bitcoinaverage.com
www.bitcoinaverage.com
www.coindesk.com
data.Bitcoinity.org
www.bitcoincharts.com
www.bitcoincharts.com
www.bitcoinaverage.com
www.bitcoinaverage.com
www.coindesk.com
Histdata.com
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Table 1. Cont.

Study Data Source Methodology Efficiency or Not

Tiwari et al. (2018) www.coindesk.com

Hurst (1951) exponent
DFA

CMA-1 and CMA-2 by Bashan et al. (2008)
Periodogram-LAD and Periodogram-LS by

Taqqu et al. (1995)
GPH by Geweke and Porter-Hudak (1983)

MLE estimators by Haslett and Raftery (1989)

Inefficiency

Urquhart (2016) www.bitcoinaverage.
com

Ljung and Box (1978) test
Runs test by Wald and Wolfowitz (1940)

Automatic variance test (AVR)
Wild-bootstrapped AVR test by Kim (2009)

BDS test by Brock et al. (1996)
Hurst (1951) exponent

Inefficiency

Urquhart (2017) www.bitcoincharts.
com

Clustering test
Probit model Inefficiency

Vidal-Tomás and
Ibañez (2018) Bitstamp and Mt.Gox CGARCH, AR-CGARCH-M Inefficiency but

decreasing

Wei (2018) www.coinmarketcap.
com

Ljung and Box (1978) test
Runs test by Wald and Wolfowitz (1940)

Bartels test
Automatic variance test (AVR)

Wild-bootstrapped AVR test by Kim (2009)
BDS test by Brock et al. (1996)

Hurst (1951) exponent
Amihud (2002) illiquidity ratio

Inefficiency

Zargar and Kumar
(2019a) Bloomberg

Variance ratio (VR) test by Lo and MacKinlay
(1988)

Multiple Variance Ratio (MVR) test by Chow
and Denning (1993)

Automatic Variance Ratio (AVR) test by Choi
(1999)

Joint Variance Ratio (JVR) test by Chen and
Deo (2006)

Kuan and Lee (2004) (KL) test

Inefficiency at
higher data
frequencies

(Zargar and Kumar
(2019b) Bloomberg

Local Whittle (LW) estimator
Exact Local Whittle (ELW) estimator

ARFIMA
Inefficiency

Zhang et al. (2018) Coinmarketcap.com

Autocorrelation tests, GARCH by Bollerslev
(1986), GJR model by Glosten et al. (1993),
Detrended Fluctuation Analysis (DFA) by

Peng et al. (1995), Detrended Moving
Average Correlation Analysis (DMCA) by He

and Chen (2011)
Hurst (1951) exponent

Inefficiency

Among the initial important studies testing about efficiency in the Bitcoin market are Urquhart
(2016, 2017), Nadarajah and Chu (2017) and Bariviera (2017). Urquhart (2016) adopted daily data
in order to examine the informational efficiency of Bitcoin during the period from 1 August 2010
to 31 July 2016. He examined two nine-year subperiods with the end of July as 2013 separating
them. The author employs a battery of tests such as the Ljung and Box (1978) test, the runs test
(Wald and Wolfowitz 1940), the Bartels (1982) test, the variance ratio of Lo and Lo and MacKinlay
(1988), the wild-bootstrapped test of Kim (2009), the BDS test of Brock et al. (1996) and the Hurst (1951)
exponent for testing long memory. These tests reject randomness and the Hurst exponent advocates
the existence of strong anti-persistence. Thereby, findings lead to the conclusion that no efficiency in
Bitcoin market exists though there is a tendency towards a valid EMH since August 2013. Furthermore,

www.coindesk.com
www.bitcoinaverage.com
www.bitcoinaverage.com
www.bitcoincharts.com
www.bitcoincharts.com
www.coinmarketcap.com
www.coinmarketcap.com
Coinmarketcap.com
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Urquhart (2017) adopts data of various Bitcoin exchanges from 1 May 2012 to 30 April 2017 in order to
investigate price clustering in Bitcoin markets. Evidence indicated that clustering takes place at round
numbers as over one tenth of prices end with 00 decimals. Furthermore, there is weaker evidence
of clustering around the 50 digit and the 99 digit. It was found that 1, 2, 3, 5 and 10 days before a
round number from increasing prices returns indicate a positive sign, whereas afterwards returns
are negative and not statistically significant. Overall, findings abide by the negotiation hypothesis of
Harris (1991) because price clustering is linked to quotes and trading volume of Bitcoin.

In a similar perspective, Nadarajah and Chu (2017) employ data from 1 August 2010 to 31 July
2016 in order to study efficiency in the Bitcoin market. Furthermore, they divide the sample into two
subperiods, the first one spanning from 1 August 2010 to 31 July 2013, and the second one covering
1 August 2013 to 31 July 2016. They augment the research of Urquhart (2016) by adopting eight
tests to investigate the EMH. More specifically, the Ljung–Box test (Ljung and Box 1978), the runs
test (Wald and Wolfowitz 1940), the Bartels’s test (Bartels 1982) and the wild-bootstrapped automatic
variance ratio test (Kim 2009) are adopted. Moreover, the spectral shape tests (Durlauf 1991), the BDS
test (Brock et al. 1996), the portmanteau test by Escanciano and Lobato (2009) and the generalized
spectral test (Escanciano and Velasco 2006) are performed. The majority of them provide evidence
about independence of returns. Thereby, no abnormal profits could be made in the Bitcoin market.

Bariviera (2017) uses daily data that cover the period from 18 August 2011, until 15 February
2017, in order to study long-range dependence of Bitcoin returns and volatility. The methodology
employed is the Hurst exponent by using Detrended Fluctuation Analysis (DFA) and overlapping
sliding windows. Results provided evidence that during the 2011–2014 period, Bitcoin’s returns
exhibited persistence but after 2014 there is a tendency towards efficiency. On the contrary, outcomes
about Bitcoin’s volatility advocate that this has been persistent during the whole period under scrutiny.
Moreover, Bariviera et al. (2017) used daily data from 2011 until 2017 and intraday data from 2013 to
2016 concerning prices of Bitcoin and currency values of EUR and GBP, expressed in USD. The Hurst
exponent by Detrended Fluctuation Analysis (DFA) in a sliding window is adopted to estimate
long-range dependence. Results indicate that values of Hurst exponent alter by significant levels
during the early life of Bitcoin, that is until 2014, but takes steps towards stabilization as time passes,
as its value moves around 0.5. It was found that alternative time scales do not significantly affect
long-range memory. Moreover, there is evidence that market liquidity does not influence long-term
dependence. Furthermore, Kurihara and Fukushima (2017) investigate whether weekly price anomalies
exist or not by looking into the market efficiency of Bitcoin. They extract data that cover the period
from 17 July 2010 to 29 December 2016 and employ standard ordinary least squares (OLS) and robust
least squares (RLS) methodologies. Findings indicate that the Bitcoin market is not characterized by
weak-form efficiency. Nevertheless, higher levels of efficiency in the Bitcoin market are revealed as
time passes.

The intensely bullish market had taken place in 2017 brought about an increasing volume of
academic work investigating the Bitcoin markets. This reflects the increasing interest of academics,
investors, speculators and portfolio managers concerning the dominant coin in the cryptocurrency
market. As cryptocurrency markets in general are believed to be strongly directed by investor sentiment
about Bitcoin, such bibliography casts light on the reasons of investors’ decision making.

Alvarez-Ramirez et al. (2018) examine the period June 2013 to June 2017 by applying detrended
fluctuation analysis (DFA) over rolling windows to identify long-range correlations for Bitcoin returns.
Findings indicate that the Hurst component exhibits cycles and Bitcoin has periods of efficiency
but also periods of inefficiency. Asymmetric correlations are found that depend on whether price
trends are upwards or downwards, thereby leading to inefficiency due to anti-persistence. By another
perspective, Jiang et al. (2018) investigate the existence of long-term dependence in the Bitcoin
market in order to provide a clearer picture about the existence or not of efficiency concerning Bitcoin.
The data adopted are in a daily frequency and span the period 1 December 2010, to 30 November 2017.
The Hurst exponent and a rolling-window approach with a 14-day shift are employed. Furthermore,
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the Ljung–Box test and AVR test are adopted to measure efficiency in the Bitcoin market. Empirical
outcomes indicate that this market is not efficient as long-memory is detected and a high value in the
inefficiency ratio. Nevertheless, a tendency towards efficiency has been found as time passes. Moreover,
Tiwari et al. (2018) adopt daily data from 18 July 2010 to 16 June 2017, in order to employ a battery of
tests and examine long-range dependence and informational efficiency of Bitcoin. More specifically,
they employ the Detrended Fluctuation Analysis (DFA), the Centered Moving Average- squared
absolute fluctuation (CMA-1) and Centered Moving Average–mean absolute fluctuation (CMA-2).
Furthermore, they use the Periodogram-Least Squares (Periodogram-LS) and the Periodogram Least
Absolute Deviation (Periodogram-LAD). Moreover, the maximum-likelihood estimator (MLE) and
the Geweke–Porter–Hudak (GPH) methodologies are employed. Overall, findings reveal that the
Bitcoin market is efficient. Nevertheless, outcomes in favor of inefficiency are found regarding the
subperiods of April to August 2013 and from August to November 2016. In their paper, Cheah et al.
(2018) employ daily closing Bitcoin prices concerning the period 27 November 2011, to 17 March 2017,
about the markets in Europe, USA, Australia, Canada and the United Kingdom, in order to study
interdependence in a cross-country level. Treatment of cross-market Bitcoin quotes as long-memory
procedures by employing a fractionally cointegrated VAR (FCVAR) specification brings about evidence
of informational inefficiency across markets. Thereby, long-memory is detected in separate Bitcoin
markets as well as in the five-market system. Apart from findings of medium to high inefficiency
across Bitcoin markets and long-memory characteristics that permit trading profits, it was found that
uncertainty exerts a negative impact on Bitcoin markets. Disequilibrium errors adjust slowly, thereby
stochastic shocks could prove really influential for independent Bitcoin markets.

Köchling et al. (2018) used data covering a period before the launch of Bitcoin futures (10 August
2017–10 December 2017) and just after the launch (10 December 2017–10 April 2018) and conducted
a number of efficiency tests to investigate the impacts of Bitcoin futures introduction on Bitcoin’s
efficiency. Seven out of the nine tests employed provide evidence of inefficiency before these futures
were initiated. Nevertheless, since the Bitcoin futures started trading, no inefficiency has been
detected, so weak-form efficiency has been present. Moreover, no appearance of inefficiency is revealed
concerning BitcoinCash, which is a hard fork of Bitcoin. When it comes to Sensoy (2018), he adopted
data from 1 January 2013 to 5 March 2015 about tick-by-tick trades in 15, 20, 30, 40 and 45-min
frequencies concerning trading volumes and prices of Bitcoin in relation to USD and EUR. Permutation
entropy based on Shannon’s entropy, a time-varying approach with rolling samples, is employed in
order to estimate efficiency. Results indicated that the exchange rates of BTC to USD and to EUR
enjoy higher levels of informational efficiency since the beginning of 2016. It should be noted that this
amelioration in efficiency exhibits a cyclical pattern as regards the cryptocurrency’s value in relation to
USD whereas a gradual increase is detected in relation to EUR. Moreover, the former exchange rate is
found to be more efficient than the latter. Evidence indicates that higher frequencies lead to lower
pricing efficiency. Furthermore, higher liquidity has a positive nexus with informational efficiency
while higher volatility presents a negative impact on efficiency in Bitcoin markets.

Among relevant studies is Kristoufek (2018), that investigates the existence of efficiency in two
Bitcoin markets regarding the US dollar and the Chinese yuan. He uses data ending July 2017 and
starting on 18 July 2010, and 1 February 2014, respectively. The Efficiency Index (EI) developed by
Kristoufek and Vosvrda (2013) is employed to measure efficiency. Moreover, the Hurst exponent,
the fractal dimension and entropy measures are adopted. Results provide evidence that the USD
market is efficient from the middle of 2011 to the middle of 2012. The same is found regarding the
period between March and November 2014. Nevertheless, empirical outcomes abide by the conclusion
that both the USD and the CNY Bitcoin markets are mostly inefficient during the seven-year period
examined. Efficiency is only apparent when Bitcoin quotes render too high and contractionary action
in the form of stability is necessary. Moreover, Phillip et al. (2018a) adopted daily data about Bitcoin,
Ethereum, Ripple, NEM and Dash from alternative trading platforms until the date of 31 July 2017.
They measure generalized long memory (GLM), stochastic volatility (SV), leverage (LVG) and heavy
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tails (HT) by the GLM-SV-LGV-HT model. It is revealed that these highest-capitalized currencies tend
to behave similarly regarding their long-memory characteristics as their markets mature. Evidence is
found that digital currency markets are not efficient. It should be underlined that long memory, leverage
and stochastic volatility characteristics as well as heavy tailedness are detected in all cryptocurrencies
under scrutiny. Almudhaf (2018) in his study, looks into the pricing efficiency of Bitcoin Investment
Trust (BIT) by employing daily data concerning the closing price and the net asset value (NAV) from
4 May 2015 to 18 November 2016. Ordinary least squares (OLS) methodology with Newey West’s
(HAC) estimators are utilized. Evidence indicates the existence of a strong and positive nexus between
prices and NAV. A powerful and positive linkage between returns of Bitcoin Investment Trust and
premiums -in the form of contemporaneous percentage deviations- is detected. The premium is found
to be approximately equal to 44% of the NAV. Outcomes reveal the existence of inefficiency. Therefore,
profitable trading strategies could be implemented.

Khuntia and Pattanayak (2018) employ daily Bitcoin data from 18 July 2010 to 21 December 2017 in
order to investigate the adaptive market hypothesis (AMH) and the alterations in return predictability
in the Bitcoin market. The Dominguez–Lobato (DL) consistent test and generalized spectral (GS) test
in a rolling window framework are adopted to test the Martingale Difference Hypothesis (MDH) and
detect linear and nonlinear dependence in quotes. Findings reveal the existence of high levels of
efficiency from the middle of 2012 until November 2013 as well as since 2015. Nevertheless, inefficiency
is found to exist during the subperiods of August 2011–August 2012 and December 2013–December
2014. Thereby, evolving efficiency is verified as periods of efficiency are followed by times of inefficiency
and the AMH is valid.

An alternative perspective in examination of efficiency in Bitcoin markets is adopted by
Ji et al. (2018). To be more precise, they employ the directed acyclic graph (DAG) methodology
along with vector autoregressive (VAR) and error correction model (ECM) schemes as well as the
forecast error variance decomposition (FEVD) methodology. They aim to reveal the present and past
nexus between Bitcoin and other financial assets, such as equities, bonds, currencies and commodities.
The degree of centrality is found to be the lowest concerning the Bitcoin market so its prices cannot
be predicted by being based on quotes of other assets. A very small level of inefficiency is detected.
Moreover, El Alaoui et al. (2018) investigate the non-linear linkage between alterations in prices and
alterations in the trading volume of Bitcoin. They adopt daily data covering the period from 17 July
2010 to 2 May 2018. The methodology they use is the multifractal detrended cross-correlation analysis
(MF-DCCA). Empirical findings indicate that non-linear dependency as well as multifractality appear
in Bitcoin prices and volume. Anti-persistence is traced in volumes for positive but also for negative
values of moments “q”. Thereby, inefficiency is revealed in the Bitcoin market and there are significant
opportunities for profitability by traders.

In their work, Vidal-Tomás and Ibañez (2018) employed daily data from 13 September 2011 to
17 December 2017, and from 13 September 2011 to 25 February 2014, concerning the Bitstamp and Mt.Gox
markets, respectively. They focused on investigating the existence of semi-strong efficiency in Bitcoin
markets, and on how Bitcoin returns were affected by news about this currency and monetary policy
events. By adopting Autoregressive Copula Generalized Autoregressive Conditional Heteroskedasticity
(AR-CGARCH) and Autoregressive Copula Generalized Autoregressive Conditional Heteroskedasticity
in Mean (AR-CGARCH-M) specifications, they provided evidence that while negative events are
important for both models, positive news meaningfully affects only Bitstamp and the Bitstamp market
is more efficient than Mt.Gox. Furthermore, the Bitcoin market has rendered more efficient as time
passes. It should be noted that this digital currency is influenced by its own events, but takes much
influence from news about central bank policymaking in an international level. Thereby, higher levels
of inefficiency are apparent in response to monetary policy events. Additionally, Al-Yahyaee et al.
(2018) conduct a comparison of Bitcoin market’s efficiency to markets of alternative assets of primary
importance, that is gold, equity and foreign exchange markets. The period under consideration
spans 18 July 2010 to 31 October 2017 and daily data are extracted. The methodology they adopt
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in order to estimate efficiency is the multifractal detracted fluctuation analysis (MF-DFA) method
that was developed by Kantelhardt et al. (2002) as it is considered to be more flexible than the
MF and DFA methodologies. Slopes of Generalized Hurst exponents are employed to represent
long-memory characteristics. Empirical outcomes indicate that Bitcoin is the least efficient and with
the most time-varying efficiency asset among the markets investigated whereas the equity market is
the most efficient one. Notably, Bitcoin has been found to exhibit the largest long-range persistence.
Multifractality and long-memory are better detected in small fluctuations and such outcomes could be
attributable to lack of confidence by Bitcoin investors. In connection with the study of Urquhart (2017),
the academic paper of Mbanga (2018) uses daily volume and closing prices of Bitstamp covering the
period from 20 February 2011 to 15 May 2018 to investigate the day-of-week pattern of price clustering
in Bitcoin. Findings provide evidence that Bitcoin prices cluster around whole numbers. Additionally,
it is found that price clustering does not constitute a phenomenon of Mondays or Fridays, even though
evidence shows that it is stronger on Fridays in relation to other days of the week. The most frequent
ending decimals of values in Fridays are 0.00, 0.99 and 0.50. Overall, no evidence is revealing a
weekend effect in Bitcoin price clustering.

An econophysics perspective into cryptocurrencies is provided by Lahmiri and Bekiros (2018).
They employed daily data of Bitcoin covering the period from 18 July 2010 to 23 October 2017 so as to
study the chaos, randomness and multi-scale correlation structure of prices and returns in a low- and a
high-regime period. The largest Lyapunov exponent, Shannon entropy, the multi-fractal detrended
fluctuation analysis (MF-DFA) and the generalized Hurst exponent are employed for estimations.
Evidence advocates the existence of higher uncertainty in returns during the high-price regime period.
Multifractality is detected in prices and returns during both periods and this is due to fat-tailed
distributions. Furthermore, short alterations in returns dominate in the low regime, whereas long ones
during the high regime period. All in all, nonlinear patterns in the Bitcoin market are traced in the
high-price level regime. In a somewhat similar vein, Lahmiri et al. (2018) used data in a daily frequency
of seven Bitcoin markets so as to study long-range memory of Bitcoin volatility. The methodology
employed is the fractionally integrated GARCH (FIGARCH) and the Shannon entropy measure.
The analysis takes place under four alternative distributions, that is the Normal, Student-t, generalized
error (GED) and the t-skewed distributions. Empirical outcomes provide evidence of long-range
memory existing no matter which distribution assumption is made. It is found that predictions about
volatility can take place based on past information about volatility. BITX presents the lowest level of
inefficiency, whereas COINBASE the highest. Overall, there is powerful evidence against the Efficient
Market Hypothesis and Bitcoin markets are found to be too risky to serve for hedging.

A number of Japanese authors have also investigated digital currencies. Takaishi (2018) examines
the statistical properties of Bitcoin by employing one-minute data from January 2014 to December
2016 and by adopting the multifractal Detrended Fluctuation Analysis (MF-DFA) and Generalized
Autoregressive Conditional Heteroskedasticity (GARCH), Glosten-Jagannathan-Runkle Generalized
Autoregressive Conditional Heteroskedasticity (GJR-GARCH) and Rational Generalized Autoregressive
Conditional Heteroskedasticity (RGARCH) models. Results indicated that Bitcoin prices exhibit
multifractality, which comes from temporal correlation as well as the fat-tailed distribution so
inefficiency in the Bitcoin market is detected. Moreover, the Brexit decision is found not to have
influenced Bitcoin. Takaishi and Adachi (2018) extract data from a one-minute Bitcoin price index (BPI)
concerning the period 1 January 2014 to 31 December 2017 as well as one-minute data on EUR-GBP,
USD-CHF and USD-JPY exchange rates. Investigation about Taylor effects in Bitcoin time series takes
place. Empirical outcomes provide evidence in favor of existence of a Taylor effect. Moreover, it is
found that the value of power that renders maximum the autocorrelation of the power of absolute
returns is influenced by a time lag in the autocorrelation function. Furthermore, no daily seasonality
was detected in the Taylor effect of Bitcoin. This is in contrast to the Taylor impact about currency
values in relation to foreign currencies, as they present daily seasonality. Hattori and Ishida (2019) look
into how investors conduct arbitrage between Bitcoin spot and futures markets by adopting intraday
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data of CBOE futures price on active contracts and Gemini price from Bloomberg. The data employed
cover the period December 2017 to December 2018. They find that arbitrage is sufficient in normal
times, whereas market crashed provide opportunities to conduct arbitrage.

There is also a number of recent academic papers concerning efficiency in cryptocurrencies,
such as Aggarwal (2019), Bouri et al. (2019), and Zargar and Kumar (2019b). Aggarwal (2019) examines
efficiency in Bitcoin markets by employing daily Bitcoin prices about the period from 19 July 2010 until
20 March 2018. In order to do so, he employs serial correlation coefficient tests, unit root tests and the
ARCH test. According to estimation results, Bitcoin returns do not follow a random walk. Thereby,
evidence is provided in favor of strong inefficiency in the Bitcoin market. Moreover, tests for non-linear
dependence lend support to the claim that high volatility persistence in returns is responsible for such
inefficiencies. Furthermore, Bouri et al. (2019) investigated the persistence in the level and volatility of
Bitcoin price by also looking for structural break effects. Data was extracted by Bitstamp and covered
the period from 19 August 2011 to 29 April 2016. Moreover, data from the Coindesk price index
were extracted from the period of 18 July 2010 to 15 December 2015. Parametric and semi-parametric
techniques were employed and evidence is in favor of a permanent character of shocks and that there
is no mean reversion in levels. Structural alterations are detected in Bitcoin dynamics and at least
four structural breaks in each period are traced. Long memory is found both in absolute and squared
returns measures of volatility and some occasions of short memory are revealed in the latter case.
Overall, evidence towards inefficiency leaves room for trading benefits.

Zargar and Kumar (2019a) adopted data referring to Bitstamp exchange from 21 January 2013 to
8 January 2018. More specifically, 15-, 30-, 60-, 120-min and daily data were employed. They adopted the
multiple variance ratio (MVR) test, the automatic variance ratio (AVR) test and the joint variance ratio
(JVR) test as well as the Kuan and Lee (KL) test in order to examine whether the martingale hypothesis
is valid in the Bitcoin market. Findings provide evidence in favor of informational inefficiency
in the Bitcoin market when higher frequencies are employed. This is confirmed by full sample,
non-overlapping window and overlapping moving window estimations. Zargar and Kumar (2019b)
employ data of the same time period and frequency as Zargar and Kumar (2019a) to investigate
the existence of long memory in the Bitcoin market. The Local Whittle estimator (LW), the exact
Local Whittle estimator (ELW) and the Autoregressive Moving Average- Fractionally Integrated
Asymmetric Power Autoregressive Conditional Heteroskedasticity (ARMA-FIAPARCH) model are
employed. Findings indicate statistically significant long-memory parameters that do not fluctuate
either for unconditional nor for conditional volatility measures in alternative time scales. Inefficiency
is also presented by the examination of “realized” volatilities estimated by LW, ELW and ARFIMA
methodologies. Quarterly non-overlapping rolling window estimations also reveal high persistence.
Thereby, inefficiency is found to be evident in the Bitcoin market.

3. Studies about Efficiency in Cryptocurrency Markets in General

Despite the first-appearing academic papers investigating exclusively Bitcoin, the skyrocketing
bullish market of 2017 has led to a number of significant studies concerning alternative digital currencies
of high-capitalization. This is because Bitcoin had lost a significant portion of its market share during
this boom period owing to investment in alternative digital coins providing a solution to also to
lower-budget investors.

Zhang et al. (2018) adopt daily data about Bitcoin, Ethereum, Ripple, Litecoin, Stellar,
Dash, Monero and Nem covering the period from 28 April 2013 to 30 April 2018. They employ
skewness, kurtosis and Jarque–Bera tests, autocorrelations, GARCH and GJR specifications as well
as Detrended Moving Average cross-correlation analysis to discover stylized facts about digital
currencies. These methodologies are employed in order to analyze heavy tails, autocorrelations,
volatility clustering, leverage impacts, long-range dependence and power-law correlation for these
cryptocurrencies. The Hurst exponent combined with rolling windows reveal that the Bitcoin market
is moving towards efficiency, as the exponent’s value is around 0.5. When it comes to long-range
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dependence of volatility, Bitcoin, Ethereum and Nem present long-range dependence in every period
under scrutiny. Moreover, Phillip et al. (2018b) used data of 149 digital currencies with different
starting dates but include up to 31 December 2017. They looked into whether long-run autocorrelation
exists in the daily-based volatility measures as the very volatile nature of cryptocurrencies can allow.
They investigated for jump behavior in volatility. To be more precise, the focus was made on Bitcoin,
Ethereum, Ripple, Litecoin, Dash and Monero and they adopt the Jump BAR SV Gegenbauer Log
Range (JBAR-SV-GLR) model. Volatility oscillation memory ratios (VOMRs) are employed in order to
make out whether currencies have oscillatory features. Results reveal that cryptocurrencies which need
more time for transactions such as Bitcoin, exhibit less oscillatory characteristics in comparison with
coins like Ripple that are very fast to transact (VOMR > 1). It is found that long-run autocorrelations in
digital coins should be studied through their volatility dynamics and not by focusing on returns.

Brauneis and Mestel (2018) used daily data covering quotes, dollar volume and market
capitalization of 73 digital currencies covering the period of 31 August 2015 to 30 November 2017,
in order to look into their efficiency. They employed the Ljung and Box (1978) test for autocorrelation,
the runs test (Wald and Wolfowitz 1940), the variance ratio test (Lo and MacKinlay 1988) and the Kim
wild-bootstrapped VR test (Chow and Denning 1993). Moreover, the Kim (2009) automatic version of
the latter (Choi 1999), the Bartels (1982), the Brock et al. (1996) non-parametric BDS tests as well as
the Hurst exponent are employed. Additionally, the non-parametric measure for market efficiency
(Godfrey 2017) is adopted. Liquidity is measured by the Amihud (2002) ratio. Results indicated that
Bitcoin is the most efficient across cryptocurrencies. It should be noted that the higher is the level of
liquidity of a digital currency, the more inefficient this digital coin renders. Thereby, higher liquidity
leads to higher capacity of achieving abnormal profits. In their study, Charfeddine and Maouchi (2018)
employed daily closing prices of Bitcoin, Ethereum, Ripple and Litecoin covering periods from their
launch until February 2018. They investigated long-range dependence (LRD) in returns and volatility
of these cryptocurrencies. Empirical outcomes indicate that the LRD behavior (if it exists) in the Bitcoin,
Litecoin and Ripple returns series and in the volatility series of Ethereum, is a true behavior, not a
statistical artifact. Thereby, evidence indicates that inefficiency exists in the markets of there out of the
four digital coins investigated, as Ethereum is the only efficient market.

Wei (2018) collected price and aggregate volume data about 458 cryptocurrencies during the year of
2017. The Amihud (2002) illiquidity ratio was employed in order to measure liquidity and also a series
of efficiency tests take place in order to detect signs of autocorrelation and non-independence. Based on
the Hurst exponent, evidence revealed anti-persistence in illiquid markets, as the test used values lower
than 0.5. Furthermore, smaller currencies were found to go through small boom–bust cycles that depend
on the sentiment of speculators. As the digital currencies investigated are separated into five categories
depending on their level of liquidity, it can be seen that in more liquid cryptocurrencies, the Hurst
exponent takes values close to 0.5. Thereby, in levels of higher liquidity, prices follow a random walk
and markets are more efficient so no abnormal returns by speculation can be achieved. Furthermore,
Caporale et al. (2018) employ daily data concerning the four cryptocurrencies with the highest
market capitalization (Bitcoin, Litecoin, Ripple, Dash) for the biggest time length possible up to 2017.
The methodologies they adopt are the R/S Hurst analysis and fractional integration. Results indicate
that the level of persistence is not stable overtime, thereby a large number of fluctuations take place.
This is more evident in the case of Litecoin. Findings provide evidence in favor of the Adaptive Market
Hypothesis as expressed by Lo (1991) and that higher level of efficiency emerges as time goes by.
Litecoin was initially much more inefficient. According to values of the Hurst exponent, it is revealed
that Bitcoin, Litecoin and Dash are more efficient, whereas Ripple is not. Overall, the cryptocurrency
market is found to be still inefficient, but steps towards efficiency have been realized as the Hurst
exponent is decreasing. All in all, opportunities for profitable trading in cryptocurrencies still exist.
Bouri et al. (2018) looked into the causality nexus between returns and trading volume of seven
major cryptocurrencies (Bitcoin, Ripple, Ethereum, Litecoin, NEM, Dash and Stellar). Daily data was
used and the Copula-quantile causality methodology is adopted. Econometric estimations provide
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evidence that trade volume Granger causes extreme negative as well as positive returns on all the
seven currencies examined. Nevertheless, findings about impacts on return volatility are weaker. This
happens because only the Litecoin, NEM and Dash are found to be recipients of effects and only in low
volatility levels. Therefore, no efficiency is detected in cryptocurrency markets in an overall view.

Chaim and Laurini (2018) used a sample of Bitcoin and gold returns as well as USD to EUR
exchange rate and the SP500 index concerning the April 2013–May 2018 period. They employ a
standard log-normal volatility model and then incorporate the existence of discontinuous jumps to
volatility and returns. Markov Chain Monte Carlo (MCMC) procedures are employed for estimations.
It was argued that jumps to volatility exhibit a permanent character whereas only contemporaneous
impacts exist due to jumps to mean returns. It can be seen that the first volatility period covers from
late 2013 to early 2014 and is linked to the Mt.Gox incident. The second period covers 2017 with
highest volatility shown in December due to increased public interest. Jumps to mean returns are
found to be connected with large and negative price movements due to hacks and forks failed attempts.
In a somewhat similar vein, Chaim and Laurini (2019) used data about nine major cryptocurrencies
(Bitcoin, Ethereum, Ripple, Litecoin, Stellar, Dash, Monero, Nem, Verge) covering from 16 August
2015 to 31 October 2018. They employed the multivariate non-linear stochastic volatility model
proposed by Laurini et al. (2016) for considering common jumps to the mean and volatility of returns.
This is based on a Bayesian mechanism that adopts a mixed MCMC procedure. Findings indicate
that transitory mean jumps render larger and exhibit higher frequency since early 2017. Simulations
revealed that long-memory dependence characteristics are well described by stationary models having
jump components.

Kaiser (2018) employed daily data for Bitcoin, BitcoinCash, Cardano, Dash, Ethereum, IOTA,
Litecoin, NEO, Ripple and Monero in order to examine seasonality patterns in their returns, volatility,
trading volume and a spread estimator. To be more precise, he tested for (i) the Monday effect,
(ii) the weekend effect, (iii) the January effect, (iv) the turn-of-the month effect and (v) the Halloween
effect. Overall, the EMH in its weak form cannot be rejected. No calendar effect in a consistent and
robust level was detected. Nevertheless, Monday and reverse January effects are presented in the
Bitcoin market. Moreover, partial significance is found concerning the trading volume, volatility and
spreads. In a recent study, Köchling et al. (2019) use data from about 75 cryptocurrencies covering
the period from 31 August 2015 until 31 August 2018. Only currencies with capitalization of at least
1 million USD were taken into consideration. They adopt the three delay measures as proposed by
Hou and Moskowitz (2005) in order to study time delay of digital currency markets to price information.
Outcomes indicated that price delays get significantly lower during the investigated period. It can be
seen that cryptocurrency markets render more efficient as time passes. Furthermore, results strongly
advocate that there is a powerful nexus of price delay with liquidity and market capitalization.

It should be noted that the majority of studies provide evidence towards the existence of inefficiency
in cryptocurrency markets. This lends support to the attractive character of the digital currency markets
for investors and particularly for speculators. Market participants can gain insight into future quotes
of cryptocurrencies and gain large amounts of profits by studying the determinants of returns and
return volatility of Bitcoin and other similar currencies.

4. Conclusions

The body of evidence that intends to measure the economic and financial repercussions of the
Efficient Market Hypothesis (EMH) on cryptocurrencies has accumulated in an increasing pace. There is
already a significant bulk of academic work that provides evidence in favor of inefficiency in digital
currency markets and primarily in the Bitcoin market.

Weak-form efficiency that shows whether prices reflect the information contained in the past series
of prices has been tested in the great majority of the thirty-eight studies under scrutiny. The largest
number of academic papers examined advocate that the EMH does not hold. Long memory in
cryptocurrency time series is detected as dependence from past returns is revealed. A battery of tests
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from a wide spectrum are employed such as the Hurst exponent, the Bartels test, the variance ratio
test and its specifications among others. Thereby, investors can use past information to predict future
returns. This enables speculators to exercise profitable trading strategies suffering only very low risk.

It should be noted that long-range dependence that leads to inefficiency is found to fade out as time
passes in the Bitcoin markets as well as in the cryptocurrencies market in general. This provides useful
feedback and generates an even more vivid debate about the future of digital currencies. These coins
constitute extremely sophisticated investment assets that have attracted an overwhelmingly upcoming
number of investors and are expected to become a cornerstone in finance.

The present study fills a gap in relevant literature by providing an overall perspective of the
efficiency characteristics and profit opportunities in digital currency markets. Therefore, this systematic
survey enlightens policymakers, academics, investors and the economic press about the profitability
dynamics inhibited in the markets of these innovative liquidity forms. Avenues for future research
include the mapping of the efficiency-measuring dynamics of every methodology adopted in the
relevant literature. Moreover, the connection of investor sentiment with the speed of adjustment of
cryptocurrency markets towards validity of the Efficient Market Hypothesis should pave the way for
new empirical examinations and systematic surveys.
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