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1. Methodology

In the case of m potential regressors there are 2m time-varying parameter (TVP) models to consider.
To forecast at each time t it is necessary to contemporary estimate, compare and analyse Kt = 2mt

systems. From a technical point of view, handle such a large number of combinations is not just
cumbersome but also memory involving. To deal with such a big number of competing models Raftery
et al. (2010) and Koop and Korobilis (2012) recently proposed the forgetting factor methodology that
allows the fast estimation of time-varying parameters and models weights.

Let’s consider m predictors that gives K = 2m model at each time point t. The resulting state space
model with all the possible predictors combinations has the following representation:

yt = z(k)t γ
(k)
t + ε

(k)
t ε

(k)
t ∼ N
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t

)
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where k = {1, . . . , K} indicates the model which is characterized by a model-specific “sub”- set of
predictors z(k)t . When k = K the vector of predictors is composed of all the possible regressors: the
intercept (first entrance), the lags of the dependent variable, the exogenous variables and their relative
lags. γ

(k)
t are the associated predictor’s coefficients that follow a Random Walk dynamic.

The errors ε
(k)
t and η

(k)
t are mutually independent and uncorrelated. Furthermore, the errors

covariance matrices, H(k)
t and Q(k)

t , are unknown and need to be estimated.
In practice, for each k there is a TVP model expressing a linear and time-evolving relationship

among the dependent variable yt and the explanatory variables in z(k)t . For k = 1, 2, . . . , K the result is
a series of TVP models to be inspected at every t. The contemporaneous estimation of these models can
be computationally involving, or even infeasible, with the maximum likelihood or MCMC methods.

To overcome this issue Raftery et al. (2010) introduced an approximation based on three
hyperparameters. The first one, λ, avoids the calculation of variance-covariance matrix Qt. Koop and
Korobilis (2012) applied this methodology to economics, estimating the time-varying volatility (Ht)
via an EWMA with decay factor κ. Lastly, α is the hyperparameter which measures the model’s weight
based on its forecast performance (model switching).

Note that λ and α are involved in the state equation for parameters and models respectively. The
KF starts with:

γt−1|Yt−1 ∼ N
(

γ̂t−1|t−1, Σt−1|t−1

)
(S3)
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where, Yt−1 = (y1, y2, . . . , yt−1), γ̂t−1|t−1 = E
(
γt−1|Yt−1

)
and Σt−1|t−1 = Var

(
γt−1|Yt−1

)
. At each

time point t, the algorithm iterates between: prediction Equation (S4), updating Equation (S5) and the
predictive density (S6):

γt|Yt−1 ∼ N
(

γ̂t|t−1, Σt|t−1,
)

(S4)

γt|Yt ∼ N
(

γ̂t|t, Σt|t

)
, (S5)

yt|Yt−1 ∼ N
(

ztγ̂t|t−1, Ht + ztΣt|t−1z′t
)

. (S6)

The quantity Σt|t−1 depends on the error variances: Σt|t−1 = Σt−1|t−1 + Qt. Raftery et al. (2010)
proposed an approximation given by:

Σt|t−1 =
1
λ

Σt−1|t−1. (S7)

Correspondingly, Qt =
(

1
λ − 1

)
Σt−1|t−1 with λ ∈ (0, 1]. The tuning parameter λ plays a crucial

role in adjusting the effective memory of the algorithm, leading to a weighted estimation where
data i times ago has weight λi. For example, in the case of daily data, setting λ = 0.99 implies that
observations ten days ago will receive 90% as much weight as last periods observation. Whereas for
λ = 0.92, observations ten days ago will receive 43% as much weight as last periods observation.
The first case, λ = 0.99, is consistent with models where changes in γt are gradual. The second,
λ = 0.92, is consistent with models where changes in γt are quite rapid and abrupt.

It is well known that both macroeconomic and financial time series are characterized by
heteroskedastic effects. Therefore, following Koop and Korobilis (2012) Ht is assumed to follow
an EWMA:

Ht = κHt−1 + (1− κ) ν2
t . (S8)

The EWMA estimator requires to select a value for κ. As suggested in Koop and Korobilis (2012),
the value of κ is set to 0.94 for daily data.

In the multi-model framework, the state vector Γt =
(

γ
(1)
t , γ

(2)
t , γ

(3)
t , . . . , γ

(K)
t

)
can be split into

independent blocks. Predictions, outputs and other results are conditioned on model k (Mt = k),
with k = 1, 2, . . . , K. Raftery et al. (2010) introduced the parameter α to easily move among models
without using more complicated methodology like reversible jump type of algorithm. The switching is
based on posterior probabilities:

p (Γt−1|Yt−1) =
K

∑
k=1

p
(

γ
(k)
t−1|Mt−1 = k, Yt−1

)
p (Mt−1 = k|Yt−1) =

=
K

∑
k=1

p
(

γ
(k)
t−1|Mt−1 = k, Yt−1

)
πt−1|t−1,k. (S9)

The estimation of the kth- model weight at time t using Yt−1, πt|t−1,k = p (Mt = k|Yt−1), is
obtained with the model prediction Equation (S10). The calculation of the kth- model weight at time t
using Yt, πt|t,k = p (Mt = k|Yt), comes from the model updating Equation (S11):

πt|t−1,k =
K

∑
l=1

πt−1|t−1,l pkl =
πα

t−1|t−1,k

∑K
l=1 πα

t−1|t−1,l

. (S10)

πt|t,k =
πt|t−1,k pk (yt|Yt−1)

∑K
l=1 πt|t−1,l pl (yt|Yt−1)

. (S11)
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The probability attached to model k by DMA is equivalent to:

πt|t−1,k ∝ [πt−1|t−2,k pk (yt−1|Yt−2)]
α =

t−1

∏
i=1

[pk (yt−i|Yt−i−1)]
αi

. (S12)

where pk (yt−i|Yt−i−1) is the predictive density for the model k evaluated at yt−i with i = 1, . . . , t− 1.
The forgetting factor α ∈ (0, 1] gives a measure of the model performance rate of decay. The forecast
performance recorded i periods ago has a significance equal to αi. Note that when α = 0 all models are
equally probable for every t: the models weight remain unchanged from the prior, π0|0,k =

1
K . From

the recursive iteration a prediction for every model k is obtained:

yt|Mt = k, Yt−1 ∼ N
(

z(k)t γ̂
(k)
t|t−1, H(k)

t + z(k)t Σ(k)
t|t−1z(k)

′

t

)
(S13)

DMA point estimates result averaging at every t across the obtained K models predictions. In other
words, the DMA dependent variable forecast, yDMAt, comes from a weighted average of all the models
forecasts where the weights are the conditional probabilities P (Mt = k|Yt−1) = πt|t−1,k computed
using the information up to time t− 1 for k = 1, 2, . . . , K:

yDMAt = E (yt|Yt−1) =
K

∑
k=1

πt|t−1,kz(k)t γ̂
(k)
t|t−1 (S14)

DMS selects and uses a single model to make predictions of the dependent variable. The selection
process is based on the evaluation of the conditional probability P (Mt = k|Yt−1): the methodology
picks, among all the analysed models, the one with the highest predictive power capacity. Specifically,
DMS extracts the model with the highest conditional probability value πt|t−1,k. This happens at each
time, t = 1, 2, . . . , T.

Koop and Korobilis (2012) refer to the special case λ = α = 1 as Bayesian Model Averaging
(BMA) which is very popular in macroeconomics and finance, see Koop and Potter (2004). Using
the simultaneous combination λ = α = 1, means performing forecast with conventional linear fixed
coefficients models in a Bayesian framework.

The definition of a prior for π0|0,k and γ
(k)
0 is essential to implement DMA, DMS and BMA.

A non-informative prior is chosen for both the states and the weights. In particular, π0|0,k = 1
K and

γ
(k)
0 ∼ N (0, I) for k = 1, 2, 3, . . . , K. This means that, at the beginning, all models are equally likely.

The peculiarity to be part of the “adaptive algorithms" class can be translated in the need to wait some
time to have coherent, accurate and reliable results.
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2. Further Results

(a) EF300

(b) NASDAQ

(c) VIX

Figure S1. Other predictors: financial indexes. FTSEuroFirst300 (Panel (a)) shows substantially low
volatility. The huge drop in June 2016 is due to the Brexit effect. Nasdaq index (Panel (b)) appears to
be more volatile than the European index. Recall that Nasdaq is strongly dependent on the IT sector.
Thus its fluctuations are determined by the movements of the biggest IT companies, such as Apple and
Microsoft. VIX (Panel (c)) is the most volatile. Note that the scale is different. The highest peak is on
March 2018, the period which followed the drop in price of Bitcoin.
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(a) OIL

(b) GOLD

(c) 1mUS

(d) 10yUS

Figure S2. Other predictors: commodities and constant maturities. Both ICE Brent (Panel (a)) and SPDR
Gold Shares (panel (b)) show low volatility. They are usually considered as safe investments. In the
period under analysis they display lower volatility than the Treasury Constant Maturity Rate. Constant
maturities panel (c) and (d) reflect the economic recovery which characterized the U.S. economy in this
last years, after the great recession of 2007-2009.
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(a) Time-Varying Probability of Inclusion EF300

(b) Time-Varying Probability of Inclusion NASDAQ

(c) Time-Varying Probability of Inclusion VIX

Figure S3. Posterior inclusion probabilities: financial indeces. VIX, panel (c) seems to be the one which
affects the most the S&P 500. This is in line with the way in which VIX is defined: it is a measure
of market’s volatility implied by S&P 500. Its importance seems to be highly persistent especially in
2016. This reflects once again the turmoil of the financial markets during that year. After that, it shows
a flatter period. The predictive power of Nasdaq, panel (b), is almost irrelevant. Similarly for the
European index, FTSEuroFirst300, panel (a). The only period in which it seems to have importance is
represented, once again, by the months which followed the Brexit.
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(a) Time-Varying Probability of Inclusion OIL

(b) Time-Varying Probability of Inclusion GOLD

(c) Time-Varying Probability of Inclusion 1mUS

(d) Time-Varying Probability of Inclusion 10yUS

Figure S4. Posterior inclusion probabilities: commodities and constant maturities. Both ICE Brent
(Panel (a)) and SPDR Gold Shares (panel (b)) show low volatility. They are usually considered as safe
investments. In the period under analysis they display lower volatility than the Treasury Constant
Maturity Rate. Constant maturities panel (c) and (d) reflect the economic recovery which characterized
the U.S. economy in this last years, after the great recession of 2007-2009.
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Table S1. Correlation matrix of the predictors: the BTC appears to be highly positively correlated
especially with all the financial indexes S&P500, EF300 and NASDAQ.

S&P500 BTC BHL OIL GOLD VIX EF300 NASDAQ 1mUS 10yUS

S&P500 1.000 0.840 0.586 0.882 0.539 -0.427 0.872 0.986 -0.878 -0.642
BTC 1.000 0.802 0.761 0.440 -0.192 0.809 0.834 -0.629 -0.472
BHL 1.000 0.489 0.300 -0.141 0.597 0.558 -0.400 -0.365
OIL 1.000 0.464 -0.258 0.749 0.879 -0.716 -0.372
GOLD 1.000 -0.299 0.354 0.494 -0.642 -0.650
VIX 1.000 -0.293 -0.335 0.511 0.557
EF300 1.000 0.880 -0.632 -0.551
NASDAQ 1.000 -0.848 -0.600
1mUS 1.000 0.791
10yUS 1.000

Table S2. DM statistics for the point forecast: M1 vs M2. Again, most of them are included in the
interval [−1.96, 1.96]. Thus they are almost never falling outside the boundaries. This means that the
null hypothesis of equal forecasting ability is never rejected.

λ = α = 0.99 λ = α = 0.95 λ = 0.99 α = 1 λ = 1 α = 0.99 λ = α = 1
DMA DMS DMA DMS DMA DMS DMA DMS BMA

h = 1 -1.573 -0.061 0.543 -0.443 -1.893 -0.768 -2.627 -1.085 -2.581
h = 2 -1.670 0.340 -1.492 0.299 -1.579 0.302 -1.722 -0.837 -1.739
h = 3 -1.283 -1.197 -1.226 -0.336 -1.288 -1.271 -1.302 -1.326 -1.312
h = 4 -1.263 -0.149 -1.204 0.058 -1.246 0.008 -1.314 -0.480 -1.287
h = 5 -1.527 -0.959 -1.374 -0.834 -1.534 -0.954 -1.611 -0.996 -1.618
h = 6 -1.197 -0.364 -1.181 1.501 -1.191 -0.334 -1.252 -0.349 -1.230
h = 7 -0.291 -0.562 0.101 0.058 -0.427 -1.000 -0.076 0.250 -0.316

Table S3. DM statistics for the point forecast: ARMA(1,1)-GARCH(1,1) vs M1. Results are in line with
Table 2 in the paper. Regarding point forecast, the benchmark model performs much better than both
DMA and DMS. Therefore, the null hypothesis of equal forecasting ability is always rejected.

λ = α = 0.99 λ = α = 0.95 λ = 0.99 α = 1 λ = 1 α = 0.99 λ = α = 1
DMA DMS DMA DMS DMA DMS DMA DMS BMA

h = 1 11.516 10.988 12.080 11.947 11.417 10.925 11.724 11.373 11.233
h = 2 8.217 6.887 8.314 7.217 8.277 8.943 8.271 6.882 8.334
h = 3 8.128 8.668 8.345 5.024 8.140 8.609 8.153 8.703 8.174
h = 4 8.249 5.228 8.136 4.945 8.207 5.280 8.452 5.648 8.431
h = 5 5.905 5.158 5.873 5.058 5.878 5.152 6.125 5.313 6.094
h = 6 5.316 4.026 4.881 3.330 5.303 4.039 5.683 4.274 5.669
h = 7 8.818 8.193 8.193 7.923 8.774 8.175 9.448 8.829 9.371
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λ = α = 0.99 λ = α = 0.95 λ = 0.99 α = 1 λ = 1 α = 0.99 λ = α = 1
DMA DMS DMA DMS DMA DMS DMA DMS BMA

h = 1 -11.482 -10.994 -12.004 -11.780 -11.434 -11.009 -11.780 -11.380 -11.341
h = 2 -7.602 -8.902 -7.657 -8.354 -7.628 -8.929 -7.694 -8.979 -7.748
h = 3 -3.901 -4.878 -3.694 -4.823 -3.922 -4.882 -4.000 -5.038 -4.030
h = 4 -6.016 -5.366 -5.711 -5.258 -5.994 -5.337 -6.243 -5.494 -6.233
h = 5 -3.918 -3.033 -3.653 -2.797 -3.898 -3.026 -4.126 -3.157 -4.104
h = 6 -4.354 -3.832 -3.983 -3.271 -4.338 -3.839 -4.671 -4.064 -4.651
h = 7 -8.579 -8.201 -8.297 -7.924 -8.546 -8.181 -9.201 -8.827 -9.143

Table S4. DM statistics for the point forecast: ARMA-GARCH(1,1) vs M2. Again, results are in line
with Table 2 in the paper and with Table S3. Once more, the benchmark model performs better than
both DMA and DMS. Therefore, the null hypothesis of equal forecasting ability is always rejected.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7

DM Statistic -2.236 0.812 0.245 -0.556 -1.604 0.183 0.858
p-value 0.987 0.207 0.402 0.710 0.944 0.427 0.194

Table S5. DM statistics for the density forecast: M1 vs M2. Again, the modified DM test is carried
out. The alternative hypothesis is that M2 is more accurate than M1. When h = 1, 5, H1 is accepted.
Regarding the other cases H0 is rejected, but, looking at the p-values, it is not possible to accept the
alternative. However, this result does not influence the conclusion of the thesis. Bitcoin still does not
reveal any predictive effect over the S&P 500 index.
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Table S6. Point forecast for κ = 0.97: M1 vs M0 at the top and M2 vs M0 at the bottom.

M1 vs M0
DMA DMS DMA DMS DMA DMS DMA DMS BMA

λ = 0.99 λ = 0.99 λ = 0.95 λ = 0.95 λ = 0.99 λ = 0.99 λ = 1 λ = 1 λ = 1
α = 0.99 α = 0.99 α = 0.95 α = 0.95 α = 1 α = 1 α = 0.99 α = 0.99 α = 1

κ = 0.97

h = 1 MAFE 1.008 1.014 1.065 1.100 1.006 1.003 1.001 1.008 1.002

h = 2 MAFE 1.388 1.389 1.475 1.521 1.391 1.398 1.392 1.387 1.395

h = 3 MAFE 1.661 1.674 1.774 1.826 1.668 1.681 1.662 1.675 1.673

h = 4 MAFE 1.908 1.907 2.083 2.112 1.921 1.917 1.914 1.915 1.930

h = 5 MAFE 2.134 2.141 2.342 2.396 2.121 2.123 2.131 2.122 2.129

h = 6 MAFE 2.304 2.297 2.492 2.501 2.297 2.296 2.337 2.332 2.336

h = 7 MAFE 2.514 2.504 2.714 2.738 2.503 2.503 2.569 2.570 2.561

M2 vs M0
DMA DMS DMA DMS DMA DMS DMA DMS BMA

λ = 0.99 λ = 0.99 λ = 0.95 λ = 0.95 λ = 0.99 λ = 0.99 λ = 1 λ = 1 λ = 1
α = 0.99 α = 0.99 α = 0.95 α = 0.95 α = 1 α = 1 α = 0.99 α = 0.99 α = 1

κ = 0.97

h = 1 MAFE 1.003 1.005 1.053 1.075 1.005 1.008 1.004 1.004 1.016

h = 2 MAFE 1.386 1.387 1.460 1.481 1.382 1.382 1.394 1.393 1.399

h = 3 MAFE 1.659 1.669 1.769 1.786 1.661 1.666 1.660 1.666 1.666

h = 4 MAFE 1.905 1.907 2.089 2.114 1.900 1.901 1.911 1.915 1.912

h = 5 MAFE 2.129 2.137 2.338 2.407 2.109 2.109 2.139 2.131 2.133

h = 6 MAFE 2.301 2.301 2.496 2.523 2.304 2.307 2.346 2.339 2.342

h = 7 MAFE 2.510 2.505 2.726 2.724 2.503 2.503 2.569 2.563 2.618
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Table S7. Point forecast for κ = 0.99: M1 vs M0 at the top and M2 vs M0 at the bottom.

M1 vs M0
DMA DMS DMA DMS DMA DMS DMA DMS BMA

λ = 0.99 λ = 0.99 λ = 0.95 λ = 0.95 λ = 0.99 λ = 0.99 λ = 1 λ = 1 λ = 1
α = 0.99 α = 0.99 α = 0.95 α = 0.95 α = 1 α = 1 α = 0.99 α = 0.99 α = 1

κ = 0.99

h = 1 MAFE 1.006 1.000 1.063 1.089 1.013 1.011 1.014 1.013 1.026

h = 2 MAFE 1.388 1.392 1.474 1.467 1.393 1.402 1.403 1.403 1.408

h = 3 MAFE 1.651 1.668 1.760 1.798 1.651 1.659 1.667 1.655 1.658

h = 4 MAFE 1.903 1.904 2.104 2.133 1.913 1.916 1.920 1.917 1.934

h = 5 MAFE 2.121 2.125 2.368 2.401 2.118 2.118 2.151 2.150 2.188

h = 6 MAFE 2.285 2.280 2.499 2.528 2.287 2.287 2.369 2.358 2.366

h = 7 MAFE 2.481 2.466 2.699 2.702 2.483 2.482 2.619 2.621 2.611

M2 vs M0
DMA DMS DMA DMS DMA DMS DMA DMS BMA

λ = 0.99 λ = 0.99 λ = 0.95 λ = 0.95 λ = 0.99 λ = 0.99 λ = 1 λ = 1 λ = 1
α = 0.99 α = 0.99 α = 0.95 α = 0.95 α = 1 α = 1 α = 0.99 α = 0.99 α = 1

κ = 0.99

h = 1 MAFE 1.002 1.000 1.059 1.065 1.013 1.011 1.017 1.015 1.039

h = 2 MAFE 1.386 1.387 1.462 1.460 1.391 1.390 1.403 1.402 1.403

h = 3 MAFE 1.652 1.663 1.752 1.782 1.655 1.661 1.669 1.657 1.670

h = 4 MAFE 1.904 1.910 2.112 2.128 1.908 1.910 1.917 1.914 1.923

h = 5 MAFE 2.123 2.131 2.367 2.399 2.110 2.109 2.159 2.159 2.154

h = 6 MAFE 2.288 2.289 2.506 2.527 2.291 2.295 2.385 2.374 2.386

h = 7 MAFE 2.482 2.473 2.692 2.687 2.483 2.483 2.618 2.613 2.614



J. Risk Financial Manag. 2019, 12, 93 12 of 13

Table S8. Results for h = 10. In this case λ = α = 0.99 and κ = 0.94 are fixed. When the forecast horizon
increases to 10 days ahead, the outcome gets much worse. The forecast accuracy coming from M1 and
M2 is very poor in this case. Whereas the benchmark model is converging to its unconditional mean.

DMA DMS log PL

M0 2.096 -1617.275
M1 6.320 6.339 -3376.700
M2 9.676 9.786 -3644.715

Table S9. This table refers to the case in which Dow Jones (DJ henceforth) index is substituted to
S&P500. The only case analysed is the one with α = λ = 0.99 and κ = 0.94. The aim is to understand
whether the Bitcoin can have an impact to an index different from the case studied in the paper.
The predictors do not differ from previous case. Two models are considered: the first one, former
column, which assumes BTC among its predictors, and the second one, latter column, which excludes
it. Results have to been compared with Table 2 of the paper. It emerges that using DJ instead of S&P500
improves the result of both point and density forecast for shorter horizon (one or two days ahead).

λ = α = 0.99 With BTC Without BTC
κ = 0.94 DMA DMS DMA DMS

h = 1
MAFE 1.576 1.589 1.571 1.577
MSFE 0.108 0.109 0.108 0.109
log PL -2322.688 -2319.416

h = 2
MAFE 2.784 2.833 2.769 2.803
MSFE 0.192 0.194 0.192 0.193
log PL -2772.328 -2769.355

h = 3
MAFE 3.459 3.494 3.444 3.463
MSFE 0.234 0.236 0.234 0.235
log PL -2979.653 -2975.552

h = 4
MAFE 4.148 4.140 4.136 4.123
MSFE 0.277 0.276 0.277 0.276
log PL -3082.744 -3087.355

h = 5
MAFE 4.742 4.723 4.723 4.705
MSFE 0.321 0.319 0.321 0.318
log PL -3183.221 -3188.199

h = 6
MAFE 5.269 5.218 5.258 5.218
MSFE 0.356 0.353 0.356 0.353
log PL -3259.553 -3263.172

h = 7
MAFE 5.786 5.738 5.780 5.737
MSFE 0.387 0.385 0.387 0.385
log PL -3320.115 -3319.068
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Table S10. This table refers to the case in which Russell 2000 (RUT henceforth) index is substituted to
S&P500. The only case analysed is the one with α = λ = 0.99 and κ = 0.94. The aim is to understand
whether the Bitcoin can have an impact to an index different from the case studied in the paper.
The predictors do not differ from previous case. Two models are considered: the first one, former
column, which assumes BTC among its predictors, and the second one, latter column, which excludes
it. Results have to been compared with Table 2 of the paper. It emerges that results are much worse in
this case. Both point and density forecasts shows poor outcomes when compared with the ones in the
paper. This means that RUT index, which is a good proxy of the small-cap companies in the US market,
does not suffers from changes in the BTC market. It is reasonable to assume that smaller companies in
terms of capitalization are not disturbed by fluctuations of cryptocurrencies’ price.

λ = α = 0.99 With BTC Without BTC
κ = 0.94 DMA DMS DMA DMS

h = 1
MAFE 3.186 3.200 3.182 3.192
MSFE 0.193 0.194 0.194 0.194
log PL -2905.296 -2904.874

h = 2
MAFE 4.463 4.451 4.465 4.457
MSFE 0.272 0.271 0.272 0.271
log PL -3153.631 -3150.552

h = 3
MAFE 5.400 5.459 5.395 5.449
MSFE 0.333 0.335 0.332 0.334
log PL -3290.512 -3285.752

h = 4
MAFE 6.315 6.324 6.322 6.355
MSFE 0.392 0.393 0.391 0.393
log PL -3392.327 -3399.891

h = 5
MAFE 7.054 7.138 7.627 7.724
MSFE 0.442 0.448 0.442 0.447
log PL -3470.732 -3474.810

h = 6
MAFE 7.634 7.701 7.627 7.724
MSFE 0.499 0.496 0.484 0.490
log PL -3525.020 -3521.943

h = 7
MAFE 8.213 8.300 8.222 8.271
MSFE 0.511 0.503 0.527 0.528
log PL -3577.549 -3573.526
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