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Abstract: Recently, a large number of empirical studies indicated that individual equity options
exhibit a strong factor structure. In this paper, the importance of systematic and idiosyncratic
volatility and jump risks on individual equity option pricing is analyzed. First, we propose a new
factor structure model for pricing the individual equity options with stochastic volatility and jumps,
which takes into account four types of risks, i.e., the systematic diffusion, the idiosyncratic diffusion,
the systematic jump, and the idiosyncratic jump. Second, we derive the closed-form solutions for
the prices of both the market index and individual equity options by utilizing the Fourier inversion.
Finally, empirical studies are carried out to show the superiority of our model based on the S&P
500 index and the stock of Apple Inc. on options. The out-of-sample pricing performance of our
proposed model outperforms the other three benchmark models especially for short term and deep
out-of-the-money options.
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1. Introduction

Most of the existing literature studies on option pricing are for index options, and there
are very few about equity options. One approach to modeling equity options is to employ the
state-of-the-art model in the index option literature, a stochastic volatility model with jumps (see,
for example, Bates 1996, 2000; Bakshi et al. 1997; Duffie et al. 2000; Eraker et al. 2003; Broadie et al. 2007;
Christoffersen et al. 2012; Andersen et al. 2015; Bardgett et al. 2019), but to ignore any underlying
factor structure.

In Bakshi and Kapadia (2003a), the research results indicated that the volatility risk premium is
negative in index options by examining the statistical properties of delta hedged option portfolios,
i.e., a portfolio of a long call option position hedged by a short position in the stock. On the one hand,
stock returns have a significant market component; the emergence of market volatility risk premiums
is bound to have an impact on individual equity option pricing. On the other hand, from the economic
point of view, the risk neutral distributions of individual equities are systematically different from
the market index. Thus, it is necessary to explore how volatility risk is priced in individual equity
options, which also can produce additional insights into the pricing structure of individual equity
options (see Bakshi et al. 2003). As is well known, the beta of a stock represents the sensitivity of the
risk of the individual equity with respect to the systematic risk of the market and is very useful for
portfolio construction in the capital asset pricing model. Therefore, under the assumption that stock
returns include a market component and an idiosyncratic component, Bakshi and Kapadia (2003b)
developed a factor model for equity option valuation and investigated the pricing of market volatility
risk in individual equity options. Their empirical results showed that volatility risk premiums in
equity options are smaller than in index options.
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Afterwards, Fouque and Kollman (2011) proposed a continuous-time capital asset pricing
model (CAPM) where the dynamics of the market index have a stochastic volatility driven by
a fast mean reverting process. Moreover, they derived the analytical approximation pricing
formulas for both the market index and individual equity call options using a singular perturbation
method. Meanwhile, a calibration method for the beta parameter was also presented based on
the estimated model parameters of both the market index and individual equity option prices.
Subsequently, Fouque and Tashman (2012) extended the constant beta-parameter factor model of
Fouque and Kollman (2011) by considering a piecewise-linear relationship between the individual
asset and the market index and proposed a regime switching factor model for the pricing market index
and individual equity options. Supposing that stock return is linearly related to market index return in
terms of the beta parameter, Carr and Madan (2012) developed a factor model for individual equity
option pricing under a purely discontinuous Lévy process via fast Fourier transform, in which the
variance gamma process for the dynamics of both the market index and stock was taken as an example
for illustration. By supposing a continuous-time CAPM with Lévy processes, Wong et al. (2012) also
derived analytical solutions to the index and equity options and explored the corresponding static
hedging with index futures. Christoffersen et al. (2018) empirically studied the equity volatility levels,
skews, and term structures by using equity option prices and principal component analysis. The results
indicated that the equity options had a strong factor structure, and then, they developed an equity
option pricing model with a CAPM factor structure and stochastic volatility, which allowed for mean
reverting stochastic volatility for the dynamics of both the market factor and individual equity.

Recently, Xiao and Zhou (2018) proposed a GARCH-jump model for individual stock returns that
took into account four types of risks: the systematic and idiosyncratic jumps and the systematic and
idiosyncratic diffusive volatility. By using a dataset consisting of the S&P 500 index and 15 individual
stock prices, their empirical results indicated that idiosyncratic jumps were a key determinant of
expected stock return.1 Instead of using only stock returns, Kapadia and Zekhnini (2019) used
both stock and option data to decompose the four risk premiums associated with systematic and
idiosyncratic diffusive and jump risks and also documented that idiosyncratic jumps are important
determinants of the mean returns of a stock from both an ex post and ex ante perspective.

Motivated by the above mentioned insights, we propose to price individual equity options in
stochastic volatility jump-diffusion models with a market factor structure, which can be seen as a
generalized version of Christoffersen et al. (2018). Specifically, in our proposed model, the individual
equity prices are driven by the market factor, as well as an idiosyncratic component that also has
stochastic volatility and jump. Due to the model belonging to the affine class, we derive the closed-form
solutions for the prices of both the market index and individual equity options by utilizing the Fourier
inversion. In addition, we provide the empirical results to test the pricing performance of the proposed
factor model based on the S&P 500 index and the stock of Apple Inc. (AAPL) on options. Toward
this end, we empirically compare the pricing performance of the proposed model with those of
the other three classical two factor stochastic volatility models being taken as benchmark models.
Empirical results presented here confirm that the equity option pricing model considering systematic
and idiosyncratic volatility and jump risks may offer a good competitor to the models of Bates (2000),
Christoffersen et al. (2009), or Christoffersen et al. (2018) for some other option markets.

The remainder of the paper proceeds as follows. In Section 2, we present a novel factor
model for equity option valuation and derive the corresponding closed-form solutions. In Section 3,

1 In fact, the work of Xiao and Zhou (2018) is a complement to the recent studies that disentangle the four types of risks
in equity premiums, such as Bégin et al. (2020), who developed a GARCH-jump model in which an individual firm’s
systematic and idiosyncratic risk have both a Gaussian diffusive and a jump component. Their empirical results showed
that normal diffusive and jump risks have drastically different effects on the expected return of individual stocks by using
20 years of returns and options on the S&P 500 and 260 stocks.
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empirical studies are carried out to show the pricing performance of our proposed model. Finally,
some conclusions are stated in Section 4.

2. Equity Option Valuation

In this section, we introduce a general class of stochastic volatility models with jumps for the
dynamics of both the market factor and individual equity prices and derive closed form solutions to
the prices of the European equity call and put options.

2.1. Model Description

Consider a filtered probability space (Ω,F ,Q) with information filtration {Ft}0≤t≤T satisfying
the usual conditions (increase, right-continuous, and augmented), where Q is a risk neutral measure.
We model an equity market consisting of N firms with a single market factor, It (usually approximated
by a market index in practice). The individual stock prices are denoted by Si

t, for i = 1, 2, . . . , N.
For the sake of convenience, we ignore the superscript i, and denote (St)t≥0 the pricing process of an
individual stock. Investors also have access to a risk free bond that pays a return rate of r. To start,
the market factor It evolves under a risk neutral measure Q as:

dIt

It−
= rdt +

√
VI,tdW I

1,t +
∫

R
(ey − 1)Ñy(dt, dy), (1)

dVI,t = κI(θI −VI,t)dt + σI
√

VI,tdW I
2,t, (2)

where It− stands for the value of It before a possible jump occurs, y ∈ R = R \ {0}, VI,t is the variance
of market factor, θI denotes the long run variance, κI captures the mean reversion speed of VI,t to
θI , σI measures the volatility of volatility, 2κIθI ≥ σ2

I to ensure that the process VI,t remains strictly
positive2, W I

1,t and W I
2,t are correlated standard Brownian motions, i.e., the innovations to the market

return and volatility are correlated with correlation coefficient ρI , Cov
(

dW I
1,t, dW I

2,t

)
= ρIdt, and

Ñy(dt, dy) = Ny(dt, dy) − νy(dy)dt is a compensated jump measure, where Ny(dt, dy) is the jump
measure and the Lévy kernel (or density) νy(dy) satisfies

∫
R min(1, y2)νy(dy) < ∞.

Furthermore, we separate the effects of the market factor on individual equities’ returns into
two types of risks: the systematic diffusive volatility and jump. More specifically, the diffusive
random variation of individual equities’ returns is dependent on the Brownian motion that drives
market returns through the coefficient βdi f f . In addition, the discontinuous movements in the market
return can also trigger jumps in individual equities’ returns through the coefficient β jump. Therefore,
the individual equity prices are driven by the market factor, as well as an idiosyncratic component that
also has stochastic volatility and jump, whose process under a risk neutral measure Q follows:3

dSt

St−
= rdt + βdi f f

√
VI,tdW I

1,t︸ ︷︷ ︸
Systematic diffusive

+
∫

R
(eβ jumpy − 1)Ñy(dt, dy)︸ ︷︷ ︸

Systematic jump

+
√

VS,tdWS
1,t︸ ︷︷ ︸

Idiosyncratic diffusive

+
∫

R
(eξ − 1)Ñξ(dt, dξ)︸ ︷︷ ︸

Idiosyncratic jump

,
(3)

dVS,t = κS(θS −VS,t)dt + σS
√

VS,tdWS
2,t, (4)

2 One can refer to Assumption 2.1 of Cheang et al. (2013) and Cheang and Garces (2019) for a more detailed explanation.
3 Obviously, our proposed model for the dynamics of the market factor and individual equity prices is an extension of

Christoffersen et al. (2018). In fact, our model also can be regarded as a further generalization of Cheang et al. (2013) and
Cheang and Garces (2019) by taking into account the factor structure.
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where St− stands for the value of St before a possible jump occurs, ξ ∈ R = R \ {0}, VS,t is the
idiosyncratic variance of individual equity, θS denotes the long run idiosyncratic variance, κS captures
the mean reversion speed of VS,t to θS, σS measures the volatility of idiosyncratic variance, 2κSθS ≥ σ2

S
to ensure that the process VS,t remains strictly positive4, WS

1,t and WS
2,t are correlated standard Brownian

motions, i.e., the innovations to the idiosyncratic return and volatility are correlated with correlation
coefficient ρS, Cov

(
dWS

1,t, dWS
2,t

)
= ρSdt, but they are independent of Brownian motions in the

market factor, i.e., Cov
(

dWS
i,t, dW I

j,t

)
= 0 for i, j = 1, 2, and Ñξ(dt, dy) = Nξ(dt, dξ)− νξ(dξ)dt is a

compensated jump measure, where Nξ(dt, dξ) is the jump measure and the Lévy kernel (or density)
νξ(dξ) satisfies

∫
R min(1, ξ2)νξ(dξ) < ∞.

2.2. Characteristic Function

In order to be able to derive the pricing formulas for the European call and put equity options,
we are particularly interested in the characteristic function of the logarithm asset price. Given the
dynamics of the underlying asset price under the Q measure, we consider the conditional characteristic
function of log-asset price XT = ln ST given the market information up to time t, which is denoted by
ϕ(x, υ1, υ2, t, T; φ):

ϕ(x, υ1, υ2, t, T; φ) = EQ
[
eiφXT

∣∣Xt = x, VI,t = υ1, VS,t = υ2

]
, EQ

t

[
eiφXT

]
,

(5)

where EQ
t [·] denotes the condition expectation under the Q measure, t ≤ T, and i =

√
−1.

Lemma 1. Suppose that the market factor It and individual equity price St are driven by Equations (1) and (3),
respectively. Then, the conditional characteristic function of log-asset price XT = ln ST is given by:

ϕ(x, υ1, υ2, t, T; φ) = exp {A(τ)x + B(τ)υ1 + C(τ)υ2 + D(τ)}, (6)

where:

A(τ) = iφ,

B(τ) =
κI − iφβdi f f σIρI − d1

σ2
I

[
1− e−d1τ

1− g1e−d1τ

]
,

C(τ) =
κS − iφσSρS − d2

σ2
S

[
1− e−d2τ

1− g2e−d2τ

]
,

D(τ) =

iφr +
∫

R

(
eiφβ jumpy − 1− iφ

(
eβ jumpy − 1

))
νy(dy)︸ ︷︷ ︸

I1

+
∫

R

(
eiφξ − 1− iφ

(
eξ − 1

))
νξ(dξ)︸ ︷︷ ︸

I2

 τ

+
κIθI

σ2
I

[(
κI − iφβdi f f σIρI − d1

)
τ − 2 ln

1− g1e−d1τ

1− g1

]

+
κSθS

σ2
S

[
(κS − iφσSρS − d2) τ − 2 ln

1− g2e−d2τ

1− g2

]
,

g1 =
κI − iφβdi f f σIρI − d1

κI − iφβdi f f σIρI + d1
,

4 One can refer to the Assumption 2.1 of Cheang et al. (2013) and Cheang and Garces (2019) for a more detailed explanation.
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g2 =
κS − iφσSρS − d2

κS − iφσSρS + d2
,

d1 =

√(
iφβdi f f σIρI − κI

)2
+ β2

di f f σ2
I (iφ + φ2),

d2 =
√
(iφσSρS − κS)

2 + σ2
S(iφ + φ2),

and τ = T − t.

Proof. To obtain the conditional characteristic function of log-asset price XT = ln ST , we first take the
following transformation by using the Itô lemma for Equation (3):

d ln St =

(
r− 1

2
β2

di f f VI,t −
1
2

VS,t −
∫

R

(
eβ jumpy − 1

)
νy(dy)−

∫
R

(
eξ − 1

)
νξ(dξ)

)
dt

+ βdi f f
√

VI,tdW I
1,t + β jump

∫
R

yNy(dt, dy) +
√

VS,tdWS
1,t +

∫
R

ξNξ(dt, dξ).

The Feynman–Kac formula states that ϕ(x, υ1, υ2, t, T; φ) is governed by the following partial
integro-differential equation (PIDE):

∂ϕ

∂τ
=

[
r− 1

2
β2

di f f VI,t −
1
2

VS,t −
∫

R

(
eβ jumpy − 1

)
νy(dy)−

∫
R

(
eξ − 1

)
νξ(dξ)

]
∂ϕ

∂x

+
1
2

(
β2

di f f υ1 + υ2

) ∂2 ϕ

∂x2 + κI(θI − υ1)
∂ϕ

∂υ1
+

1
2

σ2
I υ1

∂2 ϕ

∂υ2
1

+ κS(θS − υ2)
∂ϕ

∂υ2
+

1
2

σ2
Sυ2

∂2 ϕ

∂υ2
2
+ βdi f f σIρIυ1

∂2 ϕ

∂x∂υ1
+ σSρSυ2

∂2 ϕ

∂x∂υ2

+
∫

R

[
ϕ(x + β jumpy, υ1, υ2, t, T; φ)− ϕ(x, υ1, υ2, t, T; φ)

]
νy(dy)

+
∫

R
[ϕ(x + ξ, υ1, υ2, t, T; φ)− ϕ(x, υ1, υ2, t, T; φ)] νξ(dξ),

ϕ(x, υ1, υ2, t, T; φ)|t=T = eiφXT .

(7)

Due to the affine structure of our model, we postulate ϕ(x, υ1, υ2, t, T; φ) admitting the form of (6).
Substituting Equation (6) into the above PIDE (7) gives the following system of ordinary differential
equations (ODEs) for A(τ), B(τ), C(τ), and D(τ):

∂A(τ)

∂τ
= 0,

∂B(τ)
∂τ

=
1
2

σ2
I B2(τ) +

[
βdi f f σIρI A(τ)− κI

]
B(τ)− 1

2
β2

di f f

[
A(τ)− A2(τ)

]
,

∂C(τ)
∂τ

=
1
2

σ2
SC2(τ) + [σSρS A(τ)− κS]C(τ)− 1

2

[
A(τ)− A2(τ)

]
,

∂D(τ)

∂τ
= rA(τ) + κIθI B(τ) + κSθSC(τ) +

∫
R

[
eA(τ)β jumpy − 1− A(τ)

(
eβ jumpy − 1

)]
νy(dy)

+
∫

R

[
eA(τ)ξ − 1− A(τ)

(
eξ − 1

)]
νξ(dξ),

where the boundary conditions are given as A(0) = iφ and B(0) = C(0) = D(0) = 0.
By solving the above ODEs, we can obtain the characteristic function (6).
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Lemma 2. Suppose that the market factor It is driven by Equation (1). Then, the conditional characteristic
function of log-market factor ZT = ln IT is given by:

ψ(z, υ1, t, T; φ) = EQ
[
eiφZT

∣∣Zt = z, VI,t = υ1

]
= exp

{
Ã(τ)z + B̃(τ)υ1 + D̃(τ)

}
,

(8)

where:

Ã(τ) = iφ,

B̃(τ) =
κI − iφσIρI − d

σ2
I

[
1− e−dτ

1− ge−dτ

]
,

D̃(τ) =

iφr +
∫

R

(
eiφy − 1− iφ (ey − 1)

)
νy(dy)︸ ︷︷ ︸

I3

 τ +
κIθI

σ2
I

[
(κI − iφσIρI − d) τ − 2 ln

1− ge−dτ

1− g

]
,

g =
κI − iφσIρI − d
κI − iφσIρI + d

,

d =
√
(iφσIρI − κI)

2 + σ2
I (iφ + φ2),

and τ = T − t.

Proof. Similar to the proof of Lemma 1, we can easily verify the above results.

2.3. Valuation of the European Index and Equity Options

Once the characteristic function is found, it is straightforward to calculate the prices of European
options by using Fourier inversion. Let C(St, T, K) and P(St, T, K) be the prices of the European equity
call and put options at time t with strike price K and maturity T under the risk neutral measure Q,
respectively. Then, these option prices are determined by:

C(St, T, K) = e−rτEQ
t [max(ST − K, 0)]

and:
P(St, T, K) = e−rτEQ

t [max(K− ST , 0)]

where τ = T − t is the time to maturity.

Theorem 1. Suppose that the market factor It and the individual equity price St are driven by
Equations (1) and (3), respectively. Then, the prices of the European equity call and put options with strike price
K and maturity τ = T − t are given by:

C(St, T, K) = StΠ1

(
St, T, K; βdi f f , β jump

)
− Ke−rτΠ2

(
St, T, K; βdi f f , β jump

)
(9)

and:

P(St, T, K) = Ke−rτ
[
1−Π2

(
St, T, K; βdi f f , β jump

)]
− St

[
1−Π1

(
St, T, K; βdi f f , β jump

)]
(10)

where the risk neutral probability distribution functions Π1 and Π2 are defined by:

Π1

(
St, T, K; βdi f f , β jump

)
=

1
2
+

e−rτ

πSt

∫ +∞

0
<
[

e−iφ ln K ϕ(x, υ1, υ2, t, T; φ− i)
iφ

]
dφ
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and:

Π2

(
St, T, K; βdi f f , β jump

)
=

1
2
+

1
π

∫ +∞

0
<
[

e−iφ ln K ϕ(x, υ1, υ2, t, T; φ)

iφ

]
dφ,

where ϕ(x, υ1, υ2, t, T; φ) is the conditional characteristic function of ln ST , which can be seen in Equation (6),
and <[·] indicates the real part of a complex number.

Proof. In order to get the pricing formulas of the European equity call and put options, let us first
introduce a change of measure from Q to Q̃ by the following Radon–Nikodym derivative:

dQ̃
dQ = e−r(T−t) ST

St
.

We denote the conditional characteristic function of XT = ln ST under the Q̃ measure by
ϕ̃(x, υ1, υ2, t, T; φ). Then, ϕ̃(x, υ1, υ2, t, T; φ) can be expressed as:

ϕ̃(x, υ1, υ2, t, T; φ) = EQ̃
t

[
eiφXT

]
= EQ

t

[
e−r(T−t) ST

St
eiφXT

]
= e−r(T−t)−xEQ

t

[
ei(φ−i)XT

]
= e−r(T−t)−x ϕ(x, υ1, υ2, t, T; φ− i).

Thus, the price of a European equity call option C(St, T, K) can be calculated by utilizing
ϕ(x, υ1, υ2, t, T; φ) and ϕ̃(x, υ1, υ2, t, T; φ):

C(St, T, K) = e−rτEQ
t [max(ST − K, 0)]

= e−rτEQ
t

[
ST1{ST≥K}

]
− Ke−rτEQ

t

[
1{ST≥K}

]
= StE

Q̃
t

[
1{ST≥K}

]
− Ke−rτEQ

t

[
1{ST≥K}

]
= StE

Q̃
t

[
1{XT≥ln K}

]
− Ke−rτEQ

t

[
1{XT≥ln K}

]
= StΠ1

(
St, T, K; βdi f f , β jump

)
− Ke−rτΠ2

(
St, T, K; βdi f f , β jump

)
.

Once the conditional characteristic function ϕ(x, υ1, υ2, t, T; φ) is obtained, we can easily calculate
the probability distribution functions Π1

(
St, T, K; βdi f f , β jump

)
and Π2

(
St, T, K; βdi f f , β jump

)
according to the Lévy inversion formula:

Π1

(
St, T, K; βdi f f , β jump

)
=

1
2
+

1
π

∫ +∞

0
<
[

e−iφ ln K ϕ̃(x, υ1, υ2, t, T; φ)

iφ

]
dφ

and:

Π2

(
St, T, K; βdi f f , β jump

)
=

1
2
+

1
π

∫ +∞

0
<
[

e−iφ ln K ϕ(x, υ1, υ2, t, T; φ)

iφ

]
dφ,

A similar approach can be used to derive the pricing formula for the European equity
put option.

In a similar way, we also can present the pricing formulas for the European index call and
put options.
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Theorem 2. Suppose that the market factor It is driven by Equation (1). Then, the time t prices of the European
index call and put options with strike price K and maturity τ = T − t are given by:

C(It, T, K) = ItΠ̃1 (It, T, K)− Ke−rτΠ̃2 (It, T, K) (11)

and:
P(It, T, K) = Ke−rτ

[
1− Π̃2 (It, T, K)

]
− It

[
1− Π̃1 (It, T, K)

]
(12)

where the risk neutral probability distribution functions Π1 and Π2 are defined by:

Π̃1 (It, T, K) =
1
2
+

e−rτ

π It

∫ +∞

0
<
[

e−iφ ln Kψ(z, υ1, t, T; φ− i)
iφ

]
dφ

and:

Π̃2 (It, T, K) =
1
2
+

1
π

∫ +∞

0
<
[

e−iφ ln Kψ(z, υ1, t, T; φ)

iφ

]
dφ,

where ψ(z, υ1, t, T; φ) is the conditional characteristic function of ln IT , which can be seen in Equation (8).

3. Empirical Studies

In this section, we empirically compare the pricing performance of our proposed model with those
of the classical two factor stochastic volatility models, such as Bates (2000) (two variance SVmodel
with price jumps, 2-SVJmodel), Christoffersen et al. (2009) (two-variance SV model, 2-SV model), and
Christoffersen et al. (2018) (two-variance SV model with a single market factor, 2-FSVmodel), being
taken as benchmark models.

3.1. Data Description

We used the S&P 500 index (SPX) to proxy for the market factor and AAPL as the individual
equity. We employed the delayed market quotes on arbitrary date 8 May 2019, which was the last
date available at the time of writing, as the in-sample data to calibrate the risk neutral parameters,
and those on 9 May 2019 were used for the out-of-sample test. We used mid-quotes to represent the
option prices. To eliminate the sample noise in raw option data, we adopted some filtering rules
commonly used within the related literature: (i) we omitted those options with fewer than seven days
and more than 365 days to maturity; (ii) all observations with zero trading volume were discarded;
(iii) all options with implied volatility equal to zero and larger than 1.0 were discarded. In addition,
for the convenience of the empirical analysis in the following, we only considered the sample data
of the index call options and individual equity call options with the same expiration date. Thus, we
focused only on ten maturities slices, namely on the maturities of 24 May 2019, 31 May 2019, 7 June
2019, 14 June 2019, 21 June 2019, 19 July 2019, 16 August 2019, 20 September 2019, 18 October 2019,
and 17 January 2020.

After these filters, we had a total of 401 observations for the S&P 500 index call option on
8 May 2019. The individual equity option sample contained 233 call options on 8 May 2019 and 264
call options on 9 May 2019, respectively. Due to the life of an option being usually less than one year,
we chose the three month U.S. Treasury Bill Rate to substitute for the risk free interest rate. All of the
data were downloaded from the Chicago Board Options Exchange (http://www.cboe.com/).

3.2. Parameter Estimation

Our proposed model allowed a general distribution for jump components of the market factor
and individual equity price and thus could be easily introduced to the special cases such that the jump
components follow the compound Poisson process of Merton (1976) and Kou (2002), etc. For different
types of Lévy kernels, different forms of our model can be presented. In order to keep consistent with

http://www.cboe.com/
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Bates (2000) for comparative analysis, in the following, we assumed that the jump components of the
dynamics for the market factor and individual equity followed compound Poisson processes and the
jump magnitude was drawn from the log-normal distribution of Merton (1976). Thus, the Lévy kernels
for the market factor and individual equity, respectively, are given by:

νy(dy) = λI
1√

2πδ2
I

exp

{
− (y− µI)

2

2δ2
I

}
dy (13)

and:

νξ(dξ) = λS
1√

2πδ2
S

exp

{
− (ξ − µS)

2

2δ2
S

}
dξ, (14)

where λj, for j = I, S, denotes the jump intensity, µj is the mean of the jump size, and δj is the variance
of the jump size. Then, the integrals Ii, for i = 1, 2, 3, in Lemmas 1 and 2 can be calculated as follows:

I1 = λI

[
eiφβ jumpµI− 1

2 φ2β2
jumpδ2

I − 1− iφ
(

eβ jumpµI+
1
2 β2

jumpδ2
I − 1

)]
,

I2 = λS

[
eiφµS− 1

2 φ2δ2
S − 1− iφ

(
eµS+

1
2 δ2

S − 1
)]

,

and

I3 = λI

[
eiφµI− 1

2 φ2δ2
I − 1− iφ

(
eµI+

1
2 δ2

I − 1
)]

.

Based on Theorems 1 and 2, we employed a two step calibration procedure (see, for example,
Wong et al. 2012; Christoffersen et al. 2018) to estimate the model parameters. First, we calibrated
the market index dynamic ΘI based on the S&P 500 index option price alone. Second, we used the
equity option price to calibrate the individual equity dynamic ΘS conditional on estimates of ΘI .
Consider the situation in which an investor wants to hedge his or her equity position with index
options and hedging horizon T. For brevity, we further suppose that the investor observes index
option prices and equity option prices both with maturity T, the same as hedging horizon. Specifically,
the dataset contains Mt index option prices C(It, T, Ki), for i = 1, 2, . . . , Mt, and Nt equity option prices
C(St, T, Kj), for j = 1, 2, . . . , Nt.

In the calibration process, the risk neutral model parameters were backed out by minimizing a
loss function capturing the fit between the theoretical model and market prices. We employed the
root mean squared errors (RMSE) as the objective function. The first step calibrated the risk neutral
parameters for the index process, which are calibrated by:

RMSE(I) = arg min
ΘI

√√√√ 1
Mt

Mt

∑
i=1

[
Ci,market(It, T, Ki)− CΘI

i,model(It, T, Ki)
]2

, (15)

where Ci,market(It, T, Ki) is the market price of the index call option contract from the sample and
CΘI

i,model(It, T, Ki) represents the model price calculated using Equation (15) and the vector of model
input parameters ΘI .

The second calibrated the beta and the parameters for the idiosyncratic risk:

RMSE(S) = arg min
ΘS

√√√√ 1
Nt

Nt

∑
j=1

[
Cj,market(St, T, Kj)− CΘS

j,model(St, T, Kj)
]2

, (16)
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where Cj,market(St, T, Kj) is the market price of the equity call option contract from the sample and

CΘS
j,model(St, T, Kj) represents the model price calculated using Equation (13) and the vector of model

input parameters ΘS.
On the basis of the above calibration method, Table 1 presents the risk neutral parameter estimates

across various model specifications. Note that the values of the diffusive beta βdi f f and jump beta β jump
for our proposed model were 0.3891 and 0.8429, respectively. The corresponding value of βdi f f for
the 2-FSV model was 0.2457. Obviously, both our proposed model and the 2-FSV model showed that
AAPL tended to have a relatively low exposure to diffusive market movements. However, the jump
exposure coefficient β jump = 0.8429 indicated that the AAPL had a strong exposure to market jumps,
which meant that the factor structure of the jumps was much stronger than the one of the diffusive
movements. The reason for this result may be related to the sample data we selected. If we can get
more sample data in the future, we will do an in-depth analysis. Moreover, we also can see that the
values of correlation ρ were strongly negative for four models, capturing the so-called leverage effect
both in the index and individual equity.

Table 1. Estimated parameters. Note: This table shows the average of the estimated parameters
obtained by minimizing the root mean squared pricing errors between the market price and the model
price for each option on 8 May 2019. Standard errors are reported in parentheses .

Parameters
Our 2-FSV 2-SV 2-SVJ

SPX AAPL SPX AAPL AAPL AAPL

VI,0/V1,0 0.0133 0.0119 0.0239 0.0181
(0.0000) (0.0000) (0.0002) (0.0001)

VS,0/V2,0 0.0470 0.0514 0.0197 0.0176
(0.0000) (0.0000) (0.0002) (0.0002)

κI/κ1 0.2496 0.2929 0.3489 0.4064
(0.0212) (0.0148) (0.0118) (0.0311)

κS/κ2 0.2454 0.1504 0.4131 0.4108
(0.0288) (0.0797) (0.0729) (0.0171)

θI/θ1 0.2820 0.3066 0.3314 0.2817
(0.0181) (0.0317) (0.0534) (0.0348)

θS/θ2 0.2303 0.3683 0.2447 0.3415
(0.0190) (0.0590) (0.0365) (0.0423)

σI/σ1 0.3472 0.3932 0.1615 0.1898
(0.0127) (0.0137) (0.0081) (0.0106)

σS/σ2 0.1496 0.1640 0.2206 0.1970
(0.0056) (0.0135) (0.0386) (0.0059)

λI 0.0450
(0.0017)

λS 0.3413 0.3065
(0.2463) (0.1194)

µI 0.1657
(0.0599)

µS 0.0889 0.0333
(0.0391) (0.0042)

δI 0.0850
(0.0113)

δS 0.0679 0.0534
(0.0078) (0.0013)

βdi f f 0.3891 0.2457
(0.0381) (0.0983)

β jump 0.8429
(0.8091)

ρI/ρ1 −0.9290 −0.8498 −0.9222 −0.7445
(0.0063) (0.0080) (0.0096) (0.0297)

ρS/ρ2 −0.9926 −0.8938 −0.7673 −0.7817
(0.0001) (0.0469) (0.1632) (0.0549)
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3.3. Pricing Performance

In this subsection, we present the empirical results for the calibrated models. In order to investigate
the impacts of the systematic and idiosyncratic volatility and jump risks on equity option pricing,
we took the 2-FSV, 2-SV, and 2-SVJ models as benchmark models to evaluate the pricing performance
of our proposed model.

Figures 1–10 exhibit the predicted prices of the four model specifications and market prices listed
on 9 May 2019, with 11, 16, 21, 26, 31, 51, 71, 96, 116, and 181 trading days to expiry, respectively.
Here, the predicted prices (out-of-sample pricing) were calculated by the in-sample calibration
parameters reported in Table 1. One can clearly observe from the left panels of Figures 1–10 that the
option prices obtained by theoretical models were generally closer to the market prices for different
strike prices. To further investigate the pricing performance of the four models, the right panels of
Figures 1–10 show the relative price differences (relative errors) between the theoretical model prices
and market prices.5 For simplicity, we refer to a call option as deep out-of-the-money (DOTM) if
S/K ≤ 0.90; out-of-the-money (OTM) if 0.90 < S/K ≤ 0.97; at-the-money (ATM) if 0.97 < S/K ≤ 1.03;
in-the-money (ITM) if 0.97 < S/K ≤ 1.10; and deep in-the-money (ITM) if 1.10 < S/K. Moreover,
we considered options less than 60 days to expiration as short term; options with 60–120 days to
expiration as medium term; and options larger than 120 days to expiration as long term. For the
options with 11, 16, 21, 26, 31, and 51 trading days to expiry, the relative pricing errors produced by
our proposed model were all significantly lower than those of 2-FSV, 2-SV, and 2-SVJ models in the
case of DOTM options, while the relative errors of all models were slightly higher.

It is also worth noting that the pricing performance of the stochastic model with jump behavior
was much better than that of the model without jump in the case of deep out-of-money. For the options
with 71, 96, 116, and 181 trading days to expiry, we did not find the same conclusions as the above short
term options. In conclusion, the pricing performance of equity option valuation model considering
market and idiosyncratic volatility and jump risks was significantly improved for short term and
DOTM options.
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Figure 1. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 24 May 2019.

5 The relative error is defined by |Cmodel−Cmarket |
Cmarket

× 100%, where Cmodel and Cmarket denote the theoretical model option prices
and the real market prices, respectively.
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Figure 2. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 31 May 2019.
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Figure 3. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 7 June 2019.
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Figure 4. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 14 June 2019.
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Figure 5. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 21 June 2019.
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Figure 6. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 19 July 2019.

150 200 250

Strike Price

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
e

la
ti
v
e

 E
rr

o
r

In-sample, T=August 16, 2019

Our model

2-FSV model

2-SV model

2-SVJ model

150 200 250

Strike Price

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e

la
ti
v
e

 E
rr

o
r

Out-of-sample, T=August 16, 2019

Our model

2-FSV model

2-SV model

2-SVJ model

Figure 7. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 16 August 2019.
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Figure 8. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 20 September 2019.
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Figure 9. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 18 October 2019.
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Figure 10. The comparison of predicted prices of four model specifications and market prices on
9 May 2019, with maturity T = 17 January 2019.

To summarize the model calibration results, we also adopted the RMSE as a measure of the
goodness of fit. Table 2 reports the out-of-sample pricing errors for the four models across different
maturities. Note from Table 2 that our proposed model generally outperformed the other three models
in terms of out-of-sample pricing errors. In fact, the same was true for in-sample, whose pricing errors
were generally lower than those of the out-of-sample. We will not repeat them here. To measure
the extent to which a model was better or worse than another, we defined the improvement rate
as the relative differences between the pricing errors from the benchmark model and our proposed
model, i.e.,

Improvement rate =
RMSEbenchmark − RMSEour

RMSEbenchmark
× 100%

where RMSEour and RMSEbenchmark denote the RMSE implied by our model and benchmark model,
respectively. A positive (or negative) value of improvement rate meant that our model yielded lower
(or higher) pricing errors than benchmark model, implying that the pricing performance of the former
was better (or worse) than that of the latter by a percentage of that value.

From the last column of Table 2, we can see that our model was superior to the 2-SVJ model
across different maturities, which meant that it was necessary to consider the market factor structure
in equity option pricing. From the third last column of Table 2, the improvement rate indicated that
our model slightly outperformed the 2-FSV model in terms of short term options, but was worse than
that of both medium and long term. In spite of this, our empirical study presented here could at least
illustrate that the equity option pricing model considering systematic and idiosyncratic volatility and
jump risks may offer a good competitor of the models of Bates (2000), Christoffersen et al. (2009), or
Christoffersen et al. (2018) for some other equity option markets.
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Table 2. Out-of-sample pricing errors. Note: This table shows the out-of-sample pricing errors across
different maturities. Pricing errors are reported as the root mean squared errors (RMSE) of option
prices for four models.

RMSE
Our 2-FSV 2-SV 2-SVJ

Improvement Rate

Maturity Our vs. 2-FSV Our vs. 2-SV Our vs. 2-SVJ

24 May 2019 0.2573 0.2574 0.2596 0.2707 0.0373% 0.8803% 4.9568%
31 May 2019 0.2507 0.2508 0.2564 0.2652 0.0392% 2.2499% 5.4846%
7 June 2019 0.2343 0.2347 0.2527 0.2474 0.1764% 7.2947% 5.3044%
14 June 2019 0.1992 0.2041 0.2261 0.2099 2.4278% 11.9155% 5.0858%
21 June 2019 0.1824 0.1827 0.1873 0.1916 0.1399% 2.5963% 4.7934%
19 July 2019 0.3256 0.3301 0.3326 0.3383 1.3434% 2.0948% 3.7368%

16 August 2019 0.2856 0.2835 0.2879 0.2922 −0.7573% 0.7946% 2.2384%
20 September 2019 0.3177 0.3159 0.3162 0.3222 −0.5932% -0.4851% 1.4002%

18 October 2019 0.1185 0.1180 0.1215 0.1272 −0.4458% 2.4886% 6.8593%
17 January 2020 0.4882 0.4882 0.4893 0.4943 −0.0071% 0.2182% 1.2201%

4. Conclusions

In Christoffersen et al. (2018), the issues of the equity volatility levels, skews, and term structures
were investigated by using equity option prices and the principal component analysis method.
Their empirical results indicated that the equity options had a strong factor structure, and then,
they developed an equity option pricing model with a CAPM factor structure and stochastic volatility.
In addition, jumps in stock returns of individual firms were triggered by either systematic events or
idiosyncratic shocks. Some recent studies indicated that idiosyncratic jumps were a key important
determinant of expected stock; see, for example, Xiao and Zhou (2018), Kapadia and Zekhnini (2019)
and Bégin et al. (2020).

Motivated by these insights, we developed a novel model for pricing individual equity options
that incorporated a market factor structure, which could be seen as a generalized version of the work
by Christoffersen et al. (2018). Specifically, in our model, the individual equity prices were driven by
the market factor, as well as an idiosyncratic component that also had stochastic volatility and jump.
Due to our model belonging to the affine class, we derived the closed-form solutions for the prices of
both the market index and individual equity options by utilizing the Fourier inversion. In addition,
we provided the empirical results to test the pricing performance of our proposed factor model based
on the S&P 500 index and the AAPL stock on options. Toward this end, we empirically compared
the pricing performance of our proposed model with those of the other three classical two factor
stochastic volatility models being taken as benchmark models. The out-of-sample pricing performance
of equity option valuation model considering market and idiosyncratic volatility and jump risks
was significantly improved for short term and DOTM options. In conclusion, the empirical results
presented here at least confirmed that the equity option pricing model considering systematic and
idiosyncratic volatility and jump risks may offer as good competitor of the models of Bates (2000),
Christoffersen et al. (2009), or Christoffersen et al. (2018) for some other option markets.
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