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Abstract: While there is increasing interest in crypto assets, the credit risk of these exchanges is still
relatively unexplored. To fill this gap, we considered a unique dataset of 144 exchanges, active from
the first quarter of 2018 to the first quarter of 2021. We analyzed the determinants surrounding the
decision to close an exchange using credit scoring and machine learning techniques. Cybersecurity
grades, having a public developer team, the age of the exchange, and the number of available traded
cryptocurrencies are the main significant covariates across different model specifications. Both
in-sample and out-of-sample analyzes confirm these findings. These results are robust in regard to
the inclusion of additional variables, considering the country of registration of these exchanges and
whether they are centralized or decentralized.

Keywords: exchange; Bitcoin; crypto assets; cryptocurrencies; credit risk; bankruptcy; default
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1. Introduction

A cryptocurrency is generally defined as a digital asset designed to work as a medium
of exchange, while cryptography is used to protect transactions and to control the cre-
ation of additional units of currency1. Over the past ten years, since the advent of Bit-
coin in 2009, cryptocurrency research has become one of the most relevant topics in the
field of finance, see Burniske and Tatar (2018), Fantazzini (2019), and Brummer (2019),
Schar and Berentsen (2020) for more details.

Some studies show that cryptocurrencies have been used, not only as an alternative
way to carry out transactions, but also as investment assets. According to Glaser et al. (2014),
users view their cryptocurrency investments as speculative assets rather than a means of
payment. Moreover, Baur et al. (2018) show that the largest cryptocurrency —Bitcoin— is
not related to traditional asset classes, such as stocks or bonds, thus indicating the possibility
of diversification. Fama et al. (2019) used the empirical strategy originally proposed by Baek
and Elbeck (2015), and they found that it is more reasonable to consider Bitcoin as a highly
speculative financial asset rather than a peer-to-peer cash system. Furthermore, White et al.
(2020) obtained that Bitcoin is diffusing, i.e., it is a technology-based product rather than a
currency, so it seems Bitcoin and other cryptocurrencies can be mostly considered as assets
rather than currency. However, we should also note that some authors recently derived
the fundamental value of Bitcoin as a means of payment, see Schilling and Uhlig (2019),
Biais et al. (2020), Giudici et al. (2020), Chen and Vinogradov (2021), and references therein.
Therefore, as of writing this paper, a clear distinction between being an asset and a payment
mechanism cannot be made.
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One of the most popular ways to trade and hold cryptocurrencies is by using crypto
exchanges. Moore and Christin (2013) were the first to notice that traders can face the
risk of crypto exchange closing down with accounts wiped out. They showed that nearly
45 percent of exchanges that opened before 2013 failed, taking the users’ money with
them. This result shows the need to develop models that can discriminate between safe
and vulnerable exchanges. This goal is important because crypto exchanges are the most
popular way to exchange fiat currencies with cryptocurrencies and vice versa, and it
is therefore essential to know which exchange to use based on its security and safety
profiles. Moreover, the risks of crypto exchanges may significantly contribute to the value
of cryptocurrencies as assets, as the famous bankruptcy of the Mt. Gox exchange and the
hacks of several exchanges highlighted, see Feder et al. (2017), Gandal et al. (2018), Chen
et al. (2019), Twomey and Mann (2020), and Alexander and Heck (2020) for a detailed
discussion.

Based on our knowledge, this topic has not been investigated so far. The few studies
focused on this topic analyze data before 2015 (at the latest), see Moore and Christin (2013),
Moore et al. (2018), and Fantazzini (2019). A quick look at CoinMarketCap2 highlights that
the total cryptocurrency market capitalization in 2021 has grown more than 400 times since
2015, with the total number of listed cryptocurrencies exceeding 10,000. Consequently,
there is no doubt that the cryptocurrency market has experienced major changes over the
past 6 years.

This paper aims to forecast the probability of a crypto exchange closure using previ-
ously identified factors, as well as new ones that have emerged recently. In this regard,
recent IT research has suggested that, instead of focusing on specific procedures, it is better
to pay attention to the overall security grade of the crypto exchange, as well as to new
factors, such as the possibility of sending money to the exchange by wire transfer and/or
credit card, the presence of a public developer team, etc., see Votipka et al. (2018) and
Hacken Cybersecurity Services (2021) for more details. Therefore, to reach the paper’s
objective, we first employed a set of models to forecast the probability of closure, using a
unique set of covariates (some of which were never used before), including both traditional
credit scoring models and more recent machine learning models. The latter are employed
because recent literature show their superiority over traditional approaches for credit risk
forecasting, see Barboza et al. (2017) and Moscatelli et al. (2020) for more details.

The second contribution of this paper is a forecasting exercise, using a unique set of
144 exchanges that were active from the beginning of 2018 until the end of the first quarter
of 2021. Our results show that the cybersecurity grades, having a public developer team,
the age of the exchange, and the number of available traded cryptocurrencies are the main
factors across several model specifications. Both in-sample and out-of-sample forecasting
confirm these findings.

The third contribution of the paper is a set of robustness checks to verify that our
results also hold when considering the country of registration of the crypto exchanges and
whether they are centralized or decentralized.

The paper is organized as follows: Section 2 briefly reviews the (small amount of)
literature devoted to the risks of exchange closure, while the methods proposed to model
and forecast the probability of closure are discussed in Section 3. The empirical results are
reported in Section 4, while robustness checks are discussed in Section 5. Section 6 briefly
concludes.

2. Literature Review

The financial literature dealing with the credit risk involved in crypto exchanges is
extremely limited and, as of writing this paper, only three works have examined the main
determinants that could lead to the closure of an exchange3.

Moore and Christin (2013) highlighted that fraudsters can hack the exchanges instead
of trying to hack the cryptocurrency system directly, by taking advantage of a specific
property of several cryptocurrencies (Bitcoin included): transactions are irrevocable, unlike
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most payment mechanisms, such as credit cards and other electronic fund transfers, so that
the fraud victims cannot get their money back after revealing the scam; see also Moore et al.
(2012) for more details. In this regard, we should note that, when investing in a crypto asset,
there are two types of credit risks: the possibility that the asset “dies” and the price goes to
zero (or close to zero)4, and the possibility that the exchange closes, taking most of its users’
money with it. The latter is an example of counterparty risk, where the exchange may not
fulfill its part of the contractual obligations. In this regard, Moore et al. (2018) examined 80
Bitcoin exchanges established between 2010 and 2015 and found that 38 have since closed:
of these 38, 5 fully refunded customers, 5 refunded customers only partially, 6 exchanges
did not reimburse anything, while there is no information for the remaining 22 exchanges.
These numbers show that closed/bankrupt crypto exchanges imply losses given default
(LGD) comparable to subordinated bonds if not public shares; see Shimko (2004) for more
details about classical LGDs estimated using the data from Moody’s Default Risk Service
Database. The best example of the credit risk associated with crypto exchanges is likely
represented by the bankruptcy of Mt. Gox in 2014. At that time, this exchange had the
most traded volume worldwide (>70%); it dealt with the most important cryptocurrency
(Bitcoin), and it was based in a developed country with a sophisticated and advanced
legal system (Japan). Moreover, the Bitcoin price increased more than 20 times from the
moment the bankruptcy was declared until the moment the available exchange assets were
liquidated. Despite these premises, creditors that sued Mt. Gox (not all of them did) will
probably be refunded according to the price in April 2014, but it is not clear when, due to
competing (and conflicting) legal claims, see the full Reuters and Bloomberg reports by
Harney and Stecklow (2017) and Leising (2021), respectively, for more details.

Moore and Christin (2013) first used a Cox proportional hazards model to estimate the
time it takes for Bitcoin exchanges to close down, and to discover the main variables that
can affect the closure. They found that exchanges that processed more transactions were
less likely to shut down, whereas past security breaches and an anti-money laundering
indicator were not statistically significant. Secondly, they ran a separate logistic regression
to explain the probability that a crypto exchange experienced a security breach, and they
found that a higher transaction volume significantly increased this probability, while the
age of the exchange was not significant.

Moore et al. (2018) extended the work by Moore and Christin (2013), by considering
data between 2010 and March 2015, and up to 80 exchanges. They built quarterly indicators
and estimated a panel logit model with an expanded set of explanatory variables. They
found that a security breach increases the odds that the exchange will close the same quarter,
while an increase in the daily transaction volume significantly decreases the probability
that the exchange will shut down that quarter. Interestingly, they found that exchanges that
get most of their transaction volume from fiat currencies traded by few other exchanges
are 91% less likely to close than other exchanges that trade fiat currencies with higher
competition. Moreover, they reported a significant negative time trend decreasing the
probability of closure over time, thus implying that the quality of crypto exchanges may be
improving. Instead, an anti-money laundering indicator and the two-factor authentication
were not significant, similar to what was reported by Moore and Christin (2013).

Fantazzini (2019) showed that crypto exchanges belong to a large ’family’ known
as small and medium-sized enterprises (SMEs), which represent the vast majority of
businesses in most countries. Credit risk management for SMEs is a challenging process due
to a lack of data and poor financial reporting; see the report by the European Federation of
Accountants (Federation des Experts Comptables Europeens (2005)) for a specific analysis
of this problem, the textbooks by Ketz (2003) and Hopwood et al. (2012) for a larger
discussion about financial frauds, while Reurink (2018) provides a recent literature review.
Given this background and using the dataset by Moore and Christin (2013), Fantazzini
(2019) proposed several alternative approaches to forecast the probability of closure of
a crypto exchange, ranging from credit scoring models to machine learning methods.
However, intensive in-sample and out-of-sample forecasting analyzes were not performed



J. Risk Financial Manag. 2021, 14, 516 4 of 23

and the dataset used is now almost ten years old, thus reflecting a completely different
market for crypto assets.

Therefore, given the past literature and professional practice, we expect that older
exchanges should have a larger experience in terms of system security and a larger user
base providing higher transaction fees, which should result in a smaller probability of
closure. Similarly, the possibility to send money to the exchange by wire transfer and/or
credit card should highlight a higher security level and, thus, a lower probability of
default. Moreover, a mature and experienced exchange should be transparent, and the
team running it should be composed of accountable individuals with identities publicly
available. Furthermore, crypto exchanges with higher overall security grades are expected
to show a lower probability of closure, whereas exchanges with a smaller number of
tradable assets and a smaller volume of transaction fees may have less funding for the
exchange security and thus a higher probability of closure. Finally, a past security breach
should increase the probability that the exchange will close or go bankrupt.

3. Materials and Methods

To analyze the determinants behind the decision of closing an exchange, we consider
the two main approaches: credit scoring models and machine learning. The literature
on credit scoring models is pretty large Baesens and Van Gestel (2009), Joseph (2013).
Machine learning techniques have been extensively used in finance; see James et al. (2013),
De Prado (2018) and Dixon et al. (2020). Another important contribution of this paper
involves comparing the classification accuracy of credit scoring models and machine
learning techniques. To do so, we briefly review the models that will be used in the
empirical analysis in this section. We remark that our paper employs credit scoring and
machine learning models to estimate the probability of closure of crypto exchanges with
a cross-sectional dataset. Some of these models could be used for time series forecasting
and portfolio management with crypto assets; see Borges and Neves (2020); Sebastião and
Godinho (2021), and references therein for more details.

3.1. Credit Scoring Models

Scoring models employ statistical techniques to combine different variables into a
quantitative score. Depending on the model, the score can be either interpreted as a
probability of default (PD), or used as a classification system. In the former case, a scoring
model takes the following form:

PDi = P(Di = 1|Di = 0; Xi) = F(β′Xi)

where PDi is the probability of default for the firm i (in our case, a crypto exchange), and X
is a vector of financial ratios or indicators of various kind. If we use a logit model, F(β′Xi) is
given by the logistic cumulative distribution function,

F(β′Xi) =
1

1 + e−(β′Xi)
(1)

The maximum likelihood method is usually used to estimate the parameters vector β
in Equation (1), see McCullagh and Nelder (1989) for more details. The logit model is the
widely used benchmark for scoring models, because it often shows a good performance in
out-of-sample analysis, see Fuertes and Kalotychou (2006), Rodriguez and Rodriguez (2006),
Fantazzini and Figini (2008), Fantazzini and Figini (2009), and references therein.

The linear discriminant analysis (LDA) proposed by Fisher (1936) uses a set of variables
to find a threshold able to separate the reliable firms from insolvent ones. LDA builds a
linear combination of these variables for the two populations of firms (alive and defaulted),
with the weights chosen to maximize the average distance between the two populations.
Once the weights are computed, the observations of the different variables are transformed
into a single score for each firm, which is then used to classify the firm based on the distance



J. Risk Financial Manag. 2021, 14, 516 5 of 23

of the score from the average scores for the two populations. The variables of the two
groups must be distributed as a multivariate normal with the same variance-covariance
matrix.

If we have a set of n variables X, the group of alive firms will be separated from the
group of defaulted firms based on a discriminating function of this type:

Z = a′X

where Z is the so-called Z-Score, a is the vector of discriminant coefficients (weights), and
the average values for the two groups (defaulted and not defaulted) are E(a′X) = a′X̄1 and
E(a′X) = a′X̄2. The best discriminant function is found by choosing a, so that the squared
distance between the sample means of the two groups weighted by the variance/covariance
matrix Σ is the maximum:

max
a

d =
(a′X̄1 − a′X̄2)2

a′Σa
The analytical solution of a is

a = (X̄1 − X̄2)
′Σ−1

while the optimal threshold is given by,

Z̄C =
(X̄1 − X̄2)′Σ−1X̄1 + (X̄1 − X̄2)′Σ−1X̄2

2
=

Z̄1 + Z̄2

2

and supposing that Z̄1 > Z̄2, the discriminant rule is:

Zi ∈
{

Group 1 i f Zi > Z̄C
Group 2 i f Zi ≤ Z̄C

The Altman (1968) Z-score model is arguably the most well-known classificatory
model for credit risk that uses the linear discriminant analysis, and it is still widely used
nowadays; see Altman and Sabato (2007) for more details.

3.2. Machine Learning Techniques

Machine learning (ML) is a subfield of artificial intelligence that deals with the devel-
opment of systems able to recognize complex patterns and make correct choices using a
dataset already analyzed. We will consider methods that can be useful for forecasting the
probability of closure for a set or crypto exchanges, which is a specific case of supervised
learning dealing with a classification problem, where the outputs are discrete and divided
into two classes. In general, supervised learning considers all the algorithms where the
user provides examples of what the algorithm must learn, containing both the input data
and the corresponding output value. The goal is to generate an inference function known
as a “classifier” that can be used to predict an output value given a certain input.

The supervised learning algorithm known as Support Vector Machine (SVM) was
originally developed by V. Vapnik and his team in the 1990s at the Bell AT&T laboratories;
see Boser et al. (1992) and Cortes and Vapnik (1995). A SVM interprets the training data
as points in space, maps them into one n-dimensional space, and builds a hyperplane
to separate these data into different classes. The subsets of points which intersect the
separation hyperplane are called support vectors. A classification problem mapped into a
vector space can be linearly or not linearly separable. More specifically, the SVM binary
classification problems can be formulated as y = w′Œ(x) + b, where xi ∈ Rn are the
training variables, yi ∈ {−1, 1} their corresponding labels from two classes, φ is the feature-
space transformation function, w is the vector of weights, and b is the classification bias.
The SVM looks for the optimal hyperplane that has a maximum margin between the nearest
positive and negative samples, and the search is given by
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arg min
w,b

1
2
‖w‖2, subject to: yi(w′Œ(x) + b) ≥ 1

If the dataset is large and/or the data are noisy, the usual optimization with the
Lagrange multipliers α = {αi}i=1,...,n may become computationally challenging. To deal
with this issue, it is possible to introduce control parameters that allow the violation of the
previous constraints, using the following dual formulation:

max
α

D(α) =
n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjk(xi, xj)

subject to:
{

0 ≤ αi ≤ C ∀i
∑n

i=1 yiαi = 0 ∀i

where k is the radial kernel k(x, y) = exp(−γ‖x − y‖2) with parameter γ, while the
parameter C is a regularization term, where small values of C determines a hyperplane
with a large-margin separation and several misclassified points, and the opposite is true
for large values of C. Other kernel functions can be used, but we chose the radial kernel
due to its past success in dealing with non-linear decision boundaries, see Steinwart and
Christmann (2008) and Hastie et al. (2009) for more details.

A classification decision tree is one of the approaches most commonly used in machine
learning. It is similar to a reversed tree diagram that forks each time a choice is made
based on the value of a single variable, or a combination of several variables. It consists
of two types of nodes: non-terminal nodes, which test the value of a single variable (or a
combination of variables) and have two direct branches that represent the outcome of a
test; and terminal nodes (or leaves) that do not have further branches and hold a class label.
The classification tree performs an exhaustive search at every step among all the possible
data splitting, and the best partition is chosen to create branches that are as homogeneous
as possible. This procedure continues until a predefined stopping criterion is satisfied that
can be, for example, a minimum number of units beyond which a node cannot be further
split. This operation is performed by optimizing a cost function, such as the the Gini index:
suppose we have a classification outcome taking values k = 1, 2, ..., K, and p̂mk represents
the proportion of class k observations in node m, then the Gini index is given by

G =
K

∑
k=1

p̂mk(1− p̂mk)

The Gini index is a measure of total variance across the K classes, and it also represents
the expected training error if we classify the observations to class k with probability p̂mk.
When the recursive algorithm ends, it is possible to classify the dependent variable in a
specific class using the path determined by the individual tests at each internal node. In
our case, the estimated probability of closure for a specific crypto exchange is given by the
proportion of closed exchanges in the terminal node where the exchange is included. We
refer to Hastie et al. (2009), Maimon and Rokach (2014) and Smith and Koning (2017) for
more details about decision trees.

Decision trees have several well-known drawbacks: their performance is poor in the
case of too many classes and/or relatively small datasets. They can be computationally in-
tensive, particularly if a “pruning” procedure is required to make its structure interpretable
and to avoid overfitting. Moreover, the pruning procedure may suffer from a certain degree
of subjectivity and does not fully solve the problem of overfitting. Furthermore, decision
trees can be highly unstable, with small changes to the dataset resulting in completely
different trees. Random forests solve the problem of instability and overfitting of a single tree
by aggregating several decision trees into a so-called “forest”, where each tree is obtained
by introducing a random component in their construction. More specifically, each decision
tree in a forest is built using a bootstrap sample from the original data, where 2/3 of these



J. Risk Financial Manag. 2021, 14, 516 7 of 23

data are used to build a tree, while the remaining 1/3 is used as a control set, which is
known as out-of-bag (OOB) data. m variables out of the original n variables are randomly
selected at each node of the tree, and the best split based on these m variables is used to split
the node. The random selection of variables at each node decreases the correlation among
the trees in the forest so that the algorithm can deal with redundant variables and avoid
model overfitting. Moreover, each tree is grown up to its maximum size and not pruned to
maximize its instability, which is neutralized by the high number of trees created to have
the “forest”. Note that, for a given i-th exchange in the OOB control set, the forecasts are
computed using a majority vote: in simple terms, the probability of closure is given by
the proportion of trees voting for the closure of exchange i. This procedure is repeated
for all observations in the control set, which leads to the computation of the overall OOB
classification error. The main drawback of random forests is interpretability, which is not
immediate as it is for decision trees. See Hastie et al. (2009) and Smith and Koning (2017)
for more details about random forests.

Finally, we will also consider the random forest with conditional inference trees
proposed by Strobl et al. (2007), Strobl et al. (2008), and Strobl et al. (2009), which perform
better than the original random forests in case of variables of different type (both discrete
and continuous). Fantazzini (2019) showed that this approach was the best among the
machine learning methods used to forecast the probability of closure with the dataset
collected by Moore and Christin (2013).

3.3. Model Evaluation

Several evaluation metrics can be used to compare a set of forecasting models for
binary variables. These metrics usually employ a dataset different from the one used for
estimation and they can be applied to all the models considered, even if they belong to
different classes, see Section 5 in Giudici and Figini (2009) for a review. Given the size
of our dataset, after in-sample forecasting, we will also consider the Leave One Out Cross
Validation (LOOCV): one observation is left out for forecasting purposes, while the model is
estimated using all other observations in the training dataset. This process is then repeated
for all observations in the dataset. Once the predicted values for the validation dataset
are computed, we can check the forecasting performance of a model using the confusion
matrix by Provost and Kohavi (1998), see Table 1:

Table 1. Theoretical confusion matrix. Number of: a true positive, b false positive, c false negative, d
true negative.

Observed/Predicted Closed Exchange Alive

Closed Exchange a b
Alive c d

In our case, the entries in the confusion matrix have the following meaning: a is the
number of correct predictions that an exchange is closed/bankrupt, b is the number of
incorrect predictions that an exchange is closed/bankrupt, c is the number of incorrect
predictions that an exchange is open/solvent, while d is the number of correct predictions
that an exchange is open/solvent. The confusion matrix is then used to compute the
area under the receiver operating characteristic curve (AUC or AUROC) proposed by
Metz (1978), Metz and Kronman (1980), and Hanley and McNeil (1982) for all forecasting
models. The ROC curve is computed by plotting, for any probability cut-off value between
0 and 1, the proportion of correctly predicted closed/bankrupt exchanges a/(a + b) on the
y-axis, also known as sensitivity or hit rate, and the proportion of open/solvent exchanges
predicted as closed/bankrupt exchanges c/(c + d) on the x-axis, also known as false
positive rate or as 1—specificity, where the latter is d/(d + c). The AUC lies between zero
and one and the closer it is to one the more accurate the forecasting model is, see Sammut
and Webb (2011), pp. 869–875, and references therein for more details.
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It is possible to show that the area under an empirical ROC curve, when calculated by
the trapezoidal rule, is equal to the Mann–Whitney U-statistic for comparing distributions
of values from the two samples, see Bamber (1975). DeLong et al. (1988) used this nonpara-
metric statistic to test the equality of two or more ROC areas, and we used this test in our
analysis. This method has become popular because it does not make the strong normality
assumptions required in alternative approaches, such as those proposed by Metz (1978)
and McClish (1989).

Even though the AUC is one of the most common measures to evaluate the discrimina-
tive power of a predictive model for binary data, it has also some drawbacks, as discussed
in detail by Krzanowski and Hand (2009), p. 108. Therefore, we also computed the model
confidence set (MCS) proposed by Hansen et al. (2011) and extended by Fantazzini and
Maggi (2015) to binary models, to select the best forecasting models among a set of com-
peting models with a specified confidence level. The MCS procedure selects the best
forecasting model and computes the probability that the other models are indistinguishable
from the best one using an evaluation rule based on a loss function that, in the case of
binary models, is given by the Brier (1950) score. More specifically, the MCS approach tests
at each iteration that all models in the set of forecasting models M = M0 have an equal
forecasting accuracy using the following null hypothesis for a given confidence level 1− β,

H0,M = E(dij) = 0, ∀i, j ∈ M, vs. HA,M = E(dij) 6= 0

where dij = Li − Lj is the sample loss differential between forecasting models i and j and
Li stands for the loss function of model i (in our case, the Brier score). If the null hypothesis
cannot be rejected, then M̂∗1−β = M. If the null hypothesis is rejected, an elimination rule is
used to remove the worst forecasting models from the set M. The procedure is repeated
until the null hypothesis cannot be rejected, and the final set of models define the so-called
model confidence set M̂∗1−β.

Among the different equivalence tests proposed by Hansen et al. (2011), we briefly
discuss the T-max statistic that will be used in the empirical analysis. First, the follow-
ing t-statistics are computed, ti· = di·/v̂ar(di·), for i ∈ M, where di· = m−1 ∑j∈M d̄ij
is the simple loss of the i-th model relative to the average losses across models in the
set M, and dij = H−1 ∑H

h=1 dij,h measures the sample loss differential between model
i and j, and H is the number of forecasts. The T-max statistic is then calculated as
Tmax = maxi∈M(ti·). This statistic has a non-standard distribution that is estimated using
bootstrapping methods with 2000 replications, see Hansen et al. (2011) for details. If the
null hypothesis is rejected, one model is eliminated using the following elimination rule:
emax,M = arg maxi∈M

(
di·/v̂ar(di·)

)
.

4. Results
4.1. Data

The dataset examined in this paper was collected using four sources of information:

• CoinGecko5: it is a platform that aggregates information from different crypto ex-
changes and has a free application programming interface (API) with access to its
database;

• Cybersecurity Ranking and Certification platform6: it is an organization performing
security reviews and assessments of crypto exchanges;

• Cryptowisser7: it is a site specialized in comparison of different crypto exchanges,
including those closed and bankrupt;

• Mozilla Observatory8: it is a service allowing users to test the security of a particular
website.

The dataset consisted of 144 cryptocurrencies that were alive or closed between
the beginning of 2018 and the first quarter of 2021. We discarded earlier data because
the cryptocurrency market has changed dramatically since 2015, see also Section 4.1 in



J. Risk Financial Manag. 2021, 14, 516 9 of 23

Fantazzini and Kolodin (2020) and references therein for a discussion about structural
changes in Bitcoin markets.

Safety is essential for crypto exchanges because it builds trust among users. The
more customers are sure that their money is safe on a specific crypto exchange, the more
they will use that crypto exchange, and this explains why several crypto exchanges try to
improve their security. Moreover, in case of a security breach, a crypto exchange may be
obliged to compensate users for the lost money. Consequently, security grades can affect
the probability that a crypto exchange will close. Past studies focused on the presence of
some peculiar security procedures, such as the two-step authentication process or a security
audit, but most of these variables turned out to be not statistically significant. Therefore,
following the latest professional IT research (see Hacken Cybersecurity Services (2021)),
we decided to use aggregated overall grades of the exchange’s cybersecurity in place of
single testing procedures.

The Cybersecurity Ranking and Certification platform developed a methodology that
allows assessing the overall cybersecurity grade of different exchanges. This grade depends
on the results of testing procedures performed in six different categories:

• Server security. This category consists of testing cryptographic protocols, such as the
Transport Security Layer (TLS), the Secure Sockets Layer (SSL), the Web Application
Firewall (WAF) in combination with a Content Delivery Network (CDN), the Domain
Name System Security Extensions (DNSSEC), Sender Policy Framework (SPF), and
many others.

• User security. This category assesses the implementation of security measures related
to the user experience, such as the two-factor authentication, CAPTCHA, password
requirements, device management, anti-phishing code, withdrawal whitelist, and
previous hack cases.

• Penetration test (or ethical hacking test). This kind of test looks for vulnerabilities of the
exchange security and how fraudsters may use them.

• Bug bounty program. The program aims at stimulating hackers and cybersecurity
specialists to find bugs or errors in the crypto exchange software in exchange for a
reward.

• ISO 27001. The test verifies compliance with the standard published by the Interna-
tional Organization of Standardization (ISO) and the International Electrotechnical
Commission (IEC) that regulates information security management systems.

• Fund insurance. It verifies that the crypto exchange has identifiable wallets and mini-
mum funding.

The final cybersecurity grade takes all the previous security factors into account
and assigns an aggregated score between 0 and 10. It is important to note that these
cybersecurity grades changed over time for most crypto exchanges, particularly for the
exchanges that closed. Therefore, in the case of closed crypto exchanges, we considered the
cybersecurity grades published in the periods before the closure using cache versions of
the certification platform.

We also considered a second variable to measure the security of a crypto exchange
using data collected from the so-called Mozilla Observatory. The Mozilla Observatory
developed a grading system that allows a user to check a website’s security level, with
grades ranging from A+ to F. Moreover, it is possible to transform these grades into
numerical variables. The grades for the crypto exchanges that are alive refer to the first
quarter of 2021, while the grades for the closed crypto exchanges refer to the last quarter
when they worked. Possible grades and the corresponding numerical grades are reported
in Table 29.
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Table 2. Mozilla grading chart.

Scoring Range Grade

100+ A+
90–99 A
85–89 A−
80–84 B+
70–79 B
65–69 B−
60–64 C+
50–59 C
45–49 C−
40–44 D+
30–39 D
25–29 D−
0–24 F

Moore et al. (2018) found that a negative time trend significantly affected the prob-
ability of a crypto exchange closure. As a consequence, we included in the analysis a
variable named “age” to measure the operational longevity of exchanges: in the case of
alive exchanges, this variable is equal to the number of years from their foundation until
the first quarter of 2021, while for closed exchanges to the number of years between their
launch and their closure10.

Moore et al. (2018) also discovered that a security breach increased the odds of an
exchange closing in the same quarter. Therefore, we added a binary variable to model the
case of whether the crypto exchange was hacked or not11.

Crypto exchanges give the possibility to trade different cryptocurrencies: a higher
number of available assets to trade may result in higher transaction volumes and higher
incomes from fees. Thus, the number of traded cryptocurrencies may potentially decrease
the probability of closure, so we added this variable in our analysis12.

Finally, recent professional research has suggested studying whether the exchange’s de-
veloper team is public or anonymous because this information can be a potential harbinger
of future scams, see Digiconomist (2016), Reiff (2020), Sze (2020) for more details. A ma-
ture and experienced exchange should be transparent, and the team running it should be
composed of accountable individuals. Unfortunately, it is common for scammers to create
fake identities and biographies for their projects, so that is important to check whether the
members of the development team and their qualifications are real. Therefore, we also
added a binary variable, which is 1 if the team information is public and 0 otherwise13.
For similar reasons, we also considered two dummy variables that are equal to 1 if the
exchange supports credit card/wire transfers, respectively, and zero otherwise.

The final dataset consisted of 144 exchanges14 active from the beginning of 2018 until
the first quarter of 2021 (but they could start working before 2018): 51 exchanges closed,
while 93 were still active. A brief description of the variables used in the empirical analysis
is reported in Table 3.
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Table 3. Description of the explanatory variables used in the analysis.

Variable Description Source

Closed (dep. variable) Binary variable that is 1 if the exchange is closed and
zero otherwise CoinGecko/Cryptowisser

Wire transfer Binary variable that is 1 if the exchange supports wire
transfers and zero otherwise Data from exchanges

Credit card Binary variable that is 1 if the exchange supports credit
card transfers and zero otherwise Data from exchanges

Age Age of the exchange in years CoinGecko/Cryptowisser

Number of tradable assets Number of cryptocurrencies traded on the exchange Cryptowisser

Public team Binary variable that is 1 if the exchange’s developer
team is public and zero otherwise CoinGecko

CER Cyber security grade Security grade of the exchange assigned by the CER
platform. It ranges between 0 and 10

Cybersecurity Ranking and
CERtification Platform

Mozilla security grade Security grade of the exchange assigned by the Mozilla
Observatory. It ranges between 0 and 100 Mozilla Observatory

Hacked Binary variable that is 1 if the exchange experienced a
security breach and zero otherwise

Data collected manually from
websites, blogs, and official
Twitter accounts of the ex-
changes

The variance inflation factors of the regressors that are reported in Table A2 and their
correlation matrix in Table A3 (both of them in the Appendix A) show that collinearity is
not a problem in our dataset15. Their box plots are reported in Figure 1.
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Figure 1. Box plots of the regressors.

4.2. In-Sample Analysis

Table 4 reports the results for the logit model, together with its traditional diagnostics
and goodness-of-fit tests, such as the McFadden (1974) pseudo R2, the Hosmer and Lemes-
bow (1980) test, the Osius and Rojek (1992) test, and the Stukel (1988) test, where the latter
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two tests are robust variants of the original Hosmer and Lemesbow (1980) test, see Bilder
and Loughin (2014) Section 5 for a detailed discussion at the textbook level.

Table 4. Logit model estimation results.

Variable Estimate Std. Error z-Statistic Pr(>|z|)

(Intercept) 3.51 0.82 4.30 0.00
Wire transfer −0.98 0.54 −1.83 0.07
Credit card −0.56 0.54 −1.03 0.30
Age −0.22 0.13 −1.63 0.10
Number of tradable assets −0.01 0.01 −1.32 0.19
Public team −1.79 0.52 −3.48 0.00
CER Cyber security grade −0.37 0.16 −2.34 0.02
Mozilla security grade −0.00 0.01 −0.36 0.72
Hacked 0.97 0.59 1.65 0.10

McFadden R-squared: 0.38
Hosmer-Lemeshow statis-
tic

p-value: 0.14

Osius-Rojek statistic p-value: 0.01
Stukel statistic p-value: 0.17

The logit diagnostics show a pretty good fit and the lack of major misspecification
problems, while the signs of all coefficients correspond to what we expected. Interestingly,
only the presence of a public team and the CER security grade are strongly significant at
the 5% probability level, while the possibility of a wire transfer, the exchange age, and
the presence of a security breach are only weakly significant at the 10% level. All other
regressors are not statistically significant.

The estimated coefficients of the linear discriminant function that is used to classify
the two response classes are reported in Table 5: the signs and sizes of the coefficients are
rather similar to the coefficients of the logit model.

Table 5. LDA: Coefficients of linear discriminants.

Variable Coefficients

Wire transfer −0.72
Credit card −0.30
Age −0.11
Number of tradable assets −0.00
Public team −1.37
CER cyber security grade −0.20
Mozilla security grade −0.00
Hacked 0.51

Figure 2 reports a stacked histogram of the values of the discriminant function sepa-
rately for each group (alive and closed exchanges in our case), which is a common way to
display the results of a LDA: positive values are generally associated with closed exchanges,
while negative values with alive exchanges.

The estimated decision tree with our dataset is reported in Figure 3.
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Figure 2. Stacked histogram of the scores of the discriminant function separately for each group.
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Figure 3. Estimated decision tree.

The meaning of the plot is the following: 51 exchanges closed (∼35% of the total
sample), while 93 exchanges remained alive (∼65% of the total sample). In the dataset,
there were 89 exchanges (∼62% of the total sample) that had a public developer team: out
of these 89, 14 exchanges closed (∼16% of 89 exchanges), while 75 remained alive (∼84%
of 89 exchanges). Out of the 55 exchanges (∼38% of the total sample) that did not have a
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public team, 37 exchanges closed (∼67% of 55 exchanges), while 18 remained alive (∼33%
of 55 exchanges). In the last row:

• 51% of exchanges (=73 exchanges) had a public team and an age bigger than 2.5 years
(68 remained alive and 5 closed, 93% and 7%, respectively);

• 11% of exchanges (=16 exchanges) had a public team and an age smaller than 2.5 years
(7 remained alive and 9 closed, 44% and 56%, respectively);

• 11% of exchanges (=16 exchanges) did not have a public team and they had a number
of tradable assets bigger than 35 (11 remained alive and 5 closed, 69% and 31%,
respectively);

• 27% of exchanges (=39 exchanges) did not have a public team and they had a number
of tradable assets smaller than 35 (7 remained alive and 32 closed, 18% and 82%,
respectively).

Summarizing: an exchange that has a public team, which has operated for more than
2.5 years, and which has a number of tradable assets bigger than 35 has a high probability
to survive and to keep working.

Support vector machines, random forests, and conditional random forests do not have
straight interpretations. To compare these models with the previous ones, we followed
Fantazzini and Figini (2008) and Moscatelli et al. (2020) and we first report in Table 6 the
models’ AUCs together with their 95% confidence intervals for the in-sample forecasting
performance, their Brier scores, and whether the models were included in the MCS or not.
Table 7 reports the joint test for the equality of the AUCs estimated for all models using the
test statistic proposed by DeLong et al. (1988). Finally, Table 8 reports the difference (in %)
between the models’ AUCs (with all variables included) and the AUCs of the same models
with a specific variable excluded: this approach was proposed in Moscatelli et al. (2020) as
a measure of variable importance across different models.

Table 6. AUC and 95% confidence intervals for each model, Brier scores, and model inclusion in
the MCS.

Model AUC [AUC 95% Conf. Interval] Brier Score MCS

LOGIT 0.89 0.83 0.95 0.12 not included
LDA 0.89 0.83 0.94 0.13 not included
Decision Tree 0.87 0.81 0.93 0.12 not included
Random Forest 0.99 0.98 1.00 0.02 included
Conditional R.F. 0.95 0.92 0.98 0.11 not included
SVM 0.97 0.94 0.99 0.07 not included

Table 7. Joint test of equality for the AUCs of the six models.

H0: AUC(LOGIT) = AUC(LDA) = AUC(Decision Tree) =
= AUC(Random Forest) = AUC(Conditional R.F.) = AUC(SVM)

Test statistics (χ2(5)) 25.73
p-value 0.00

Table 8. Difference (in %) between the baseline AUCs and the AUCs of the same models without a
specific variable.

Excluded Variable LOGIT LDA Decision Tree Random Forest Conditional R.F. SVM

Wire transfer −0.90% −1.26% 0.00% 0.00% −0.45% −2.26%
Credit card −0.40% −0.34% 0.00% 0.00% −0.65% −0.61%
Age −0.85% −0.45% −2.35% −0.06% −0.60% −1.81%
Number of tradable assets −0.64% −0.24% 2.17% −0.04% −0.54% −2.68%
Public team −3.25% −3.43% −0.79% 0.00% −0.63% −2.42%
CER Cyber security grade −1.66% −0.98% 0.00% 0.00% −0.67% −1.48%
Mozilla security grade −0.27% −0.08% 0.00% 0.00% −0.83% −1.00%
Hacked −0.79% −0.62% 0.00% 0.00% −0.69% −1.79%
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The random forest is the best model (but conditional R.F. and SVM are close), while the
age of the exchange, the number of tradable assets, and a public developer team seem to be
the most important variables to model the probability of closure. The reported high values
of the AUCs were expected, given that we did in-sample forecasting with a small dataset,
so that out-of-sample forecasting should give better insights about the real forecasting
capabilities of the models.

4.3. Out-of-Sample Analysis

After in-sample forecasting, we implemented the leave one out cross validation
(LOOCV), where one observation is left out for forecasting purposes, while the model is
estimated using all other observations in the dataset. This process is then repeated for all
observations in the dataset.

Table 9 reports the models’ AUCs together with their 95% confidence intervals for the
LOOCV forecasting performance, their Brier scores, and whether the models were included
in the MCS or not. Table 10 reports the joint test for the equality of the AUCs estimated for
all models using the test statistic proposed by DeLong et al. (1988), while Table 11 reports
the difference (in %) between the models’ AUCs (with all variables included) and the AUCs
of the same models with a specific variable excluded.

Table 9. AUC and 95% confidence intervals for each model, Brier scores, and model inclusion in the
MCS.

Model AUC [AUC 95% Conf. Interval] Brier Score MCS

LOGIT 0.85 0.78 0.92 0.14 not included
LDA 0.85 0.78 0.92 0.15 not included
Decision Tree 0.67 0.54 0.79 0.18 not included
Random Forest 0.90 0.85 0.95 0.12 included
Conditional R.F. 0.90 0.85 0.95 0.14 not included
SVM 0.89 0.84 0.94 0.13 included

Table 10. Joint test of equality for the AUCs of the six models.

H0: AUC(LOGIT) = AUC(LDA) = AUC(Decision Tree) =
= AUC(Random Forest) = AUC(Conditional R.F.) = AUC(SVM)

Test statistics (χ2(5)) 21.75
p-value 0.00

Table 11. Difference (in %) between the baseline AUCs and the AUCs of the same models without a
specific variable.

Excluded Variable LOGIT LDA Decision Tree Random Forest Conditional R.F. SVM

Wire transfer −0.47% −0.89% 0.00% −0.46% −1.62% −2.32%
Credit card 0.05% 0.22% 0.00% −0.36% −0.35% 0.88%
Age 0.02% −0.65% 0.00% −3.71% −2.72% 0.50%
Number of tradable assets −0.57% 0.00% 2.27% −2.37% −1.67% −4.93%
Public team −3.89% −4.36% −17.73% −5.83% −4.93% −4.98%
CER Cyber security grade −2.16% −1.66% 5.88% −0.80% −0.70% −1.52%
Mozilla security grade 0.77% 0.44% 0.00% 0.49% 0.66% 0.95%
Hacked 0.32% 0.12% 0.00% −0.35% −0.33% −0.97%

The performance criteria highlight that there is not a clear model that strongly out-
performs the others, since they all show a similar AUC close to 85%–90%. An exception
is the decision tree model that had the worst performance; thus, confirming well-known
problems of model instability with small changes to the dataset. However, the MCS shows
that the random forest and the SVM have significantly better forecasts than the competing
models, according to the Brier score.

This empirical evidence seems to partially confirm past evidence and the theoretical
discussion reported by Hand (2006), who showed that “the marginal gain from complicated
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models is typically small compared to the predictive power of the simple models”, and that “simple
methods typically yield performance almost as good as more sophisticated methods, to the extent that
the difference in performance may be swamped by other sources of uncertainty that generally are not
considered in the classical supervised classification paradigm”. Moreover, simple classification
models may be preferred thanks to their interpretability, which may be a legal requirement
in some cases (like credit scoring).

As for the main determinants of the decision of closing an exchange, a public developer
team is the most important variable across all models, followed by the number of tradable
crypto assets, the age of the exchange, and the CER cybersecurity grade. The evidence
that a public developer team is by far the most important determinant did not come as a
surprise: scammers and fraudsters alike always try to hide their identity to avoid being
discovered (and prosecuted).

5. Robustness Checks

We wanted to verify that our previous results also hold with different model specifica-
tions. Therefore, we performed a series of robustness checks considering the additional
information of whether the exchanges are centralized or decentralized, as well as their
country of registration.

5.1. Centralized or Decentralized Exchanges: Does It Matter?

Decentralized exchanges allow for direct peer-to-peer cryptocurrency transactions
without the need for an intermediary, thus reducing the risk of theft from hacking that
can take place in centralized exchanges. Moreover, they can prevent price manipulation
or faked trading volume through wash trading16, and they are more anonymous than
centralized exchanges that require “know your customer” (KYC) procedures17. However,
they have also some drawbacks, such as slippage and front running; see Lin et al. (2019),
Daian et al. (2020), Johnson (2021), and Alkurd (2021) for more details.

The number of decentralized exchanges in our dataset is less than 5%, so their influence
on the probability of closure can be minor at best. Nevertheless, we added a binary variable
to our dataset that is 1 if the exchange is decentralized and zero otherwise, and we redid
our analysis due to the increasing interest in these exchanges18. Table 12 reports the models’
AUCs together with their 95% confidence intervals for the LOOCV forecasting performance,
their Brier scores, and whether the models were included in the MCS or not. Table 13
reports the joint test for the equality of the AUCs estimated for all models using the test
statistic proposed by DeLong et al. (1988), while Table 14 reports the difference (in %)
between the models’ AUCs (with all variables included) and the AUCs of the same models
with a specific variable excluded.

Table 12. AUC and 95% confidence intervals for each model, Brier scores, and model inclusion in the
MCS.

Model AUC [AUC 95% Conf. Interval] Brier Score MCS

LOGIT 0.85 0.78 0.92 0.15 included
LDA 0.85 0.78 0.92 0.15 included
Decision Tree 0.67 0.54 0.79 0.18 not included
Random Forest 0.90 0.85 0.95 0.13 included
Conditional R.F. 0.90 0.85 0.95 0.14 included
SVM 0.88 0.82 0.94 0.14 included

Table 13. Joint test of equality for the AUCs of the six models.

H0: AUC(LOGIT) = AUC(LDA) = AUC(Decision Tree) =
= AUC(Random Forest) = AUC(Conditional R.F.) = AUC(SVM)

Test statistics (χ2(5)) 20.05
p-value 0.00
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Table 14. Difference (in %) between the baseline AUCs and the AUCs of the same models without a
specific variable.

Excluded Variable LOGIT LDA Decision Tree Random Forest Conditional R.F. SVM

Wire transfer −0.50% −0.84% 0.00% −1.32% −1.72% −1.99%
Credit card 0.15% 0.17% 0.00% −0.15% 0.05% 1.05%
Age −0.12% −0.62% 0.00% −4.11% −2.40% −0.74%
Number of tradable assets −0.42% −0.20% 2.27% −2.01% −0.96% −5.13%
Public team −4.20% −4.51% −13.52% −5.40% −5.18% −5.25%
CER Cyber security grade −2.39% −1.79% 5.88% −0.67% −0.24% −1.53%
Mozilla security grade 0.72% 0.42% 0.00% 0.59% 1.01% 0.91%
Hacked 0.47% 0.30% 0.00% −0.05% 0.16% −0.60%
Decentralized 0.17% 0.15% 0.00% 0.20% 0.24% 1.61%

The models’ performances are very close, if not identical, to the baseline out-of-sample
forecasting case. The only small difference is the Brier scores that are now slightly higher,
so the MCS includes all models except for the decision tree model. The noise introduced
by an additional insignificant regressor worsened the model performances just enough
to make them no more statistically different from each other, and the MCS was unable to
separate good and bad models. This outcome was expected due to the small sample size
involved and the small number of decentralized exchanges present in the dataset.

5.2. Country of Registration: Does It Matter?

To verify the effect of the country of registration of crypto exchanges on their probabil-
ity of closure, we followed Moore and Christin (2013) and Moore et al. (2018), and we used
an index computed by World Bank economists (Yepes (2011)) to identify each country’s
compliance with “Anti-Money Laundering and Combating the Financing of Terrorism”
(AML-CFT) regulations; see Yepes (2011) for more details.

Table 15 reports the models’ AUCs together with their 95% confidence intervals for the
LOOCV forecasting performance, their Brier scores, and whether the models were included
in the MCS or not. Table 16 reports the joint test for the equality of the AUCs estimated for
all models using the test statistic proposed by DeLong et al. (1988), while Table 17 reports
the difference (in %) between the models’ AUCs (with all variables included) and the AUCs
of the same models with a specific variable excluded.

Table 15. AUC and 95% confidence intervals for each model, Brier scores, and model inclusion in the
MCS.

Model AUC [AUC 95% Conf. Interval] Brier Score MCS

LOGIT 0.85 0.78 0.92 0.15 not included
LDA 0.85 0.78 0.92 0.15 not included
Decision Tree 0.67 0.54 0.79 0.18 not included
Random Forest 0.90 0.85 0.95 0.12 included
Conditional R.F. 0.90 0.84 0.95 0.14 not included
SVM 0.89 0.83 0.94 0.13 included

Table 16. Joint test of equality for the AUCs of the six models.

H0: AUC(LOGIT) = AUC(LDA) = AUC(Decision Tree) =
= AUC(Random Forest) = AUC(Conditional R.F.) = AUC(SVM)

Test statistics (χ2(5)) 21.95
p-value 0.00
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Table 17. Difference (in %) between the baseline AUCs and the AUCs of the same models without a
specific variable.

Excluded Variable LOGIT LDA Decision Tree Random Forest Conditional R.F. SVM

Wire transfer −0.35% −1.11% 0.00% −1.36% −1.20% −2.04%
Credit card 0.57% 0.17% 0.00% −0.37% 0.35% 0.50%
Age −0.07% −0.84% 0.00% −2.79% −3.04% −0.40%
Number of tradable assets −0.65% −0.25% 2.27% −1.22% −1.08% −4.58%
Public team −4.03% −4.80% −13.52% −5.47% −4.66% −5.55%
CER Cyber security grade −2.12% −1.63% 5.88% −1.76% −0.73% −1.61%
Mozilla security grade 0.67% 0.35% 0.00% 0.64% 1.01% −0.19%
Hacked 0.10% 0.07% 0.00% −0.21% 0.00% 0.69%
AML−CFT 0.37% 0.02% 0.00% 0.20% 0.28% 0.00%

The models’ performances and the tests statistics are almost identical to the baseline
out-of-sample forecasting case, thus confirming that the AML-CFT index is not a statistically
significant variable as reported by Moore and Christin (2013) and Moore et al. (2018).

6. Conclusions

This paper investigated the determinants surrounding the decision to close an ex-
change, using a set of variables consisting of previously identified factors, and new ones
that emerged from the latest professional IT research.

To reach this objective, we first proposed a set of models to forecast the probability of
closure of a crypto exchange, including both traditional credit scoring models and more
recent machine learning models. Secondly, we performed a forecasting exercise using a
unique set of 144 exchanges that were active from the beginning of 2018 until the end of
the first quarter of 2021. We found that having a public developer team is by far the most
important determinant, followed by the CER cybersecurity grade, the age of the exchange,
and the number of traded cryptocurrencies available on the exchange. Both in-sample and
out-of-sample forecasting confirm these findings. The fact that having a public developer
team is the most important factor is probably a confirmation that cryptocurrencies’ returns
merely depend on financial conventions and that these assets have become part of the
traditional financial system, as discussed in Fama et al. (2019).

The general recommendation for investors that emerged from our analysis is to choose
an exchange with a public developer team (scammers and fraudsters always try to hide),
with a high CER cybersecurity grade, preferably with a working experience of several
years, and with a high number of available tradable assets, which can guarantee a large
volume of transaction fees and, thus, better funding for exchange security.

Finally, we performed a set of robustness checks to verify that our results also hold
when considering whether the exchanges are centralized or decentralized, and when con-
sidering their country of registration by using an index to identify the country’s compliance
with the AML–CFT regulations. We found that the models’ performances and the tests
statistics were almost identical to the baseline out-of-sample forecasting case; thus, showing
that the exchange being decentralized or not, and the AML–CFT index, are not statistically
significant variables.

We should note that the number of exchanges that we used is rather low compared to
traditional studies dealing with credit risk for SMEs, despite our analysis being the largest
so far in this field of research. We are aware that this limitation may make our models
suffer from a certain degree of selection bias. For example, some small exchanges were
discarded from our dataset because we were unable to collect all the regressors required
for our analysis: it was not possible to find information about their public team, past hacks,
age, methods of money transfers, etc. However, we are confident that the addition of these
exchanges, mainly small and no more working, would strengthen our results instead of
weakening, because they would likely confirm the need to choose exchanges with a public
team, without past hacks, and with several years of experience. The retrieval and the
analysis of additional exchanges data are left as an avenue for future research.
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Another possibility of future work will be to check how the credit risk for crypto
exchanges will change when the number of decentralized exchanges and their trading
volume increase to a more sizable level. The recent crackdown in China, where both
crypto mining and transactions involving crypto assets are now fully prohibited, may
stimulate the growth of decentralized exchanges. Their development may spread a form of
“fully denationalized financial money” from which only a few social groups will benefit
with increasing social inequalities, but it may also stimulate financial circuits that can
enable a more equitable distribution of the wealth created by social cooperation, as recently
discussed by Fama et al. (2019). This is why this phenomenon will have to be monitored.
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Appendix A. Exchanges Names

Table A1. Exchanges names.

3xbit BTSE FTX NLexch
6X Bybit Gate.io Oceanex
Aax C-Cex Femini Okcoin
Alterdice Chainrift Gopax Okex
Altilly Chilebit HB.top Otcbtc
Altsbit Cobinhood Hbtc Paribu
Ascend Coinegg HBUS Phemex
B2Bx Coinbene Hitbtc Poloniex
Bancor Coinchangex Hoo Poloni dex
Bankera Coincheck Hotbit Probit
Bibox Coindeal Huobi Purcow
Bigone Coinex Ice3x Shortex
Biki Coinfalcon ICOCryptex Sistemkoin
Bilaxy Coinfloor Indodax Sparkdex
Binance Coinhub Instant Bitex Stex
Bitbank Coinlim IQFinex Stormgain
Bitbay Coinmetro Itbit The PIT
Bitbox Coinnest Koineks TheRockTrading
Bitfinex Coinone Korbit Tidex
Bitflyer Coinrate Kraken TokensNet
Bitforex Coinsbit Kucoin TopBTC
Bitget Coinsuper Kuna Trade Satoshi
Bithumb Cointiger Lakebtc Tux exchange
Bitkub CPDAX Latoken Unichange
Bitlish Credox Lbank Upbit
Bitmart Crypto Bridge LEOxChange Vbitex
Bitmesh Crypto Dao Liquid VeBitcoin
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Table A1. Cont.

Bitmex CryTrEx Livecoin VirWox
Bitopro Dcoin Lukki Wazirx
Bitpanda Deribit luno Whitebit
Bitso Dex-trade Max Maicoin XT
Bitstamp Dflow Mercado Bitcoin Yobit
Bittrex Digifinex Mercatox Zaif
Bleutrade Exmo Narkasa ZB.com
BTCbear Fcoin Neraex ZBG
BTCturk Fisco Nicehash ZG.top

Table A2. Variance inflation factors (VIFs) of the regressors.

Wire transfer 1.36
Credit card 1.08
Age 1.27
Number of tradable assets 1.24
Public team 1.42
CER cyber security grade 1.46
Mozilla security grade 1.26
Hacked 1.09

Table A3. Correlation matrix of the regressors.

Wire Transfer Credit Card Age Number of Tradable Assets Public Team CER Cyber Security Grade Mozilla Security Grade Hacked

Wire transfer 1 0.22 0.38 −0.14 0.27 0.09 0.18 −0.15
Credit card 0.22 1 0.19 0.05 0.14 0.02 0.12 0.04
Age 0.38 0.19 1 0.10 0.26 0.03 0.13 −0.03
Number of tradable assets −0.14 0.05 0.10 1 0.10 0.31 0.24 0.14
Public team 0.27 0.14 0.26 0.10 1 0.41 0.30 0.11
CER cyber security grade 0.09 0.02 0.03 0.31 0.41 1 0.37 −0.04
Mozilla security grade 0.18 0.12 0.13 0.24 0.30 0.37 1 0.04
Hacked −0.15 0.04 −0.03 0.14 0.11 −0.04 0.04 1

Notes
1 This is a general definition of cryptocurrency that is based on the current practices among both financial and IT professionals, see,

for example, the official technical report by the Association of Chartered Certified Accountants (ACCA (2021)), as well as the
formal definition of cryptocurrency proposed by Lansky (2018), which is considered the most precise by IT specialists, and which
was later adopted by Fantazzini and Zimin (2020) to formally define credit risk for cryptocurrencies. Antonopoulos (2014) and
Narayanan et al. (2016) to provide a larger discussion at the textbook level.

2 https://coinmarketcap.com/charts/ (accessed on 1 August 2021). CoinMarketCap is the main aggregator of cryptocurrency
market data, and it has been owned by the crypto exchange Binance since April 2020, see https://crypto.marketswiki.com/index.
php?title=CoinMarketCap (accessed on 1 August 2021) for more details. Website accessed on June 15, 2021.

3 We will use the terms ‘probability of closure’ and ‘probability of default’ interchangeably.
4 This type of risk was originally defined by Fantazzini and Zimin (2020), pp. 24–26, as “the gains and losses on the value of a position

of a cryptocurrency that is abandoned and considered dead according to professional and/or academic criteria, but which can be potentially
revived and revamped”.

5 https://www.coingecko.com (accessed on 1 August 2021).
6 https://cer.live (accessed on 1 August 2021).
7 https://www.cryptowisser.com (accessed on 1 August 2021).
8 https://observatory.mozilla.org (accessed on 1 August 2021).
9 https://github.com/mozilla/http-observatory/blob/master/httpobs/docs/scoring.md (accessed on 1 August 2021).

10 The dates of crypto exchange foundations were taken from CoinGecko, while the dates of closure (if any) from Cryptowisser.
11 The information about security breaches was collected manually from websites, blogs, and official Twitter accounts of the

exchanges.
12 Cryptowisser reports how many cryptocurrencies are traded on each exchange.

https://coinmarketcap.com/charts/
https://crypto.marketswiki.com/index.php?title=CoinMarketCap
https://crypto.marketswiki.com/index.php?title=CoinMarketCap
https://www.coingecko.com
https://cer.live
https://www.cryptowisser.com
https://observatory.mozilla.org
https://github.com/mozilla/http-observatory/blob/master/httpobs/docs/scoring.md
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13 Information about the exchanges’ developer team is available at CoinGecko.
14 The names of these exchanges are reported in Table A1 in the Appendix A.
15 The variance inflation factors (VIF) are used to measure the degree of collinearity among the regressors in an equation. They

can be computed by dividing the variance of a coefficient estimate with all the other regressors included by the variance of the
same coefficient estimated from an equation with only that regressor and a constant. Classical “rules of thumbs” to get rid of
collinearity are to eliminate those variables with a VIF higher than 10 or to eliminate one of the two variables with a correlation
higher than 0.7–0.8 (in absolute value).

16 Wash trading is a process whereby a trader buys and sells an asset to feed misleading information to the market. It is illegal
in most regulated markets, see James Chen (2021) and references therein for more details. However, there is recent evidence
that up to 30% of all traded tokens on two of the first popular decentralized exchanges on the Ethereum blockchain (IDEX and
EtherDelta) were subject to wash trading activity, see Victor and Weintraud (2021) for more details.

17 The “know your customer” or “know your client” check is the process of identifying and verifying the client’s identity when open-
ing a financial account, see https://en.wikipedia.org/wiki/Know_your_customer (accessed on 1 August 2021) and references
therein for more details.

18 https://trends.google.ru/trends/explore?date=all&q=decentralized%20exchanges (accessed on 1 August 2021).
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