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Abstract: In recent times, in the literature of inventory management there exists a notorious interest
in production-inventory models focused on imperfect production processes with a deterministic
time horizon. Nevertheless, it is well-known that there is a high influence and impact caused by the
learning effect on the production-inventory models in the random planning horizon. This research
work formulates a mathematical model for a re-workable multi-item production-inventory system, in
which the demand of the items depends on the accessible stock and selling revenue. The production-
inventory model allows shortages and these are partial backlogged over a random planning horizon.
Also, the learning effect on the rework policy, inflation, and the time value of money are considered.
The main aim is to determine the optimum production rates that minimize the expected total cost of
the multi-item production-inventory system. A numerical example is solved and a detailed sensitivity
analysis is conducted in order to study the production-inventory model.

Keywords: breakable items; reworked; shortages; partial backlogging; learning effect; random
planning horizon

1. Introduction

The breakability of the items occurs in the majority of the production-inventory sys-
tems. In the fabrication of breakable items, such as televisions, mobiles, fans, watches,
among others, the control and regulation are significant parameters to manage effectively
and efficiently. Dealing with the mentioned products in production-inventory systems, the
breakability becomes in a major problem for the manufacturing companies. In this context,
the researchers and practitioners have proposed and implemented inventory models for
breakable items in order to make these more practical and realistic. On the other hand, to
eliminate waste and reduce the manufacturing cost in real-world production systems, the
option of rework plays an important role. The production lot size models with the rework-
ing of defective items are discussed cleverly by Hayek and Salameh (2001); Chiu (2003).
To reduce costs being environmentally friendly through reworking plans is studied by
Flapper and Teunter (2004). Cost minimizing-planning of work and rework processes for
re-workable items is analyzed by Inderfurth et al. (2007). A production model that allows
that a certain proportion of defective items can be reworked is reviewed in Chen (2006).
Lot sizing models that consider rework, scrap, and maintenance factors are developed
by Chiu et al. (2007); Sheu and Chen (2004); Ben-Daya (2002). An economic production
quantity (EPQ) model with rework procedure for a single-stage production system under
scheduled backorders is proposed by Cardenas-Barron (2009). A non-perfect production
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stock system with repairing and promotional demand is explored by Manna et al. (2016).
In a parallel way, the same year, a production model with rework and multiple deliveries
to determine jointly the optimal price, lot size, and the number of deliveries is developed
by Taleizadeh et al. (2016). Later, a non-perfect production with advertisement depen-
dent demand and production rate dependent on defective rate is introduced by Manna
et al. (2017b). In general, the customers are attracted when the products are displayed in
large quantities in the show rooms and this generates a greater demand for them. This
makes that the demand be stock-dependent. Perhaps, the first inventory model for stock-
dependent consumption rate was done by Gupta and Vrat (1986). Later, Mandal and Phaujdar
(1989); Datta and Pal (1990); Pal et al. (1993); Padmanabhan and Vrat (1995) proposed in-
ventory models for stock-dependent demand considering different factors. After that, an
inventory model for a power-form inventory-dependent demand pattern was developed
by Baker and Urban (1998). A pricing and lot sizing model with partial backlogging for a
reseller who vends a consumable item is introduced by Abad (2001). A replenishment
stock model with shortages for non-instantaneous deteriorating goods with inventory-
dependent demand and partial backlogging is developed by Wu et al. (2006). Additional
research works in this area include Dye and Ouyang (2005); Lee and Dye (2012); Avina-
dav et al. (2013); Taleizadeh et al. (2013). Recently, Debnath et al. (2018) analyzed the
effect of delay-in-payment policy and stock-dependent demand in a two-warehouse
inventory considering breakable items. Bhunia et al. (2018) proposed an inventory
problem for a deteriorating item with displayed stock level and marketing strategy
dependent demand. Khanna et al. (2020) determined the optimal preservation strategies
in an inventory model with stock-dependent demand and time-dependent holding cost.
Banu et al. (2021) considered stock-dependent demand rate in a supply chain model with
trade-credit financing. It is important to note that increasing the customer’s demand by
lowering the selling price of a commodity also plays an relevant role. Related to this topic,
the inventory models in which demand can be increased by decreasing the selling price are
formulated by Abad (1996); Lau and Lau (1988); Manna et al. (2017a). Pervin et al. (2019)
developed a deteriorating inventory model with stock and price dependent demand for
multi-items under the trade-credit policy. Halim et al. (2021) considered stock and non-
linear price-dependent demand in a production-inventory model for deteriorating items.
Production-inventory models with and without backlogging are derived using an algebraic
method by Cardenas-Barron (2001a, 2001b). Moreover, a pricing and lot-sizing problem
for an item with shortages, and partial backlogging are considered in Abad (1996, 2001). A
multi-item single-machine manufacturing system considering defective products, partial
backlogging and service level constraint is investigated by Taleizadeh et al. (2010). Later, the
EOQ/EPQ models with shortages for two varieties of backordering costs, linear and fixed,
are deduced by the analytic geometry and the algebraic method in Cardenas-Barron (2011).
A non-perfect production-inventory system with preventive maintenance and partial
backlogging was derived by Taleizadeh (2017). Nobil et al. (2019) considered shortage, in-
spection, and rework policy for imperfect items in a production model. Later, Chakraborty
et al. (2020) proposed an inventory model for multi-item with multi-warehouse and partial
backlogging for perishable goods. AlArjani et al. (2021) developed a sustainable recycle
production model with imperfect production and shortages. According to Jaber et al. (2008)
the quantity of non-perfect items is reduced due to the learning experience of the system.
In this context, an inventory model for non-perfect quality products with shortages tak-
ing into account the learning of inspection was described by Konstantaras et al. (2012).
Fu et al. (2020) considered learning and fatigue behavioral effects for a labor-intensive
production-inventory system. It is well-known that there exists an impact of increasing of
prices in the time value of money in today’s monetary market. This is due to the inflation
monetary phenomenon, and therefore, this fact can not be ignored in the development
of production-inventory models. The research work of Dey et al. (2008) examined the
inflation effect and time value of money in a two storage inventory model. Later, Shah
and Vaghela (2018) studied the inflation and reliability effects in an imperfect production
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model for effort and time dependent demand. Shaikh et al. (2020) investigated the effect
of inflation and price-dependent demand in a production model for a deteriorating item
under trade credit policy. Hemapriya and Uthayakumar (2021) analyzed the inflation and
the time value of money effect in a vendor-buyer inventory model.

An overview comparison of existing literature related with the current research work
is shown in Table 1.

Table 1. Comparison of existing literature related with the current research work.

Author(s) (Year) Model Learning
Effect Inflation Backlogging Demand Rate

Depends on Multi-Item

Mandal and
Phaujdar (1989) Production No No Yes Stock level No

Datta and Pal (1990) Purchase No No No Stock level No
Lau and Lau (1998) Purchase No No Yes Random No
Abad (2001) Purchase No No Yes Price and time No
Hayek and Salameh
(2001) Production No No Yes Constant No

Ben-Daya (2002) Production No No No Time No
Chiu (2003) Production No No Yes Constant No
Sheu and Chens
(2004) Production No No No Constant No

Dye and Ouyang
(2005) Purchase No No Yes Stock level No

Wu et al. (2006) Purchase No No Yes Stock level No
Lee and Dye (2012) Purchase No No Yes Stock level No
Avinadav et al. (2013) Purchase No No No Price and time No
Taleizadeh et al.
(2013) Purchase Yes No Yes Constant No

Manna et al. (2016) Production No Yes No Price and
advertisement Yes

Manna et al. (2017a) Production Yes Yes Yes Stock level Yes
Bhunia et al. (2018) Purchase No No No Stock level No

Pervin et al. (2019) Supply chain No No No Price and stock
level Yes

Banu et al. (2021) Supply chain No No No Stock level No

Present paper Production Yes, effect on Yes Yes Price and stock
level Yes

reworked rate

This paper develops a multi-item non-perfect production-inventory model with partial
backlogging over a finite time horizon in random nature. During the manufacturing
period, the screening process and rework process of non-perfect units occur simultaneously.
The learning effect is considered where the operator achieves some experience from the
previous cycle to increase the rework rate of defective units. The customers’ demand rate
is dependent on the displayed inventory level and selling price of the produced items. The
effect of inflation and the time value of capital on the total cost of the production-inventory
model is analyzed. Based on the random time horizon of the last cycle, four different cases
are taking into account. The work is done thru of the following steps:

Step 1 Formulate the imperfect production-inventory model for first N j fully accommo-
dated cycles considering production, screening, reworking, holding, and shortage
costs.

Step 2 Determine the expression of the expected total cost for the first N j fully accommo-
dated cycles concerning the random time horizon.

Step 3 Calculate the expression of the total cost for the last cycle under the following
mutually exclusive and disjoint cases:

– Case I: The random time horizon ends before the production period concludes.
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– Case II: The random time horizon ends in the between of the end of the produc-
tion period and exhaust of inventory period.

– Case III: The random time horizon ends during the shortage period.
– Case IV: The random time horizon ends during the shortage period when the

production restarts to cover the shortages.

Step 4 Compute the expression of the projected total cost for the last period which joins the
four mutually exclusive and disjoint events described in Step-3.

Step 5 Minimize the expected total cost including the expressions determined in Step-2 and
Step-4.

The remainder of this paper is organized as follows: Section 2 defines the notation and
assumptions. Section 3 describes the mathematical formulation of the imperfect production-
inventory model. Section 4 presents a numerical example and sensitivity analysis. Section 5
provides practical implications. Finally, Section 6 gives some conclusions and future
research directions.

2. Notation and Assumptions

To formulate the imperfect production-inventory model mathematically, the following
notation and assumptions are defined.

2.1. Notation

The following notation for jth item (j = 1, 2, ..., M) are stated.

qj(t) : Inventory level at time t for perfect quality items in each cycle except last cycle
qj

L(t) : Inventory quantity in the last cycle at time t for perfect quality items
Sj(t) : Shortage level at time t for perfect quality items in each cycle except last cycle
Sj

L(t) : Shortage level in the last cycle at time t for perfect quality items
Sj : Maximum shortage level
Pj : Production rate
Dj : Customers’ demand rate
tj

p : Time at which production stopped in each cycle
tj
s : Time at which inventory exhausted in each cycle

tj
r : Time at which production restarts in shortage period in each cycle

T j : Length of each cycle
γj : Portion of the demand that is not backlogged
1− γj : Portion of the demand that is backlogged
αj : Achieved learning parameter to increase the rework rate
βj : Achieved learning parameter for production and screening costs
θ j : Rate of breakability of the produced items
δj : Percentage of rework for breakable items related to the learning effect
cj

p : Production cost per unit in the first cycle, cj
pe(i−1)βj

is the unit productioncost
in ith cycle

cj
sr : Screening cost per unit in first cycle, cj

sre(i−1)βj
is screening cost per unit in

ith cycle
rj

c : Reworking cost per unit
hj

c : Holding cost per unit per unit time for perfect quality items
cj

sh : Shortage cost per unit per unit time for perfect quality items
sj : Selling price per unit perfect quality items
R : Difference between inflation and the time value of money
N j : Number of entirely accommodated cycles
M : Total number of items
H : Random time horizon length
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2.2. Assumptions

The following assumptions are considered.

(i) Non-perfect quality of multiple items is produced (breakable items) in the production
system. A portion of breakable items is reworked to get a nearly perfect item. The
perfect quality products are immediately set for sale.

(ii) Demand rate (Dj) of jth item (j = 1, 2, ..., M) is dependent on the displayed inventory
level and selling price, which is of the form:

Dj(qj, sj) =

{
dj

0 + dj
1qj(t)− dj

2sj, qj(t) ≥ 0
dj

0 − dj
1Sj(t), qj(t) ≤ 0

(1)

where dj
0, dj

1 and dj
2 are positive constants.

(iii) The time horizon H is not necessarily fixed and known. It has some uncertainty,
therefore, it is finite and randomly distributed. Here, it is assumed that H follows an
exponential distribution with the following probability density function (p.d.f)

f (h) =
{

λe−λh h ≥ 0
0 otherwise

(2)

where λ(> 0) is the distribution parameter and h is the real value of H.
(iv) First N j cycles are completely contained in the time horizon and it finishes during

(N j + 1)th cycle.
(v) Shortages are allowed in each cycle. After occurring shortage, some customers will

wait in during the stockout period. So, it is considered the partial backlogging during
the stockout period of unsatisfied market demand.

(vi) The opening and terminal stock levels in each period are zero in each cycle.
(vii) Due to fluctuation of the economy, the cost or price of every commodity is changed.

For this reason, inflation and the time value of capital are considered.
(viii) The learning experience of inspection process increases the rework rate of defective

units and the amount of finished product. Learning effect influences the decision-
maker to reduce more screening costs and rework costs to the next cycle.

3. Mathematical Formulation of the Production-Inventory Model

The on-hand stock diagram of the perfect quality items in the production-inventory
model under the random planning horizon is shown in Figure 1. Screening and reworking
of produced items continue with the production, the stock begins to accumulate constantly
and at the same time jointly covering the demand with the rate of Dj(qj, sj). Production,
screening, and reworking of the items in the cycle stop at time tj

p and restart at time tj
r,

whereas inventory is exhausted at tj
s in the period of cycle [(i− 1)T j, iT j]. In the fabrication

process, both perfect and defective quality items are manufactured. The production process
has a 100% screening through the manufacturing run time. The perfect quality products
are ready for sale. Some defective quality products are continuously reworked during the
production run time in order to restore their quality and to make them as perfect ones. The
employees’ learning efforts increase the rate of reworking. In this regard, the amount of
defective units is reduced thru manufacturing cycles.
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Figure 1. Inventory behavior of the first N j cycles.

3.1. Formulation for the ith (1 ≤ i ≤ N j) Cycle for the jth Item

Based on the description of the production-inventory model and Figure 1, the govern-
ing differential equations of the inventory level qj(t) for ith (1 ≤ i ≤ N j) cycle are

dqj(t)
dt

=

{
(1− θ j)Pj + δj(θ jPj)iαj − Dj, (i− 1)T j ≤ t ≤ (i− 1)T j + tj

p

−Dj, (i− 1)T j + tj
p ≤ t ≤ (i− 1)T j + tj

s

=

{
(1− θ j)Pj + δj(θ jPj)iαj − {dj

0 − dj
2sj + dj

1qj(t)}, (i− 1)T j ≤ t ≤ (i− 1)T j + tj
p

−{dj
0 − dj

2sj + dj
1qj(t)}, (i− 1)T j + tj

p ≤ t ≤ (i− 1)T j + tj
s

where δj is the rework component of the imperfect portion (θ jPj)iαj
in the ith cycle, this

increases thru of each cycle in concordance with the learning parameter αj.
The inventory level qj(t) during the period [(i − 1)T j, (i − 1)T j + tj

s] satisfies the
conditions qj((i− 1)T j) = 0 and qj((i− 1)T j + tj

s) = 0.
The solution of the differential equations is given below

qj(t) =


1
dj

1

{
(1− θ j)Pj + δj(θ jPj)iαj − (dj

0 − dj
2sj)

}
×
[
1− e−dj

1{t−(i−1)T j}
]
, (i− 1)T j ≤ t ≤ (i− 1)T j + tj

p

− (dj
0−dj

2sj)

dj
1

[
1− e−dj

1{t−(i−1)T j−tj
s}
]
, (i− 1)T j + tj

p ≤ t ≤ (i− 1)T j + tj
s

(3)

During the period [(i − 1)T j + tj
s, iT j], the demand rate is Dj(Sj) = {dj

0 − dj
2sj −

dj
1Sj(t)}. This time is the shortage period. Consequently, the shortage level Sj(t) is regu-

lated by the following differential equation:

dSj(t)
dt

=

{
{dj

0 − dj
1Sj(t)}, [(i− 1)T j + tj

s, (i− 1)T j + tj
r]

(1− θ j)Pj + δj(θ jPj)iαj − (dj
0 − dj

2sj), [(i− 1)T j + tj
r, iT j]

subject to the following conditions: Sj((i− 1)T j + tj
s) = 0 and Sj(iT j) = 0.

The solution of the differential equations is expressed as follows:

Sj(t) =


dj

0

dj
1

[
1− e−dj

1{t−(i−1)T j−tj
s}
]
, [(i− 1)T j + tj

s, (i− 1)T j + tj
r]{

(1− θ j)Pj + δj(θ jPj)iαj − (dj
0 − dj

2sj)
}
(t− iT j), [(i− 1)T j + tj

r, iT j]

The maximum shortage amount (Sj) of jth item is

Sj = Sj((i− 1)T j + tj
r) =

dj
0

dj
1

{
1− e−dj

1(t
j
r−tj

s)
}
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The holding cost for the ith cycle is represented by

HCj
i = hj

c

[ ∫ (i−1)T j+tj
s

(i−1)T j
qj(t)e−Rt dt

]
= hj

c

[ ∫ (i−1)T j+tj
p

(i−1)T j
qj(t)e−Rt dt +

∫ (i−1)T j+tj
s

(i−1)T j+tj
p

qj(t)e−Rt dt
]

=
hj

c

dj
1

{
(1− θ j)Pj + δj(θ jPj)iαj − (dj

0 − dj
2sj)

}[1− e−Rtj
p

R
− 1− e−(R+dj

1)t
j
p

R + dj
1

]
e−(i−1)RT j

−
hj

c(d
j
0 − dj

2sj)

dj
1

[ 1
R
(e−Rtj

p − e−Rtj
s)− edj

1tj
s

R + dj
1

{e−(R+dj
1)t

j
p − e−(R+dj

1)t
j
s}
]
e−R(i−1)T j

The production cost of the ith cycle is given as follows:

PCj
i = cj

pe(i−1)βj
[ ∫ (i−1)T j+tj

p

(i−1)T j
Pje−Rt dt +

∫ iT j

(i−1)T j+tj
r

Pje−Rt dt
]

=
cj

p

R
Pj
[
(1− e−Rtj

p) + (e−Rtj
r − e−RT j

)
]
e−(i−1)(RT j−βj)

The term e(i−1)βj
decreases the production cost for the next cycle due to the increasing

of the learning rate βj. The term e−Rt takes into consideration the effect of the inflation rate
R on the production cost.

The screening cost of the ith cycle is computed with

SCj
i = cj

sre(i−1)βj
[ ∫ (i−1)T j+tj

p

(i−1)T j
Pje−Rt dt +

∫ iT j

(i−1)T j+tj
r

Pje−Rt dt
]

=
cj

sr
R

Pj
[
(1− e−Rtj

p) + (e−Rtj
r − e−RT j

)
]
e−(i−1)(RT j−βj)

The reworking cost of the ith cycle is calculated as follows:

RCj
i = rj

c

[ ∫ (i−1)T j+tj
p

(i−1)T j
δj(θ jPj)iαj

e−Rt dt +
∫ iT j

(i−1)T j+tj
r

δj(θ jPj)iαj
e−Rt dt

]
=

1
R

rj
cδj(θ jPj)iαj

[
(1− e−Rtj

p) + (e−Rtj
r − e−RT j

)
]
e−R(i−1)T j

The shortage cost of the ith period is determined with

SH j
i = cj

sh(1− γj)
∫ (i−1)T j+tj

r

(i−1)T j+tj
s

Sj(t)e−Rt dt

= cj
sh(1− γj)

dj
0

dj
1

[ 1
R
(e−Rtj

s − e−Rtj
r )− edj

1tj
s

R + dj
1

{e−(R+dj
1)t

j
s − e−(R+dj

1)t
j
r}
]
e−R(i−1)T j

The whole cost of the production-inventory model for the first N j fully accommodated
periods is given as follows
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TCj(Pj) =
N j

∑
i=1

[
PCj

i + SCj
i + RCj

i + HCj
i + SH j

i

]
=

Pj

R
(cj

p + cj
sr)
{
(1− e−Rtj

p) + (e−Rtj
r − e−RT j

)
}1− e−N j(RT j−βj)

1− e−RT j

+ δj(θ jPj)αj
[ rj

c
R

{
(1− e−Rtj

p) + (e−Rtj
r − e−RT j

)
}

+
hj

c

dj
1

{1− e−Rtj
p

R
− 1− e−(R+dj

1)t
j
p

R + dj
1

}]1− {e−RT j
(θ jPj)αj}N j

1− {e−RT j
(θ jPj)αj}

+
hj

c

dj
1

[{
(1− θ j)Pj − (dj

0 − dj
2sj)

}{1− e−Rtj
p

R
− 1− e−(R+dj

1)t
j
p

R + dj
1

}

− (dj
0 − dj

2sj)
{ 1

R
(e−Rtj

p − e−Rtj
s)− edj

1tj
s

R + dj
1

{e−(R+dj
1)t

j
p − e−(R+dj

1)t
j
s}
}]1− e−N jRT j

1− e−RT j

+ cj
sh(1− γj)

dj
0

dj
1

[ 1
R
(e−Rtj

s − e−Rtj
r )− edj

1tj
s

R + dj
1

{e−(R+dj
1)t

j
s − e−(R+dj

1)t
j
r}
]1− e−N jRT j

1− e−RT j

Because of the f (h) is the p.d.f of the time horizon H, consequently, the expected total
cost from the N j completed cycles is given as follows,

E[TC(Pj)] =
∞

∑
N j=0

∫ (N j+1)T j

N jT j
TC(tj

p, T j) f (h) dh

=
1
R

{
(1− e−Rtj

p) + (e−Rtj
r − e−RT j

)
}[ rj

c(1− θ j)Pje−λT j

{1− e−(λ+R)T j}

+
Pj(cj

p + cj
sr)e−λT j{1− e−(RT j−βj)}

(1− e−RT j
){1− e−(λT j+RT j−βj)}

]
+

hj
c

dj
1

δj(θ jPj)αj
{1− e−Rtj

p

R
− 1− e−(R+dj

1)t
j
p

R + dj
1

} e−λT j

1− (θ jPj)αj e−(λ+R)T j

+
hj

ce−λT j

dj
1{1− e−(λ+R)T j}

[{
(1− θ j)Pj − (dj

0 − dj
2sj)

}{1− e−Rtj
p

R
− 1− e−(R+dj

1)t
j
p

R + dj
1

}

− (dj
0 − dj

2sj)
{ 1

R
(e−Rtj

p − e−Rtj
s)− edj

1tj
s

R + dj
1

{e−(R+dj
1)t

j
p − e−(R+dj

1)t
j
s}
}]

+
dj

0cj
sh(1− γj)e−λT j

dj
1{1− e−(λ+R)T j}

[ 1
R
(e−Rtj

s − e−Rtj
r )− edj

1tj
s

R + dj
1

{e−(R+dj
1)t

j
s − e−(R+dj

1)t
j
r}
]

3.2. Formulation for the Last Cycle for the jth Item

The time horizon H is random, so the previous cycle of the production-inventory
model ends with four mutually exclusive cases. In each case, the stock level (qj

L(t)) in the
period length [N jT j, (N j + 1)T j] is supported by the following differential equations.

dqj
L(t)
dt

=

{
(1− θ j)Pj + δj(θ jPj)(N j+1)αj − {dj

0 + dj
1qj(t)− dj

2sj}, N jT j ≤ t ≤ N jT j + tj
p

−{dj
0 + dj

1qj(t)− dj
2sj}, N jT j + tj

p ≤ t ≤ N jT j + tj
s
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subject to the conditions qj
L(N jT j) = 0 and qj

L(N jT j + tj
s) = 0.

The solution of this differential equations is given below

qj
L(t) =


1
dj

1

{
(1− θ j)Pj + δj(θ jPj)(N j+1)αj

−(dj
0 − dj

2sj)
}[

1− e−dj
1{t−N jT j}

]
, N jT j ≤ t ≤ N jT j + tj

p

− (dj
0−dj

2sj)

dj
1

[
1− e−dj

1{t−N jT j−tj
s}
]
, N jT j + tj

p ≤ t ≤ N jT j + tj
s

(4)

During the period [(N jT j + tj
s, (N j + 1)T j], the demand rate is Dj = (dj

0 − dj
2sj) −

dj
1Sj(t) and this interval corresponds to the shortage period. Therefore, the shortage level

Sj
L(t) is ruled by the differential equation as follows:

dSj
L(t)
dt

=

{
{dj

0 − dj
1Sj(t)}, [N jT j + tj

s, N jT j + tj
r]

(1− θ j)Pj + δj(θ jPj)(N j+1)αj − (dj
0 − dj

2sj), [N jT j + tj
r, (N j + 1)T j]

subject to the following condition Sj
L(N jT j + tj

s) = 0.
The solution of the differential equations is

Sj
L(t) =


dj

0

dj
1

[
1− e−dj

1{t−N jT j−tj
s}
]
, [N jT j + tj

s, N jT j + tj
r]{

(1− θ j)Pj + δj(θ jPj)(N j+1)αj − (dj
0 − dj

2sj)
}
(t− iT j), [N jT j + tj

r, (N j + 1)T j]

In the last cycle, four cases are considered depending only upon the period size. Let, h
be the value related to the random variable H.

3.2.1. Case-I (N jT j ≤ h ≤ N jT j + tj
p)

In this case, the business period is completed at any point of the production run time
of the last cycle as it is shown in Figure 2.

Figure 2. Graphical representation of the inventory model for Case-I.

The production cost of the last cycle is obtained with the following mathematical
expression,

PCj
L1

= cj
peN j βj

[ ∫ h

N jT j
Pje−Rt dt

]
=

cj
p

R
PjeN j βj

(e−RN jT j − e−Rh)

The screening cost of the last cycle is formulated as,

SCj
L1

= cj
sreN j βj

[ ∫ h

N jT j
Pje−Rt dt

]
=

cj
sr
R

PjeN j βj
(e−RN jT j − e−Rh)

The reworking cost of the last cycle is described as,
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RCj
L1

= rj
c

∫ h

N jT j
δj(θ jPj)(N j+1)αj

e−Rt dt =
rj

c
R

δj(θ jPj)(N j+1)αj
{

e−RN jT j − e−Rh
}

The holding cost of the last cycle is determined with,

HCj
L1

= hj
c

[ ∫ h

N jT j
qj

L(t)e
−Rt dt

]
=

hj
c

dj
1

{
(1− θ j)Pj + δj(θ jPj)(N j+1)αj − (dj

0 − dj
2sj)

} ∫ h

N jT j

{
1− e−dj

1(t−N jT j)
}

e−Rt dt

=
hj

c

dj
1

{
(1− θ j)Pj + δj(θ jPj)(N j+1)αj − (dj

0 − dj
2sj)

}[ 1
R
(e−RN jT j − e−Rh)

− edj
1 N jT j

R + dj
1

{
e−(d

j
1+R)N jT j − e−(d

j
1+R)h

}]

3.2.2. Case-II (N jT j + tj
p ≤ h ≤ N jT j + tj

s)

In this case, the business period is completed after production run time but before
shortage period which is shown by Figure 3.

Figure 3. Graphical representation of the inventory model for Case-II.

The production cost of the last cycle is calculated as follows,

PCj
L2

= cj
peN j βj

∫ N jT j+tj
p

N jT j
Pje−Rt dt =

cj
p

R
Pj(1− e−Rtj

p)e−(RT j−βj)N j

The screening cost of the last cycle is formulated as,

SCj
L2

= cj
sreN j βj

∫ N jT j+tj
p

N jT j
Pje−Rt dt =

cj
sr
R

Pj(1− e−Rtj
p)e−(RT j−βj)N j

The reworking cost of the last cycle is determined with,

RCj
L2

= rj
c

∫ N jT j+tj
p

N jT j
δj(θ jPj)(N j+1)αj

e−Rt dt =
rj

c
R

δj(θ jPj)(N j+1)αj
(1− e−Rtj

p)e−RN jT j
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The holding cost of the last cycle is computed with,

HCj
L2

= hj
c

[ ∫ N jT j+tj
p

N jT j
qj

L(t)e
−Rt dt +

∫ h

N jT j+tj
p

qj
L(t)e

−Rt dt
]

=
hj

c

dj
1

{
(1− θ j)Pj + δj(θ jPj)(N j+1)αj

}[ 1
R

(
1− e−Rtj

p
)
− 1

R + dj
1

{
1− e−(R+dj

1)t
j
p
}]

e−RN jT j

+
hj

c

dj
1

(dj
0 − dj

2sj)
[ e−RN jT j

R + dj
1

{
1− e−(R+dj

1)t
j
p
}
+

edj
1(N jT j+tj

s)

R + dj
1

{
e−(R+dj

1)(N jT j+tj
p) − e−(R+dj

1)h
}]

− hj
c

dj
1R

(dj
0 − dj

2sj)
(

e−RN jT j − e−Rh
)

3.2.3. Case-III (N jT j + tj
s ≤ h ≤ N jT j + tj

r)

In this case, the business period is completed at any point of the shortage period
(N jT j + tj

s ≤ h ≤ N jT j + tj
r) which is shown by Figure 4.

Figure 4. Graphical representation of the inventory model for Case-III.

The production cost of the last cycle is described by,

PCj
L3

= cj
peN j βj

∫ N jT j+tj
p

N jT j
Pje−Rt dt =

cj
p

R
Pj(1− e−Rtj

p)e−(RT j−βj)N j

The screening cost of the last cycle is formulated as,

SCj
L3

= cj
sreN j βj

∫ N jT j+tj
p

N jT j
Pje−Rt dt =

cj
sr
R

Pj(1− e−Rtj
p)e−(RT j−βj)N j

The reworking cost of the last cycle is given below,

RCj
L3

= rj
c

∫ N jT j+tj
p

N jT j
δj(θ jPj)(N j+1)αj

e−Rt dt =
rj

c
R

δj(θ jPj)(N j+1)αj
(1− e−Rtj

p)e−RN jT j
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The holding cost of the last cycle is obtained by following mathematical expression,

HCj
L3

= hj
c

[ ∫ N jT j+tj
p

N jT j
qj(t)e−Rt dt +

∫ N jT j+tj
s

N jT j+tj
p

qj(t)e−Rt dt
]

=
hj

c

dj
1

{
(1− θ j)Pj + δj(θ jPj)(N j+1)αj

}[ 1
R

(
1− e−Rtj

p
)
− 1

R + dj
1

{
1− e−(R+dj

1)t
j
p
}]

e−RN jT j

+
hj

c

dj
1

(dj
0 − dj

2sj)
[ e−RN jT j

R + dj
1

{
1− e−(R+dj

1)t
j
p
}
+

edj
1(N jT j+tj

s)

R + dj
1

{
e−(R+dj

1)(N jT j+tj
p)

− e−(R+dj
1)(N jT j+tj

s)
}]
− hj

c

dj
1R

(dj
0 − dj

2sj)
(

e−RN jT j − e−R(N jT j+tj
s)
)

The shortage cost of the last cycle is formulated by

SH j
3 = cj

sh

∫ h

N jT j+tj
s

Sj
L(t)e

−Rt dt

= cj
sh

∫ h

N jT j+tj
s

dj
0

dj
1

{
1− e−dj

1(t−N jT j−tj
s)
}

e−Rt dt

= cj
sh

dj
0

dj
1

[ 1
R

{
e−R(N jT j+tj

s) − e−Rh
}
− edj

1(N jT j+tj
s)

R + dj
1

{
e−(R+dj

1)(N jT j+tj
s) − e−(R+dj

1)h
}]

3.2.4. Case-IV (N jT j + tj
r ≤ h ≤ (N j + 1)T j)

In this case, the business period is completed in the shortage period (N jT j + tj
r ≤ h ≤

(N j + 1)T j) which is shown by Figure 5.

Figure 5. Graphical representation of the inventory model for Case-IV.

The production cost of the last cycle is determined with,

PCj
L4

= cj
peN j βj

[ ∫ N jT j+tj
p

N jT j
Pje−Rt dt +

∫ h

N jT j+tj
r

Pje−Rt dt
]

=
cj

p

R
Pj
[
(1− e−Rtj

p + e−Rtj
r )e−(RT j−βj)N j − eN j βj

e−Rh
]

The screening cost of the last cycle is formulated as,

SCj
L4

= cj
sreN j βj

[ ∫ N jT j+tj
p

N jT j
Pje−Rt dt +

∫ h

N jT j+tj
r

Pje−Rt dt
]

=
cj

sr
R

Pj
[
(1− e−Rtj

p + e−Rtj
r )e−(RT j−βj)N j − eN j βj

e−Rh
]
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The reworking cost of the last cycle is computed as follows,

RCj
L4

= rj
c

[ ∫ N jT j+tj
p

N jT j
δj(θ jPj)(N j+1)αj

e−Rt dt +
∫ h

N jT j+tj
r

δj(θ jPj)(N j+1)αj
e−Rt dt

]
=

rj
c

R
δj(θ jPj)(N j+1)αj

[
(1− e−Rtj

p + e−Rtj
r )e−RN jT j − e−Rh

]
The holding cost of the last cycle is calculated by the following expression

HCj
L4

= hj
c

[ ∫ N jT j+tj
p

N jT j
qj

L(t)e
−Rt dt +

∫ N jT j+tj
s

N jT j+tj
p

qj
L(t)e

−Rt dt
]

=
hj

c

dj
1

{
(1− θ j)Pj + δj(θ jPj)(N j+1)αj

}[ 1
R

(
1− e−Rtj

p
)
− 1

R + dj
1

{
1− e−(R+dj

1)t
j
p
}]

e−RN jT j

+
hj

c

dj
1

(dj
0 − dj

2sj)
[ e−RN jT j

R + dj
1

{
1− e−(R+dj

1)t
j
p
}
+

edj
1(N jT j+tj

s)

R + dj
1

{
e−(R+dj

1)(N jT j+tj
p) − e−(R+dj

1)(N jT j+tj
s)
}]

− hj
c

dj
1R

(dj
0 − dj

2sj)
(

e−RN jT j − e−R(N jT j+tj
s)
)

The shortage cost of the last cycle is formulated by

SH j
L4

= cj
sh(1− γj)

∫ N jT j+tj
r

N jT j+tj
s

Sj(t)e−Rt dt

= cj
sh(1− γj)

∫ N jT j+tj
r

N jT j+tj
s

dj
0

dj
1

{
1− e−dj

1(t−N jT j−tj
s)
}

e−Rt dt

= cj
sh(1− γj)

dj
0

dj
1

[ 1
R

{
e−Rtj

s − e−Rtj
r
}
− edj

1tj
s

R + dj
1

{
e−(R+dj

1)t
j
s − e−(R+dj

1)t
j
r
}]

e−RN jT j

The expected production cost of the last cycle is determined by,

E[PCj
L] =

∞

∑
N j=0

[ ∫ N jT j+tj
p

N jT j
PCj

L1
f (h) dh +

∫ N jT j+tj
s

N jT j+tj
p

PCj
L2

f (h) dh

+
∫ N jT j+tj

r

N jT j+tj
s

PCj
L3

f (h) dh +
∫ (N j+1)T j

N jT j+tj
r

PCj
L4

f (h) dh
]

=
cj

pPj

R{1− e−{(R+λ)T j−βj}}

[ R
R + λ

{
1− e−(R+λ)tj

p + e−(R+λ)tj
r
}

− e−λT j
{

1− e−Rtj
p + e−Rtj

r
}
+

λ

R + λ
e−(R+λ)T j

]
The expected screening cost of the last cycle is described by,

E[SCj
L] =

∞

∑
N j=0

[ ∫ N jT j+tj
p

N jT j
SCj

L1
f (h) dh +

∫ N jT j+tj
s

N jT j+tj
p

SCj
L2

f (h) dh

+
∫ N jT j+tj

r

N jT j+tj
s

SCj
L3

f (h) dh +
∫ (N j+1)T j

N jT j+tj
r

SCj
L4

f (h) dh
]

=
cj

sPj

R{1− e−{(R+λ)T j−βj}}

[ R
R + λ

{
1− e−(R+λ)tj

p + e−(R+λ)tj
r
}

− e−λT j
{

1− e−Rtj
p + e−Rtj

r
}
+

λ

R + λ
e−(R+λ)T j

]
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The expected holding cost of the last cycle is described by,

E[HCj
L] =

∞

∑
N j=0

[ ∫ N jT j+tj
p

N jT j
HCj

L1
f (h) dh +

∫ N jT j+tj
s

N jT j+tj
p

HCj
L2

f (h) dh

+
∫ N jT j+tj

r

N jT j+tj
s

HCj
L3

f (h) dh +
∫ (N j+1)T j

N jT j+tj
r

HCj
L4

f (h) dh
]

=
hj

c

dj
1

[{(1− θ j)Pj − (dj
0 − dj

2sj)}
1− e−(R+λ)T j +

δj(θ jPj)αj

1− (θ jPj)αj e−(R+λ)T j

][dj
1

(
1− e−λtj

p
)

R(R + dj
1)

− λ{1− e−(R+λ)tj
p}

R(R + λ)
+

λ{1− e−(R+λ+dj
1)t

j
p}

(R + dj
1)(R + λ + dj

1)

]
+

hj
c

dj
1

[ (1− θ j)Pj

1− e−(R+λ)T j

+
δj(θ jPj)αj

1− (θ jPj)αj e−(R+λ)T j

][ (1− e−Rtj
p)

R
− {1− e−(R+dj

1)t
j
p}

R + dj
1

](
e−λtj

p − e−λT j
)

+
hj

c(d
j
0 − dj

2sj)

dj
1{1− e−(R+λ)T j}

[{1− e−(R+dj
1)t

j
p}

R + dj
1

(
e−λtj

p − e−λT j
)

+
edj

1tj
s

R + dj
1

{(
e−λtj

p − e−λtj
s
)

e−(R+dj
1)t

j
p − λ{e−(R+λ+dj

1)t
j
p − e−(R+λ+dj

1)t
j
s}

R + λ + dj
1

}]

−
hj

c(d
j
0 − dj

2sj)

dj
1R{1− e−(R+λ)T j}

[(
e−λtj

p − e−λtj
s
)
− λ

R + λ

{
e−(R+λ)tj

p − e−(R+λ)tj
s
}]

+
hj

c(d
j
0 − dj

2sj)

dj
1{1− e−(R+λ)T j}

[ edj
1tj

s

R + dj
1

{
e−(R+dj

1)t
j
p − e−(R+dj

1)t
j
s
}
− 1

R

(
1− e−Rtj

s
)](

e−λtj
s − e−λT j

)
The expected reworking cost of the last cycle is formulated by,

E[RCj
L] =

∞

∑
N j=0

[ ∫ N jT j+tj
p

N jT j
RCj

L1
f (h) dh +

∫ N jT j+tj
s

N jT j+tj
p

RCj
L2

f (h) dh

+
∫ N jT j+tj

r

N jT j+tj
s

RCj
L3

f (h) dh +
∫ (N j+1)T j

N jT j+tj
r

RCj
L4

f (h) dh
]

=
rj

cδj(θ jPj)αj

R{1− (θ jPj)αj e−(R+λ)T j}

[ R
R + λ

{
1− e−(R+λ)tj

p + e−(R+λ)tj
r
}

− e−λT j
{

1− e−Rtj
p + e−Rtj

r
}
+

λ

R + λ
e−(R+λ)T j

]
The expected shortage cost of the last cycle is computed by,
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E[SH j
L] =

∞

∑
N j=0

[ ∫ N jT j+tj
r

N jT j+tj
s

SH j
L3

f (h) dh +
∫ (N j+1)T j

N jT j+tj
r

SH j
L4

f (h) dh
]

=
cj

shdj
0

dj
1{1− e−(R+λ)T j}

[ dj
1e−Rtj

s

R(R + d1)

(
e−λtj

s − e−λtj
r
)
+

λ

R(R + λ)

{
e−(R+λ)tj

r − e−(R+λ)tj
s
}

− λedj
1tj

s

(R + d1)(R + λ + dj
1)

{
e−(R+λ+d1)t

j
r − e−(R+λ+dj

1)t
j
s
}

+ (1− γj)
{ 1

R

(
e−Rtj

s − e−Rtj
r
)
− edj

1tj
s

R + dj
1

(
e−(R+dj

1)t
j
s − e−(R+dj

1)t
j
r
)}(

e−λtj
r − e−λT j

)]
The expected total cost of the last cycle is given by,

E[TCj
L(Pj)] = E[PCj

L] + E[SCj
L] + E[RCj

L] + E[HCj
L] + E[SH j

L]

3.3. Objective Function of the Production-Inventory Model

The expected total cost in the entire time horizon is described by,

ETC(Pj) =
M

∑
j=1

E[TCj(Pj)] +
M

∑
j=1

E[TCj
L(Pj)] (5)

subject to the following constraint: Pj > 0, j = 1, 2, ..., M
The optimization problem related to the production-inventory model is expressed as

Minimize ETC(Pj) = ∑M
j=1 E[TCj(Pj)] + ∑M

j=1 E[TCj
L(Pj)] (6)

subject to Pj > 0, j = 1, 2, ..., M

4. Numerical Analysis

This section presents and solves a numerical example that consists of an imperfect
production-inventory system with two different finished products (M = 2). The production
rates P1 units and P2 units have defective rates of 18% and 26% for 1st and 2nd item,
respectively. The rework system recovers some units from defective units at 54% and 59%
for 1st and 2nd item, respectively. Due to the learning effect, the company increases the
rework rate for the next cycle at a parameter δj. The selling prices per unit for 1st and 2nd
item are $43 and $38, respectively. The difference between inflation percentage and time
value of money is R = 0.30. The period horizon (h) of the system is randomly distributed
and it follows an exponential distributionwith p.d.f f (h) = 0.001e−0.001h, 0 ≤ h < ∞. The
data related to costs of the two items are given in Table 2.

Table 2. Input data for the cost parameters.

Production Screening Rework Cost Holding Shortage Selling
Cost (cj

p) Cost (cj
sr) Cost (rj

c) Cost (hj
c) Cost (cj

sh) Price (sj)
item-1 $12 $1.15 $ 6 $4.5 $ 14 $ 43
item-2 $10 $1.20 $ 5 $4.5 $ 11 $ 38

The input values for the demand parameters, and the parameters related to defective
units, rework rate, learning effect and portion of that the demand that is not backlogged
are presented in Table 3.
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Table 3. Input data for the different type of parameters.

dj
0 dj

1 dj
2 θj δj αj βj γj

item-1 12 0.010 0.038 0.18 0.54 0.20 0.29 0.70
item-2 14 0.011 0.040 0.25 0.59 0.18 0.25 0.75

The minimization problem (6) is solved. The optimum results for the production rates
Pj are presented in Table 4. The values for the production rates are: P1 = 11.139 units and
P2 = 17.683 units. The maximum shortage level for 1st and 2nd item are 13.483 units and
13.784 units, respectively. The unsatisfied demand that is backlogged for 1st and 2nd item
are 4.045 units and 3.446 units, respectively. The unsatisfied demand that is not backlogged
for 1st and 2nd item are 9.438units and 10.338 units, respectively.

Table 4. Optimal results for the production rates Pj in the numerical example.

Item Pj tj
p tj

s tj
r T j ETC

item-1 11.139 5.21 7.04 8.17 9.83 1774.941
item-2 17.683 5.78 7.26 8.25 10.29

Sensitivity Analysis

The sensitivity analysis is a great tool for analyzing the impact of the variation of
the input parameters on the decision variables. Therefore, the sensitivity analysis is used
frequently in the decision-making process. The results of the sensitivity analysis with
respect to θ j and δj, αj and βj, R, and λ are presented in Tables 5–8.

Table 5. Results for distinct values of defective rate (θ j) and rework rate (δj) and their comparison.

Item θj δj Pj Reworking
Cost

Holding
Cost ETC

item-1 0.15 0.54 10.18 10.37 184.78 1727.29
item-2 0.21 0.59 16.75 11.24

item-1 0.15 0.64 10.65 12.26 200.32 1737.23
item-2 0.21 0.69 16.91 13.17

item-1 0.18 0.44 11.27 8.87 176.20 1764.52
item-2 0.25 0.49 17.86 9.74

item-1 0.18 0.54 11.14 10.86 190.30 1774.94
item-2 0.25 0.59 17.68 11.74

item-1 0.18 0.64 11.01 12.83 204.46 1785.45
item-2 0.25 0.69 17.86 13.76

item-1 0.22 0.54 11.67 11.44 193.62 1832.32
item-2 0.29 0.59 18.72 12.21

item-1 0.22 0.64 11.51 13.52 208.34 1843.26
item-2 0.29 0.69 18.92 14.31

Table 5 shows that, if the defective rate and rework rate increase then production rate,
reworking cost, holding cost and expected total cost increase. Therefore, it is suggested to
implement some improvements in the production system in order to have a lower defective
rate for item because this is most economical.
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Table 6. Comparison results for different values of learning effect parameters αj and βj.

Item αj βj θj Pj Reworking Production & ETCCost Screening Cost

item-1 0.16 0.25 0.14 10.68 10.03 405.95 1726.87
item-2 0.14 0.21 0.22 16.92 10.75 568.71

item-1 0.16 0.25 0.18 11.16 10.54 484.37 1770.26
item-2 0.14 0.21 0.25 17.62 11.02 592.34

item-1 0.16 0.29 0.18 11.16 10.54 424.37 1770.23
item-2 0.14 0.25 0.25 17.62 11.02 592.33

item-1 0.20 0.29 0.18 11.14 10.86 423.53 1774.97
item-2 0.18 0.25 0.25 17.68 11.74 594.49

item-1 0.24 0.25 0.14 10.65 10.37 405.08 1735.61
item-2 0.22 0.21 0.22 17.03 12.03 572.47

item-1 0.24 0.33 0.14 10.65 10.37 405.07 1735.59
item-2 0.22 0.30 0.22 17.03 12.03 572.46

item-1 0.24 0.33 0.22 11.63 11.90 442.31 1848.50
item-2 0.22 0.30 0.30 19.04 13.30 641.99

From Table 6 it is observed that, an increase in the rework rate of the defective
items increments production rate, reworking cost, production and screening cost, and the
expected total cost.

Table 7. Comparison results for different values of R.

Item R Pj Reworking Production & Holding ETCCost Screening Cost Cost

item-1 0.35 11.24 09.56 375.88 154.18 1447.43
item-2 17.67 10.21 519.84

item-1 0.30 11.14 10.86 423.53 190.30 1774.94
item-2 17.68 11.74 594.50

item-1 0.25 11.03 12.68 488.17 240.58 2257.23
item-2 17.69 13.91 697.01

From Table 7 it is noted that, an increase in the parameter R increases production rate,
reworking cost, production and screening cost, holding cost, and the expected total cost.

Table 8. Comparison results for dissimilar values of λ.

Item λ Pj Reworking Production & Holding ETCCost Screening Cost Cost

item-1 0.0005 11.14 10.88 424.13 146.92 1682.69
item-2 17.68 11.76 595.37

item-1 0.0010 11.14 10.86 423.53 190.30 1774.94
item-2 17.68 11.74 594.50

item-1 0.0015 11.14 10.84 422.94 233.32 1866.45
item-2 17.68 11.72 593.62

Finally, from Table 8 it is noticed that, an increase in the exponential distribution
parameter (λ) increases production rate, reworking cost, production and screening cost,
holding cost, and the expected total cost.
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5. Practical Implications

The production-inventory model proposed in this paper can be applied in a variety of
industries. Let us illustrate the scenery of a mobile phone company manufacturing system:
The factory produces several models of mobile phone with different features having a
random length of business period for each mobile phone. During the production some
defectives are produced and some of these can be are repaired in order to convert as new
ones permitting to sell them to the market. Every mobile phone has their distinct demand
depending on the displayed amount and selling price. The production operators of the
mobile phone company obtain some experience in the manufacturing process in order to
reduce the defect rate of the mobile phone. The managers of the enterprise should decide
the number of products to fabricate for each mobile phone and the production cycle length.

6. Conclusions

This research work develops an imperfect production-inventory model that includes
several realistic features such as the production and the inspection processes are not perfect,
thereby some imperfect items may be produced and certain defective items may be repaired.
The imperfect production-inventory model has a random planning horizon. The learning
effect phenomenon is introduced in order to reduce the number of breakable items for the
next cycle. From this study, the following major conclusions are drawn:

(i) To avoid the loss due to presence of defective items, the manufacturers should adopt
the rework policy.

(ii) To decrease the total cost of the manufacturing system and to increase the rework rate
of imperfect items, the learning effect plays an important role. So, keeping in mind
this effect, the manufacturer should consider a learning effect policy.

It is evident that there are many alternatives for future studies. First, this study can be
extended by considering carbon emissions and the related carbon policies. Second, this
study can be also extended by including trade credit or quantity discounts policies.

The limitations of this research work are (i) the time length of each cycle, production
rate, production period of each cycle are equal. (ii) Due to highly non-linear objective
function (expected total cost), it is not possible to obtain an analytical solution.
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