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Abstract: In this paper, the Heston–Nandi futures option pricing model is applied to Bitcoin futures
options. The model prices are compared to market prices to give an indication of the pricing
performance. In addition, a multivariate Bitcoin futures option pricing methodology based on a
multivatiate GARCH model is developed. The empirical results show that a symmetric model is a
better fit when applied to Bitcoin futures returns, and also produces more accurate option prices
compared to market prices for two out of three expiry dates considered.

Keywords: Bitcoin; GARCH; futures options; multivariate

1. Introduction

Cryptocurrencies, and especially Bitcoin, have received a lot of attention in the finan-
cial modelling literature in recent years. Financial modelling researchers and practitioners
are faced with the problem of price discovery when derivatives on a new asset class are
introduced. The focus of this paper is price discovery in the Bitcoin futures option market.
Abraham (2020) explains that a valuation model for Bitcoin futures options can provide
insight into a central-bank free currency. We consider vanilla options (univariate) and
spread options (multivariate).

Modelling the historical returns of an asset as a univariate generalised autoregressive
conditional heterskedasticty (GARCH) process is often used as a basis for price discovery
in illiquid derivative markets. The model by Heston and Nandi (2000) is often used because
it has a convenient closed-form solution. However, this is usually applied to spot price
dynamics. This model was extended to futures options on commodities by Li (2019a). The
Chicago Mercantile Exchange (CME) was the first established exchange to launch Bitcoin
futures options in the first quarter of 2020 (Bharadwaj 2021). Therefore, Bitcoin futures
options are actively traded, and model prices can be compared to market prices to give an
indication of pricing performance.

An important factor to consider is the ability to model joint dynamics for the pricing
of multivariate derivatives, when pricing derivatives on a new asset class. According
to Alexander and Heck (2020), crypto-asset futures are exposed to significant basis risk.
Therefore, spread options on Bitcoin futures are ideal for hedging basis risk. Spread options
on Bitcoin futures do not actively trade. In this study, we consider a modelling approach
for price discovery in the Bitcoin futures spread option market. The approach is based on
work by Rombouts and Stentoft (2011), who derived the risk-neutral dynamics of the spot
price processes for a general class of multivariate heteroskedasticity models. In this study,
the model by Rombouts and Stentoft (2011) is extended to multivariate futures options.
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The rest of this paper is structured as follows: Section 2 reviews the recent and relevant
literature, Section 3 focuses on the theoretical framework (both univariate and mulitvariate
options on Bitcoin futures), Section 4 presents the empirical results, and finally, Section 5
provides concluding remarks.

2. Literature Review

Research focusing on GARCH models applied to Bitcoin (and other crypto-assets)
and Bitcoin derivative pricing is well documented in the literature. In a recent study,
Fassas et al. (2020) made use of a vector error correction model to investigate the price
discovery process in the Bitcoin market. Their empirical results indicate that volume
traded in the futures market is more important than the volume traded in the decentralised
spot market when incorporating new information about the value Bitcoin. In addition,
Fassas et al. (2020) consider the volatility transmission between the Bitcoin spot and futures
market by using multivariate GARCH models (BEKK and dynamic-conditional-correlation).
There is evidence of cross-market effects when the variability of Bitcoin spot and futures
returns are considered.

It is important to consider a reasonable forecast of Bitcoin returns when trading
Bitcoin derivatives. In a study focusing on the use of information on the US–China
trade war to forecast Bitcoin returns, Plakandaras et al. (2021) made use of ordinary least
squares regression, least absolute shrinkage and selection operator techniques, and support
vector regression. The authors also controlled for explanatory variables, which include:
financial indices (including the volatility index), exchange rates, commodity prices, political
uncertainty indices, and Bitcoin characteristics. Their empirical results indicate that Bitcoin
returns are not affected by trade-related uncertainties.

In a recent paper, Shahzad et al. (2019) made use of the bivariate cross-quantilogram
to determine whether Bitcoin exhibits safe haven properties (during extreme market con-
ditions) for equity investments. The authors extend the work by Baur and Lucey (2010)
to incorporate weak and strong safe haven assets. Furthermore, the safe haven proper-
ties of Bitcoin were also compared to those of gold and the general commodity index.
Shahzad et al. (2019) conclude that Bitcoin, gold, and the general commodity index can be
considered (at best) a weak safe haven asset in some cases.

Fang et al. (2019) made use of the GARCH-MIDAS model to investigate how the
long-run volatility of Bitcoin, global equities, bonds, and commodities evolves with global
economic policy uncertainty. Their empirical results indicate that global economic policy
uncertainty is significant for all variables, except bonds. Furthermore, Fang et al. (2019) also
considered the impact of global economic policy uncertainty on the correlation between
Bitcoin and global equities, commodities, and bonds. Based on the empirical results, the au-
thors argue that Bitcoin can act as a hedge under specific economic uncertainty conditions.

In a study highlighting the role of Bitcoin futures, Chen and So (2020) focused on the
relationship between Bitcoin spot and futures prices, with the focus on hedging. Chen and
So (2020) tested the hedge performance of the naive method, ordinary least squares, and a
dynamic hedge based on a bivariate BEKK-GJR-GARCH model. The results show that the
hedge based on the bivariate GARCH model is the most reliable. Furthermore, Chen and
So (2020) also show that the structure of Bitcoin volatility is significantly different after the
introduction of Bitcoin futures.

In a recent study, Venter et al. (2020) applied symmetric and asymmetric GARCH
option pricing models to Bitcoin and CRIX (Cryptocurrency Index). The model Bitcoin
option prices were compared to market option prices, which shows that the GARCH option
pricing model produces reasonable price discovery. Furthermore, the implied volatility
surfaces generated using symmetric and asymmetric GARCH models were compared. This
comparison indicates that there is not a significant difference, implying that the symmetric
model is a better choice as it is more efficient.
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Jalan et al. (2020) focused on the pricing and risk of Bitcoin options. Jalan et al. (2020)
compared the option prices obtained from classical option pricing models, i.e., the Black–
Scholes–Merton model and the Heston–Nandi model. Furthermore, Jalan et al. (2020)
also compared the risk (the Greeks) of Bitcoin options to those of traditional commodity
options. Jalan et al. (2020) conclude that the classical models produce prices that are slightly
different compared to the market. Their empirical results also indicate that Bitcoin deltas
are more stable over time compared to traditional commodities. This implies that investors
in Bitcoin options are protected from undue Bitcoin price changes.

In another recent study, Siu and Elliot (2021) made use of the self-exciting threshold
autoregressive model (to incorporate regime switching) in conjunction with GARCH
(Heston–Nandi) to model Bitcoin return dynamics, for the pricing of Bitcoin options.
According to Siu and Elliot (2021), conditional heteroskedasticity has a significant impact
on Bitcoin option prices. However, the impact of self-exciting threshold autoregressive
terms seems to be marginal.

Limited research has focused on the GARCH option pricing model applied to futures
options. Li (2019a) extended the Heston–Nandi model to futures options. The overall
purpose was the pricing of crude oil futures options. Li (2019a) concludes that option-
implied filtering is superior when compared to futures-based filtering when pricing crude
oil futures options. Li (2019b) also applied the model to natural gas futures. However, this
approach has not been applied to cryptocurrencies.

The application of GARCH models to multivariate option pricing is also well docu-
mented in the literature. Duan and Pliska (2004) developed an option valuation theory
for cointegrated assets; the model was used for the pricing of spread options with equity
underlying assets. In a recent study, Mahringer and Prokopczuk (2015) applied the model
by Duan and Pliska (2004) to the pricing of crack spread options (futures returns were
modelled). Mahringer and Prokopczuk (2015) compared this to univariate modelling of
the crack spread. Their empirical results show that the univariate approach is superior for
the pricing of crack spread options.

Rombouts and Stentoft (2011) derived the risk-neutral dynamics (of the spot price pro-
cesses) for a general class of multivariate heteroskedasticity models. In addition, a feasible
way to price multivariate options is also provided. Rombouts and Stentoft (2011) applied
the models to options on equity indices. Their empirical results indicate that correlation
risk and non-Gaussian features are important factors to consider when pricing multivariate
options. In this paper, the framework by Rombouts and Stentoft (2011) is extended to
futures options and applied to Bitcoin futures spread options. The theoretical framework is
considered in the next section.

3. Theoretical Framework

In this paper, we test the pricing performance of the Heston–Nandi futures option
pricing model when applied to Bitcoin. Furthermore, we extend the work by Rombouts and
Stentoft (2011) to multivariate futures options to price spread options on Bitcoin futures.
The section is divided into three subsections. The first part focuses on the Heston–Nandi
futures option pricing model, the second considers the multivariate GARCH option pricing
framework, and finally, the focus of the third subsection is the constant conditional correla-
tion (CCC) and dynamic conditional correlation (DCC) GARCH (multivariate) models.

3.1. Heston–Nandi Futures Option Pricing Model

The model by Heston and Nandi (2000) is widely used in the literature for the pricing
of vanilla options. This model was extended to futures options by Li (2019a), who applied
the model to crude oil futures. The futures dynamics under the real-world measure P are
given by (Li 2019b):

ln
(

Ft,T

Ft−1,T

)
=

(
λ− 1

2

)
ht +

√
htzt,
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where Ft,T is the futures price at time t with expiry T, λ is the unit risk premium, and zt is a
standard normal random variable. The conditional variance takes the following form:

ht = α0 + α1(zt−1 − γ
√

ht)
2 + β1ht−1. (1)

In this study, the parameters λ, α0, α1, γ, and β1 are calibrated to historical Bitcoin futures
returns (under the real-world measure) using maximum-likelihood estimation. When
estimating the symmetric Heston–Nandi (HN) model, the asymmetry parameter γ takes a
value of zero.

For the pricing of futures options, risk-neutral dynamics are required. According to Li
(2019a), the risk-neutral futures price process in the HN framework is given by

ln
(

Ft,T

Ft−1,T

)
= −1

2
ht +

√
htz∗t ,

where z∗t = zt + λ
√

ht . The risk-neutral conditional variance takes the following form,

ht = α0 + α1(z∗t−1 − γ∗
√

ht)
2,

where γ∗ = γ + λ. Given the risk-neutral dynamics, a closed-form formula for a European
call option on a futures contract can be obtained, see Li (2019a) for more detail. The
parameters are estimated using maximum likelihood estimation; the log-likelihood function
is given by (Wang et al. 2017):

LU = −N
2

ln(2π)− 1
2

N

∑
t=1

(
ln(ht) +

[
Ft,T

Ft−1,T
− λht

]2
/ht

)
,

where N is the estimation sample size. The multivariate GARCH futures option pricing
model is outlined in the next section.

3.2. Multivariate GARCH Futures Option Pricing Model

We assume the following futures return dynamics ln
(

Fj,t,Tj
Fj,t−1,Tj

)
= Rj,Tj under the

real-world measure P:

Rj,Tj = µj,Tj − f (−cj) + εj,Tj for j = 1, . . . , n, (2)

where Fj,t,Tj is the futures price of asset j with expiry Tj at time t; µj,Tj is the conditional
mean of asset j; f (·) denotes the cumulant generating function; cj is a vector of zeros
except for position j, which takes a value of one. Furthermore, we assume a multivariate
heteroskedastic process; therefore,

εt = Htzt,

where zt is identically and independently distributed with mean zero and covariance
matrix equal to the identity matrix under the real-world measure P. In addition, Ht is an
n× n matrix of full rank, more specifically,

Σt = HtH′t ,

where Σt is the conditional covariance matrix, driven by a multivariate GARCH process.
In order to obtain the risk-neutral dynamics (Q measure) required for pricing, we use

the following Radon–Nikodym derivative,

dQ
dP

∣∣∣∣Ft = exp

{
−

t

∑
i=1

(
ν′i εi + f (νi)

)}
, (3)
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where Ft is the information set available at time t, and νi is an N dimensional vector
sequence. Rombouts and Stentoft (2011) prove that Equation (3) is in fact a Radon–Nikodym
derivative. Furthermore, it can also be shown (using the tower property) that

EP
[

dQ
dP

∣∣∣∣Ft

]
= EP[exp

{
(ν′1ε1 + f (ν1))

}]
= exp{− f (ν1)} exp{ f (ν1)}
= 1,

as required.

Proposition 1. The risk-neutral measure Q defined by the Radon–Nikodym derivative in Equation (3)
is an equivalent martingale if and only if

f (νt − cj)− f (νt)− f (−cj) + µj,Tj = 0, (4)

for j = 1, . . . , n.

Proof. Clark (2014) explains that under the Tj-forward measure, the futures price process
is driftless. However, when assuming constant interest rates, the risk-neutral (Q) and
T-forward measures are equivalent. Therefore,

EQ

[
Fj,t,Tj

Fj,t−1,Tj

∣∣∣∣Ft−1

]
= 1.

Hence, by making use of the Radon–Nikodym derivative,

EQ

[
Fj,t,Tj

Fj,t−1,Tj

∣∣∣∣Ft−1

]
= EP

[(
dQ
dP

∣∣Ft
dQ
dP

∣∣Ft−1

)
Fj,t,Tj

Fj,t−1,Tj

∣∣∣∣Ft−1

]

= EP
[

exp
{

ν′tεt − f (νt)
}

exp
{

µj,Tj − f (−cj) + εj,Tj

}∣∣∣∣Ft−1

]
= exp

{
− f (νt) + µj,Tj − f (−cj)

}
EP
[

exp
{
(cj − nut)

′εj,Tj

}∣∣∣∣Ft−1

]
= exp

{
− f (νt) + µj,Tj − f (−cj) + f (νt − cj)

}
.

Using the driftless property of the futures price under the risk-neutral measure, it fol-
lows that

f (νt − cj)− f (νt)− f (−cj) + µj,Tj = 0,

which completes the proof.

To derive the risk-neutral dynamics, the following lemma from Rombouts and Stentoft
(2011) is required:

Lemma 1. Under the risk-neutral measure, the conditional moment generating function takes the
following form,

EQ[exp
{
−u′εt

}]
= exp{ f (νt + u)− f (νt)}.

Proof. See Rombouts and Stentoft (2011).
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Using the lemma above, the following expression for the risk-neutral cumulant gener-
ating function is obtained

f ∗(u) = f (νt + u)− f (νt). (5)

Hence, for any choice of νt, the risk-neutral dynamics can be obtained by substituting
Equations (4) and (5) into the mean Equation (2). The risk-neutral futures log-returns are
given by:

R∗j,Tj
= f ∗(−cj) + ε∗j,Tj

,

∗ denotes that the variables are considered under the risk-neutral measure.
In this paper, we assume a multivariate Gaussian distribution. Rombouts and Stentoft

(2011) show that the conditional cumulant-generating function is given by:

f (u) =
1
2

u′Σtu, (6)

where u is an arbitrary vector, if the multivariate Gaussion distribution is assumed. By sub-
stituting Equation (6) into Equation (4), it is easily shown that νt takes the following form:

νt = Σ−1
t µt.

In addition, the risk-neutral cumulant-generating function is given by:

f ∗(u) = f (νtu)− f (νt)

=
1
2
(νt + u)′Σt(νt + u)− 1

2
ν′tΣtνt

= u′Σtνt +
1
2

u′Σtu.

We assume the following mean model,

µt = diagΣtλ,

where diagΣt is a diagonal matrix of conditional variances, and λ is the unit risk premium.
This suggests that

f ∗(u) = u′diagΣtλ +
1
2

u′Σtu.

This implies that the risk-neutral dynamics are given by:

R∗j,Tj
= f ∗(−cj) + ε∗j,Tj

= (−cj)
′diagΣtλ +

1
2

c′jΣtcj + ε∗j,Tj
.

The multivariate GARCH models are outlined in the next subsection.

3.3. Multivariate GARCH Models

According to Francq and Zakoian (2019), the CCC-GARCH model is formulated
as follows:

Σt = DtRDt,
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where R is the constant correlation matrix of εj,Tj (estimated using historical data). The
diagonal matrix Dt takes the following form

Dt =


√

h1,t 0 · · · 0

0
. . .

...
. . .

0
√

hN,t

.

The conditional variance of each asset is assumed to be consistent with Equation (1).
An obvious shortcoming of the CCC-GARCH model is the assumption of constant

correlation. To address this problem, Engle (2002) extended the model to incorporate
dynamic conditional correlation (DCC). The DCC-GARCH model is formulated as follows:

Σt = DtRtDt,

where
Rt = diag(Qt)

− 1
2 Qtdiag(Qt)

− 1
2 .

Qt is modelled using an autoregressive process:

Qt = (1− θ1 − θ2)Q̄ + θ1vt−1v′t−1 + θ2Qt−1,

where vt = εj,Tj /
√

hj,t, Q̄ is the unconditional covariance matrix of εj,Tj , and to ensure
stationarity and positive definiteness, θ1 + θ2 < 1 and θ1, θ2 > 0. The log-likelihood
function (up to a constant) of both the CCC-GARCH and DCC-GARCH models is given by:

LM = −1
2

N

∑
t=1

ln|Σt| −
1
2

N

∑
t=1

ε′tΣ
−1
t εt.

In this study, we consider futures prices on Bitcoin with different expiry dates. There-
fore, highly correlated asset price processes are expected (the same underlying ones). Given
the volatility process, risk-neutral sample paths of Bitcoin futures prices can be simulated.
The price of a Bitcoin futures spread option at time t, that expires at time T, is given by

Vt = DF(t, T)×EQ[max
(

F1,T,T1 − F2,T,T2 − sK
)
, 0
]
,

where T1, T2 ≥ T, T1 6= T2, sK is the spread, and DF(t, T) is a discount factor used to
discount a cashflow from time T to t (in this paper, we use the US 3 Month Treasury Bill
rate as a proxy for the risk-free rate). It is clear from the above that when sK = 0, it is an
exchange option. The empirical results are considered in the next section.

4. Empirical Results

In this section, the empirical results are presented and discussed. In this study,
daily data1 from 30 October 2020 to 1 April 2021 were used. The expiry dates of the Bitcoin
futures prices are as follows: 30 April 2021, 28 May 2021, and 25 June 2021. The Bitcoin
futures prices and returns are plotted in Figures 1 and 2 below.
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Figure 1. Bitcoin futures.
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Figure 2. Bitcoin futures returns.

It is clear from the above that Bitcoin futures prices are trended. Furthermore, the
returns show signs of volatility clustering, which is consistent with the typical stylised facts
of financial returns (McNeil et al. 2015).

The descriptive statistics of the Bitcoin futures returns are reported in Table 1 below.



J. Risk Financial Manag. 2021, 14, 261 9 of 14

Table 1. Descriptive statistics: Bitcoin futures returns.

April May June

Mean 0.0132 0.0139 0.0126
Median 0.0057 0.0038 0.0112

Maximum 0.1631 0.1626 0.1578
Minimum −0.1557 −0.2118 −0.1605
Std. Dev. 0.0517 0.0572 0.0563
Skewness −0.2318 −0.5091 −0.4326
Kurtosis 4.6279 5.3923 3.9755

Jarque-Bera 13.0122 25.0679 4.9587
Probability 0.0015 0.0000 0.0838

Observations 109 89 70

The descriptive statistics indicate that the conditional expectation of the returns is close
to zero, the returns are not normally distributed, and the returns also show signs of lep-
tokurtosis. This is consistent with the stylised facts of financial returns (McNeil et al. 2015).

The estimated parameters (maximum-likelihood) and information criteria of the
symmetric and asymmetric HN model applied to Bitcoin futures returns are reported in
Tables 2 and 3 below.

Table 2. Symmetric HN parameters.

April May June

λ 5.2100 4.2970 4.0490
α0 0.0024 0.0030 0.0028
α1 2.0 × 10−4 3.5 × 10−10 3.2 × 10−11

β1 2.3 × 10−7 0.0685 0.0930
AIC −4.1841 −3.7271 −3.2558

Table 3. Asymmetric HN parameters.

April May June

λ 5.0020 4.2970 4.0490
α0 0.0023 0.0030 0.0028
α1 2.3 × 10 −4 3.5 × 10−10 3.5 × 10−11

β1 3.4 × 10−8 0.0671 0.0927
γ 16.1600 0.3934 0.0986

AIC −2.1870 −1.7271 −1.2558

The AIC indicates that the symmetric time-varying volatility model is a better fitting
model. This is consistent with previous findings in the literature (see, e.g., Venter and Maré
2020; Conrad et al. 2018; Dyhrberg 2016). In addition to the AIC, a likelihood ratio test is

also used to compare the estimated symmetric and asymmetric models. The test statistic of
the likelihood ratio test for each expiry is reported in Table 4 below:

Table 4. Likelihood ratio test (HN).

Expiry Test Statistic

April 1.2856
May 2.8 × 10−8

June −2.1× 10−8

We do not reject the null hypothesis for each expiry (Held and Sabanés Bové 2014),
which is also in favor of the symmetric HN model.
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The futures option prices of the two models and market prices2 (scaled by the relevant
futures price) are plotted in Figure 3 below. Furthermore, the pricing performance metrics
of the two models applied to different futures are outlined in Tables 5–7.
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Figure 3. Bitcoin futures option prices.

Table 5. April Performance Metrics.

Symmetric HN Asymmetric HN

RMSE 669.6865 724.2534
MAE 496.0976 533.5693

Table 6. May Performance Metrics.

Symmetric HN Asymmetric HN

RMSE 1302.6712 1302.6727
MAE 1092.2221 1092.2235

Table 7. June Performance Metrics.

Symmetric HN Asymmetric HN

RMSE 1149.2917 1149.2875
MAE 1018.2780 1018.2741

It is clear that similar European futures option prices are obtained when the different
models are compared. The models produce reasonable prices compared to market prices.
The RMSE and MAE of the symmetric HN model are slightly lower compared to the
asymmetric HN model.

The performance metrics of the two models are similar. Therefore, to determine
whether the predictive accuracy of the two models are the same, the test by Diebold and
Mariano (1995) was applied. The test statistic for each expiry is reported in Table 8 below:
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Table 8. Diebold–Mariano test.

Expiry Test Statistic

April −2.5072 *
May −3.3034 *
June 4.0599

* Denotes significance at a 1% level.

The null hypothesis of the test is that the symmetric and asymmetric HN model have
the same accuracy, and the alternative hypothesis is that the symmetric model outperforms
the asymmetric model. The Diebold–Mariano test indicates that the symmetric model
outperforms the asymmetric model for options that expire in April and May, but the
predictive accuracy of the models is the same for options that expire in June.

Based on the pricing performance of univariate options, the symmetric HN GARCH
process is used for the pricing of short-dated spread options on Bitcoin futures. For the
CCC-GARCH model, no additional parameters need to be estimated. The additional
parameters of the DCC-GARCH model are reported in Table 9 below:

Table 9. DCC-GARCH estimated parameters

Estimated Parameter

θ1 1.4 × 10−9

θ2 0.5657

The CCC-GARCH and DCC-GARCH models are compared using a likelihood ratio
test. The value of the test statistic is −3.8 × 10−7, which is insignificant. Hence, we do not
reject the null hypothesis, which is in favour of the CCC-GARCH model. Therefore, the
CCC-GARCH model is used for the pricing of Bitcoin futures spread options.

As mentioned previously, Bitcoin futures are highly correlated. To illustrate this
concept, risk-neutral sample paths are illustrated in Figure 4 below.
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Figure 4. Bitcoin futures sample paths.

The sample paths are consistent with expectations. CCC-GARCH spread option prices
(scaled by the April futures prices) are plotted in Figure 5 below. The spread option is
based on the difference between the April and May futures prices, with an expiry date of
18 April 2021.
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Figure 5. Bitcoin futures spread option prices.

Spread options on Bitcoin futures do not actively trade and, therefore the model prices
cannot be compared to market prices.

5. Conclusions

Bitcoin futures options were launched in the first quarter of 2020. GARCH modelling
of Bitcoin returns and Bitcoin option pricing is well documented in the literature. However,
the pricing of Bitcoin futures options in a GARCH framework has not been considered.
In addition, a methodology for price discovery of multivariate options on Bitcoin futures
has not been developed.

In this study, Bitcoin futures options were priced using the Heston–Nandi futures
option pricing model (Li 2019a). The empirical results show that the symmetric Heston–
Nandi model is a better-fitting model, which is consistent with previous studies that
focused on Bitcoin spot return dynamics. The pricing performance metrics show that the
Heston–Nandi model produces reasonable Bitcoin option prices, and that the symmetric
Heston–Nandi model also produces more accurate option prices compared to market prices
for two out of the three expiry dates considered.

In addition to the pricing of univariate Bitcoin futures options, the work by Rombouts
and Stentoft (2011) was also extended to the pricing of multivariate futures options. The
model was applied to Bitcoin futures spread options. The model produces reasonable
spread option prices. However, spread options on Bitcoin futures do not actively trade.
Therefore, the model prices cannot be compared to market prices.

The empirical results show that the symmetric Heston–Nandi model is more accurate
in most cases. This implies that the symmetric model is a better choice when pricing exotic
options (univariate) and other illiquid derivatives written on Bitcoin futures. Furthermore,
the multivariate GARCH analysis showed that the CCC-GARCH model is more appropri-
ate (based on historical data) when pricing multivariate Bitcoin futures options. Hence,
the symmetric Heston–Nandi model and CCC-GARCH model can serve as a basis for
pricing and risk measurement (quantifying market risk and capital calculations) of Bitcoin
futures options.

Areas for future research include the use of skewness and kurtosis in the Heston–
Nandi futures model (see e.g., Christoffersen et al. 2006) applied to univariate Bitcoin
futures options, and the use of different multivariate GARCH processes (e.g., BEKK)
applied to multivariate Bitcoin futures options. Furthermore, the hedge performance of
the Heston–Nandi model applied to univariate and multivariate Bitcoin futures options
should also be considered.



J. Risk Financial Manag. 2021, 14, 261 13 of 14

Author Contributions: Conceptualization, P.J.V. and E.M.; methodology, P.J.V.; software, P.J.V.; vali-
dation, E.M.; formal analysis, P.J.V.; investigation, P.J.V.; data curation, P.J.V.; writing—original draft
preparation, P.J.V.; writing—review and editing, E.M.; visualization, P.J.V.; supervision, E.M.; project
administration, E.M. Both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank the editor and anonymous referees for their
insightful comments and suggestions that helped improve the manuscript considerably.

Conflicts of Interest: The authors declare no conflict of interest.

Notes
1 The dataset was obtained from the Thomson Reuters Datastream databank.
2 The market prices were obtained from CME Group.

References
Abraham, Rebecca. 2020. The role of investor sentiment in the valuation of bitcoin and bitcoin derivatives. International Journal of

Financial Markets and Derivatives 7: 203–23. [CrossRef]
Alexander, Carol, and Daniel F. Heck. 2020. Price discovery in Bitcoin: The impact of unregulated markets. Journal of Financial Stability

50: 100776. [CrossRef]
Baur, Dirk G., and Brian M. Lucey. 2010. Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold. Financial Review 45:

217–29. [CrossRef]
Bharadwaj, Vishal. 2021. Growing Crypto Derivatives Market in India and the Government Regulations around it. European Journal of

Molecular & Clinical Medicine 7: 3708–15.
Chen, Yimiao, and Leh-Chyan So. 2020. New Insights from the Bitcoin Futures Market. Modern Economy 11: 1463. [CrossRef]
Christoffersen, Peter, Steve Heston, and Kris Jacobs. 2006. Option valuation with conditional skewness. Journal of Econometrics 131:

253–84. [CrossRef]
Clark, Iain J. 2014. Commodity Option Pricing: A Practitioner’s Guide. Hoboken: John Wiley & Sons.
Conrad, Christian, Anessa Custovic, and Eric Ghysels. 2018. Long- and short-term cryptocurrency volatility components: A GARCH-

MIDAS analysis. Journal of Risk and Financial Management 11: 23. [CrossRef]
Diebold, Francis X., and Robert S. Mariano. 1995. Comparing predictive accuracy. Journal of Business and Economic Statistics 13: 253–65.
Duan, Jin-Chuan, and Stanley R. Pliska. 2004. Option valuation with co-integrated asset prices. Journal of Economic Dynamics and

Control 28: 727–54. [CrossRef]
Dyhrberg, Anne Haubo. 2016. Bitcoin, gold and the dollar—A GARCH volatility analysis. Economic Letters 16: 85–92. [CrossRef]
Engle, Robert. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional het-

eroskedasticity models. Journal of Business & Economic Statistics 20: 339–50.
Fang, Libing, Elie Bouri, Rangan Gupta, and David Roubaud. 2019. Does global economic uncertainty matter for the volatility and

hedging effectiveness of Bitcoin? International Review of Financial Analysis 61: 29–36. [CrossRef]
Fassas, Athanasios P., Stephanos Papadamou, and Alexandros Koulis. 2020. Price discovery in bitcoin futures. Research in International

Business and Finance 52: 101116. [CrossRef]
Heston, Steven L., and Saikat Nandi. 2000. A closed-form GARCH option valuation model. The Review of Financial Studies 13: 585–625.

[CrossRef]
Francq, Christian, and Jean-Michel Zakoian. 2019. GARCH Models: Structure, Statistical Inference and Financial Applications. Hoboken:

John Wiley & Sons.
Held, Leonhard, and Daniel Sabanés Bové. 2014. Applied Statistical Inference. Berlin/Heidelberg: Springer.
Jalan, Akanksha, Roman Matkovskyy, and Saqib Aziz. 2020. The Bitcoin options market: A first look at pricing and risk. Applied

Economics 53: 1–16.
Li, Bingxin. 2019a. Option-implied filtering: Evidence from the GARCH option pricing model. Review of Quantitative Finance and

Accounting 54: 1–21. [CrossRef]
Li, Bingxin. 2019b. Pricing dynamics of natural gas futures. Energy Economics 78: 91–108. [CrossRef]
Mahringer, Steffen, and Marcel Prokopczuk. 2015. An empirical model comparison for valuing crack spread options. Energy Economics

51: 177–87. [CrossRef]
McNeil, Alexander J., Rüdiger Frey, and Paul Embrechts. 2015. Quantitative Risk Management: Concepts, Techniques and Tools. Revised

Edition. Princeton: Princeton University Press.
Plakandaras, Vasilios, Elie Bouri, and Rangan Gupta. 2021. Forecasting Bitcoin Returns: Is there a Role for the US–China Trade War?

Journal of Risk 23: 1–17.

http://doi.org/10.1504/IJFMD.2020.109173
http://dx.doi.org/10.1016/j.jfs.2020.100776
http://dx.doi.org/10.1111/j.1540-6288.2010.00244.x
http://dx.doi.org/10.4236/me.2020.118104
http://dx.doi.org/10.1016/j.jeconom.2005.01.010
http://dx.doi.org/10.3390/jrfm11020023
http://dx.doi.org/10.1016/S0165-1889(03)00042-3
http://dx.doi.org/10.1016/j.frl.2015.10.008
http://dx.doi.org/10.1016/j.irfa.2018.12.010
http://dx.doi.org/10.1016/j.ribaf.2019.101116
http://dx.doi.org/10.1093/rfs/13.3.585
http://dx.doi.org/10.1007/s11156-019-00816-5
http://dx.doi.org/10.1016/j.eneco.2018.10.024
http://dx.doi.org/10.1016/j.eneco.2015.06.015


J. Risk Financial Manag. 2021, 14, 261 14 of 14

Rombouts, Jeroen VK, and Lars Stentoft. 2011. Multivariate option pricing with time varying volatility and correlations. Journal of
Banking & Finance 35: 2267–81.

Shahzad, Syed Jawad Hussain, Elie Bouri, David Roubaud, Ladislav Kristoufek, and Brian Lucey. 2019. Is Bitcoin a better safe-haven
investment than gold and commodities? International Review of Financial Analysis 63: 322–30. [CrossRef]

Siu, Tak Kuen, and Robert J. Elliott. 2021. Bitcoin option pricing with a SETAR-GARCH model. The European Journal of Finance 27:
564–95. [CrossRef]

Venter, Pierre J., and Eben Maré. 2020. GARCH Generated Volatility Indices of Bitcoin and CRIX. Journal of Risk and Financial
Management 13: 121. [CrossRef]

Venter, Pierre J., Eben Maré, and Edson Pindza. 2020. Price discovery in the cryptocurrency option market: A univariate GARCH
approach. Cogent Economics & Finance 8: 1803524.

Wang, Tianyi, Yiwen Shen, Yueting Jiang, and Zhuo Huang. 2017. Pricing the CBOE VIX futures with the Heston–Nandi GARCH
model. Journal of Futures Markets 37: 641–59. [CrossRef]

http://dx.doi.org/10.1016/j.irfa.2019.01.002
http://dx.doi.org/10.1080/1351847X.2020.1828962
http://dx.doi.org/10.3390/jrfm13060121
http://dx.doi.org/10.1002/fut.21820

	Introduction
	Literature Review
	Theoretical Framework
	Heston–Nandi Futures Option Pricing Model
	Multivariate GARCH Futures Option Pricing Model
	Multivariate GARCH Models

	Empirical Results
	Conclusions
	References

