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Abstract: This paper proposes an approximation method to create an optimal continuous-time
portfolio strategy based on a combination of neural networks and Monte Carlo, named NNMC.
This work is motivated by the increasing complexity of continuous-time models and stylized facts
reported in the literature. We work within expected utility theory for portfolio selection with constant
relative risk aversion utility. The method extends a recursive polynomial exponential approximation
framework by adopting neural networks to fit the portfolio value function. We developed two
network architectures and explored several activation functions. The methodology was applied
on four settings: a 4/2 stochastic volatility (SV) model with two types of market price of risk, a
4/2 model with jumps, and an Ornstein–Uhlenbeck 4/2 model. In only one case, the closed-form
solution was available, which helps for comparisons. We report the accuracy of the various settings
in terms of optimal strategy, portfolio performance and computational efficiency, highlighting the
potential of NNMC to tackle complex dynamic models.

Keywords: neural networks; expected utility theory; CRRA utility; 4/2 stochastic volatility model

1. Introduction

Optimally allocating a collection of financial investments such as stocks, bonds and
commodities has been a topic of concern to financial institutions and shareholders at
least since the pioneering work of Markowitz’s mean-variance portfolio theory in 1952.
People then realized the potential of diversification and their work laid the foundations
for the development of portfolio analysis in both academia and industry. These initial
results were in discrete-time, but it was not long before continuous-time portfolio decisions
were produced in the alternative paradigm of expected utility theory, as can be seen in
Merton (1969). The author assumed that the investor is able to continuously adjust their
position, and the stock price process is modelled by a geometric Brownian motion (GBM).
The optimal trading strategy and consumption policy that maximize the investor’s expected
utility were obtained in closed-form by solving a Hamilton–Jacobi–Bellman equation.

The beauty and practicality of this continuous-time solution has led many researchers
onto this path, producing optimal closed-form strategies for a wide range of models. For
example, Kraft (2005) considered the stochastic volatility (SV) Heston model, Heston (1993).
Flor and Larsen (2014) constructed a portfolio of stocks and fixed-income market products
to hedge the interest rate risk. Explicit solutions in the presence of regime switching,
stochastic interest rate and stochastic volatility was presented in Escobar et al. (2017),
whilst the positive performance of their portfolio is confirmed by empirical study. For the
commodities asset class, Chiu and Wong (2013) modelled a mean-reverting risky asset by
an exponential Ornstein–Uhlenbeck (OU) process and solved the investment problem for
an insurer subject to the random payment of insurance claim.

These models are particular cases of the quadratic-affine family (see Liu (2006)),
one of the broadest models solvable in closed-form. The value function for a model in
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this family is the product of a function of wealth and an exponential quadratic function.
Nonetheless, the complexity of financial markets has continued increasing every decade,
with researchers detecting new stylized facts and proposing new models outside the
quadratic-affine. Needless to say, investors must rely on these advanced models for better
financial decisions, however. closed-form solutions are no longer guaranteed. One example
of these advanced models is the GBM 4/2 model, introduced in Grasselli (2017). The model
improves the Heston model in terms of the better fitting of implied volatility surfaces
and historical volatilities patterns. The optimal portfolio problem with the GBM 4/2
model is solvable for certain types of market price of risk (MPR, see Cheng and Escobar-
Anel (2021)), while the optimal trading strategy has not been found yet with an MPR
proportional to the instantaneous volatility. More recently, an OU 4/2 model, which
unifies the mean-reverting drift and stochastic volatility in a single model, was presented
in Escobar-Anel and Gong (2020). The model targets two asset classes: commodities and
volatility indexes. The optimal portfolio with the OU 4/2 model is not in closed form. This
motivates approximation methods for dynamic portfolio choice.

Most approximation methods follow the idea from martingale method (see Karatzas
et al. (1987)) or dynamic programming technique Brandt et al. (2005). Cvitanić et al. (2003)
proposed a simulation-based method seeking the financial replication of the optimal termi-
nal wealth given in the martingale method. Detemple et al. (2003) developed a comprehen-
sive approach for the same investment problems, and the application of Malliavin calculus
enhances its accuracy. The work in Brandt et al. (2005) led to the BGSS method, which was
inspired by the popular least-square Monte Carlo method of Longstaff and Schwartz (2001).
BGSS pioneered the recursive approximation method for dynamic portfolio choice. Cong
and Oosterlee (2017) enhanced BGSS with the stochastic grid bundling method (SGBM)
for conditional expectation estimation introduced in Jain and Oosterlee (2015). More re-
cently, a polynomial affine method for constant relative risk aversion utility (PAMC) was
recently developed in Zhu et al. (2020). The method takes advantage of the quadratic-affine
structure, leading to superior accuracy and efficiency in the approximation of the optimal
strategy and value function. In this paper, we extend the methodology in PAMC using
neural networks.

The history of artificial neural networks goes back to McCulloch and Pitts (1943), where
the author created the so-called “threshold logic” on the basis of the neural networks of the
human brain in order to mimic human thoughts. Deep learning has since steadily evolved.
Almost three decades later, back propagation, a widely used algorithm in neural network’s
parameter fitting for supervised learning, was introduced, see Linnainmaa (1970). The
importance of back propagation was only fully recognized when Rumelhart et al. (1986)
showed that it can provide interesting distribution representations. The universal approxi-
mation theorem (see Cybenko (1989)) illustrated that every bounded continuous function
can be approximated by a network with an arbitrarily small error, which further verifies the
effectiveness of the neural network. Neural networks recently attracted a lot of attention
of applied scientists, and were successful in fields such as image recognition and natural
language processing because they are particular good at function approximation when
the form of the target function is unknown. In the realm of dynamic portfolio analyses,
Lin et al. (2006) first predicted portfolio covariance matrix with the Elman network and
achieved the good estimation of the optimal mean-variance portfolio. More recently, Li
and Forsyth (2019) proposed a neural network, representing the portfolio strategy at each
rebalancing time, for a constrained defined contribution (DC) allocation problem. Chen
and Ge (2021) introduced a differential equation-based method, where the value function
with the Heston model is estimated by a deep neural network.

In this paper, motivated by the lack of knowledge on the correct expression for the
portfolio value function for unsolvable models, we approximated the optimal portfolio
strategy for any given stochastic process model with a neural network fitting the value
function. Successful fitting relies on a suitable network architecture that captures the
connection between input and output variables, as well as reasonable activation functions.
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We designed two architectures enriching an embedded quadratic-affine structure, and we
considered three types of activation functions.

Given the lack of closed-form solutions for SV 4/2 models, we used them as our toy
examples in the implementations. In particular, we first implemented our methodology
in the solvable case (i.e., GBM 4/2 with solvable MPR), so the accuracy and efficiency
were demonstrated before it is applied to the unsolvable cases of: GBM 4/2 model with
stochastic jumps, GBM 4/2 model with proportional instantaneous volatility MPR, and
the OU 4/2 model. Furthermore, we numerically show which network architecture is
preferable in each case.

The paper is organized as follows. Section 2 introduces the dynamic portfolio choice
problem, and presents the neural network architectures, activation functions and pa-
rameter training details. The step-by-step algorithm of our methodology is provided in
Section 3. Sections 4 and 5 apply the methodology to the GBM 4/2 and the OU 4/2 models.
Section 6 concludes.

2. Problem Setting and Architectures of the Deep Learning Model

We considered a frictionless market consisting of a money market account (cash, M)
and one stock (S). We assume the stock price follows a generalized diffusion process incor-
porating a one-dimensional state variable X. All the processes are defined on a complete
probability space (Ω,F ,P) with a right-continuous filtration {Ft}t∈[0,T], summarized by
the stochastic differential equations (SDE):

dMt
Mt

= r(Xt)dt
dSt = Stθ(Xt, St)dt + Stσ(Xt, St)dBt + St−µNdNt

dXt = a(Xt)dt + b(Xt)dBX
t

< dBt, dBX
t >= ρdt.

(1)

Bt and BX
t are Brownian motions with correlation ρ. r(Xt) is the interest rate, θ(Xt, St) and

σ(Xt, St) are the drift and diffusion coefficients for the stock price. a(Xt) and b(Xt) are
measurable functions of state variable Xt. Nt is a pure-jump process independent of Bt
and BX

t with stochastic intensity λN Xt for constant λN > 0, and µN > −1 denotes the
jump size.

We consider an investor with risk preference represented by a constant relative risk
aversion (CRRA) utility:

U(W) =
W1−γ

1− γ
. (2)

Investors can adjust their allocation at a predetermined set of rebalancing times
(0, ∆t, 2∆t, ..., T − ∆t). The investors wish to derive a portfolio strategy π (percentage of
wealth allocated to the stock) that maximizes their expected utility of terminal wealth,
in other words, E(U(WT)). The value function, representing the investor’s conditional
expected utility, has the following representation:

V(t, W, S, X) = max
πs≥t

E(U(WT) | t, W, S, X) =
W1−γ

1− γ
f (t, S, X). (3)

The value function is separated into a wealth factor W1−γ

1−γ and a state variable function
f . The NNMC estimates the state variable function f with a neural network model NN
and computes the optimal strategy π∗t with the Bellman principle.

2.1. Architectures of the Deep Learning Model

In this section, we present two neural network architectures to fit the value function.
According to the separable property of the value function shown in (3), the only unknown
component is the state variable function f , which is therefore the target function for the
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neural network. The architectures of the networks are built around exponential polynomial
functions, which are the most common form of solvable investor’s value functions and
used in the PAMC method (see Zhu et al. (2020)). This property of proposed networks
ensures that the new method generalizes PAMC.

The neural network is expected to achieve a better fit than a polynomial regression if
the true state variable function is significantly different from the exponential polynomial
function. Furthermore, we designed an initialization method for networks, which is better
than a random initialization in terms of portfolio value function fitting.

2.1.1. Sum of Exponential Network

We first introduced the sum of the exponential polynomial neural network (SEN), as
illustrated in Figure 1. The amount of input depends on the number of state variables. For
simplicity, we took two inputs as an example. The first hidden layer computes the mono-
mial of inputs. The second hidden layer obtains the linear combinations of the neuron in
the first layer, where the weights are fitted in NNMC. An exponential activation function is
applied to the second layer. The final output calculates a linear combination of exponential
polynomials, so the exponential polynomial is a specific case of this neural network.

Figure 1. Sum of exponential network (SEN).

We denote the sum of exponential network by NNSEN ; the proposition next states the
estimation of the corresponding optimal allocation.

Proposition 1. Given the SEN approximation of the value function at the next rebalancing time
t + ∆t, (i.e., NNSEN [t + ∆t, St, Xt]), the optimal strategy at time t is given by

πSEN
t = arg max

π
V(t, Wt, πt, St, Xt) (4)

which is the solution of:

f2(t, Wt, St, Xt) + f1(t, Wt, St, Xt)πt + NNSEN(t + ∆t, St(1 + µN), Xt)λN XtµN(1 + πtµN)
−γ = 0, (5)
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where:

f1(t, Wt, St, Xt) = −γNNSEN(t + ∆t, Wt, St, Xt)σ
2(Xt, St)

f2(t, Wt, St, Xt) = NNSEN(t + ∆t, Wt, St, Xt)(θ(Xt, St)− r(Xt)))

+
∂NNSEN(t + ∆t, Wt, St, Xt)

∂St
Stσ

2(Xt, St)

+
∂NNSEN(t + ∆t, Wt, St, Xt)

∂Xt
σ(Xt, St)b(Xt)ρ.

(6)

Notably, πSEN
t = − f2(t,Wt ,St ,Xt)

f1(t,Wt ,St ,Xt)
when St follows a diffusion process, i.e., λN = 0. πSEN

t =

1
µN

((− f2(t,Wt ,St ,Xt)
NNSEN(t+∆t,St ,Xt)λN XtµN

)−
1
γ − 1) when St follows a jump process, i.e., σ(Xt, St) = 0.

Proof. It follows similarly to Theorem 1 in Zhu and Escobar-Anel (2020). According to the
Bellman principle:

V(t, Wt, St, Xt) = max
πt

Et(V(t + ∆t, Wt+∆t, St+∆t, Xt+∆t) |Wt, St, Xt). (7)

We substitute V(t + ∆t, Wt+∆t, St+∆t, Xt+∆t) with W1−γ

1−γ NNSEN(t + ∆t, Wt+∆t, St+∆t,
Xt+∆t) and expand the right hand side of the equation with respect to W, S and X, then
V(t, Wt, St, Xt) is written as a function of strategy πt. Equation (5) is obtained with the first
order condition.

2.1.2. Improving Exponential Network

The architecture of an improving exponential network (IEN) is exhibited in Figure 2.

Figure 2. Improving exponential polynomial.

The target function of IEN is the log of the state variable function f (i.e., ln f ). The
neural network consists of three parts. Node 1 is a polynomial with the output denoted
by V1. Node 2 is an artificial neural network with an arbitrary number of hidden layers
and neurons; we denoted its output by V2. Node 3 is a single-layer network with a
Sigmoid function which computes a proportion p ∈ [0, 1]. The final output is the weighted
average of the first two nodes pV1 + (1− p)V2. The second node is the complement to the
exponential polynomial function. Moreover, the similarity between the true value function
and the exponential polynomial function is measured by p, which is fitted into the NNMC
methodology. Therefore, the network automatically adjusts the weights on the exponential
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polynomial function and its supplement according to the generated data. Finally, the state
variable function f is computed as

f = epv1+(1−p)v2 = (ev1)p × (ev2)1−p, (8)

which is the geometric weighted average of nodes 1 and 2. Letting NN IEN denote the IEN,
the estimation of the optimal strategy is given in the next proposition.

Proposition 2. Given the IEN approximation of the log value function at time t + ∆t (i.e.,
NN IEN [t + ∆t, St, Xt]), the optimal strategy at time t is given by

π IEN
t = arg max

π
V(t, Wt, St, Xt) (9)

which is the solution of:

( f2(t, Wt, St, Xt) + f1(t, Wt, St, Xt)πt) + λN Xt exp
(

NN IEN(t + ∆t, St(1 + µN), Xt)
)

µN(1 + πtµN)
−γ = 0, (10)

where:

f1(t, Wt, St, Xt) = −γ exp
(

NN IEN(t + ∆t, St, Xt)
)

σ2(Xt, St)

f2(t, Wt, St, Xt) = exp
(

NN IEN(t + ∆t, St, Xt)
)
(θ(Xt, St)− r(Xt)))

+
∂NN IEN(t + ∆t, Wt, St, Xt)

∂St
exp

(
NN IEN(t + ∆t, St, Xt)

)
Stσ

2(Xt, St)

+
∂NN IEN(t + ∆t, Wt, St, Xt)

∂Xt
exp

(
NN IEN(t + ∆t, St, Xt)

)
σ(Xt, St)b(Xt)ρ.

(11)

Notably, π IEN
t = − f2(t,Wt ,St ,Xt)

f1(t,Wt ,St ,Xt)
when St follows a diffusion process, in other words, λN = 0.

π IEN
t = 1

µN
((− f2(t,Wt ,St ,Xt)

exp(NN IEN(t+∆t,St ,Xt))λN XtµN
)−

1
γ − 1) when St follows a jump process (i.e.,

σ[Xt, St] = 0).

Proof. The proof follows similarly to Proposition 1.

2.2. Initialization, Stopping Criterion and Activation Function

In this section, we disclose more details on training the neural networks. The initial-
ization of weights is the first step of network training, which may significantly impact the
goodness of fit. A good initialization prevents the network’s weights from converging to
a local minimum and avoids slow convergence. Random initialization is mostly used as
the interpretability of the network is usually weak. In contrast, both the SEN and the IEN
are extensions of an exponential polynomial function; we suggest taking advantage of the
results from the polynomial regression. Hence, the neural network searches the minimum
near the exponential polynomial function used in the PAMC ensuring consistency. The
polynomial regression initialization achieves superior results to the random initialization.

The coefficients of the exponential polynomial were first obtained with a regression
model. The output of the SEN is a linear combination of exponential polynomial func-

tions
N
∑

i=1
aiexp(Pi

n(x, y)) + b, we substitute the coefficients from polynomial regression into

P1
n(x, y) and set a1 = 1, a2 = a3 = ... = an = b = 0. For the initialization of the IEN, we

substitute the coefficients into the first node and artificially make p = 0.
The training process minimizes the mean squared error (MSE) between the network’s

output and the simulated expected utility, and the sample data are split into a training set
and a test set to reduce the overfitting problem. Adam is a back-propagation algorithm that
combines the best properties of the AdaGrad and RMSProp algorithms to handle sparse
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gradients on noisy problems and provides excellent convergence speed. We applied the
Adam on the training set for updating the network’s weights, and the test set MSE was
computed and subsequently recorded. The test set MSE was expected to be convergent, so
the training process was finished when the difference between the moving average of the
recent 100 test set MSEs and the most recent test set MSE was less than a predetermined
threshold, which was set at 0.00001 in the implementation.

The number of exponential polynomials is a hyperparameter in the SEN. We let the
SEN be a sum of two exponential polynomial functions for simplicity. Node 2 in the
IEN is an artificial neural network, which complements node 1 when the value function
significantly deviates from an exponential polynomial function. The number of hidden
layers and neurons, as well as the activation function of node 2, are freely determined
before fitting the value function. We assume node 2 is a single layer network with 10
neurons and we implement several functions for comparison purposes, such as the logistic
(sigmoid):

f (x) =
1

1 + e−x , (12)

the Rectified linear unit (ReLU):

f (x) =

{
0 if x ≤ 0
x if x > 0

, (13)

and the Exponential linear unit (ELU):

f (x) =

{
0 if x ≤ 0
ex − 1 if x > 0

(14)

3. Notation and Algorithm of the Methodology

In this section, we clarify the notation and the step-by-step algorithm. Table 1 displays
a summary of the notation.

Table 1. Notation for NNMC is listed here.

Notation Meaning

Bm
t Brownian motion at time t in mth simulated path

Sm
t Stock price at time t in mth simulated path

Xm
t Other state variable such as interest rate or volatility

nr Number of simulated paths
N Number of simulation to compute expected utility for a given set (W0, Sm

t , Xm
t )

Ŵm,n
t+∆t(π

m) A simulated wealth level at t + ∆t given the wealth, allocation
and other state variables at t are W0, πm and Xm

t
Ŝm,n

t+∆t A simulated stock price at t + ∆t given Sm
t

X̂m,n
t+∆t A simulated state variable at t + ∆t give Xm

t
V(t, W, S, X) Value function at time t given wealth W, stock price S and state variable X
NN(t, X, S) The neural network used to fit f (t, St, Xt) or ln [ f (t, St, Xt)]
v̂m Estimation of f (t, Sm

t , Xm
t ) or ln [ f (t, Sm

t , Xm
t )]

πm,n
s Optimal strategy at time s given wealth, stock price and other state variables

are Ŵm,n
s , Ŝm,n

s and X̂s
m,n

V̂(0, W0, S0, X0) Estimation of expected utility at time 0.
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Algorithm

We first generated the paths of the stock price Sm
t and state variable Xm

t . The method
starts from t = T − ∆t (i.e., the last rebalancing time before the terminal). We computed
the optimal strategy πm

T−∆t given W0, Sm
T−∆t, Xm

T−∆t using the Equation (5) or Equation (10).
Then, v̂m is obtained through simulation, which estimates f (T − ∆t, Sm

T−∆t, Xm
T−∆t) when us-

ing SEN and ln [ f (T − ∆t, Sm
T−∆t, Xm

T−∆t)] when using IEN. The network NN(T − ∆t, X, S),
approximating the state variable function, is trained with the input (Xm

T−∆t,S
m
T−∆t) and

output v̂m. We conduct a similar procedure at each rebalancing point and recursively
approximate the value function and optimal strategy until the inception of the portfolio.
To evaluate the expected utility, we regenerated the paths of stock price and state variables.
The path-wise optimal strategy was computed from NN(t, X, S), so the optimal terminal
wealth is easy to obtain. The average of the utility of optimal terminal wealth approximates
the expected utility. Algorithms 1 and 2 present the pseudo code for NNMC using SEN
and IEN, respectively. Simulation variance reduction methods, such as antithetic variates,
could be incorporated into both algorithms to reduce the standard error of estimated
expected utility.

Algorithm 1: NNMC-SEN
Input: S0,W0,X0
Output: Optimal trading strategy π∗0 and expected utility V̂(0, W0, S0, X0)

1 initialization;
2 Generating nr paths of Bm

t , Sm
t , Xm

t f or m = 1...nr;
3 while t = T − ∆t do
4 Compute optimal allocation πm

T−∆t with Equation (5) ;
5 Simulate wealth Ŵm,n

T (πm
T−∆t) given W0, Sm

T−∆t, πm
T−∆t and Xm

T−∆t at T − ∆t
f or n = 1...N;

6 Compute v̂m = 1
N

N
∑

n=1
U(Ŵm,n

T (πm
T−∆t))×

1−γ

W1−γ
0

f or m = 1...nr ;

7 Train a network with input (Xm
T−∆t,S

m
T−∆t) and output v̂m. Denote the network

by NN(T − ∆t, X, S)
8 for t = T − 2∆t to ∆t do
9 Compute optimal allocation πm

t with NN(t + ∆t, X, S) and Equation (5) given
W0, Sm

t , and Xm
t ;

10 Simulate wealth Ŵm,n
t+∆t(π

m
t ), Ŝm,n

t+∆t and X̂m,n
t+∆t given W0, Sm

t , πm
t and Xm

t at
time t f or n = 1...N;

11 Compute v̂m = [ 1
N

N
∑

n=1
(Wm,n

t+∆t(π
m
t ))

1−γNN(t + ∆t, X̂m,n
t+∆t, Ŝm,n

t+∆t)]×
1

W1−γ
0

f or

m = 1...nr ;
12 Train a new network with input (Xm

T−∆t,S
m
T−∆t) and output v̂m and denote it by

NN(t, X, S) ;

13 while t = 0 do
14 Compute π∗0 with with NN(∆t, X, S) and Equation (5);
15 Generate new paths of Sz

t , Xz
t f or z = 1...N0, use the estimation of value

function NN(t, X, S) to compute πz
t and Wz

T .

16 The expected utility is, V̂(0, W0, S0, X0) =
1

N0

N0
∑

n=1
U(Wz

T)

17 return π∗0 , V̂(0, W0, S0, X0)



J. Risk Financial Manag. 2021, 14, 322 9 of 18

Algorithm 2: NNMC-IEN
Input: S0,W0,X0
Output: Optimal trading strategy π∗0 and expected utility V̂(0, W0, S0, X0)

1 initialization;
2 Generating nr paths of Bm

t , Sm
t , Xm

t f or m = 1...nr;
3 while t = T − ∆t do
4 Compute optimal allocation πm

T−∆t with Equation (10);
5 Simulate wealth Ŵm,n

T (πm
T−∆t) given W0, Sm

T−∆t, πm
T−∆t and Xm

T−∆t at T − ∆t
f or n = 1...N;

6 Compute v̂m = ln [sign(1− γ) 1
N

N
∑

n=1
U(Ŵm,n

T (πm
T−∆t))]− (1− γ) ln [W0]

f or m = 1...nr;
7 Train the network with input (Xm

T−∆t,S
m
T−∆t) and output v̂m. Denote the

network by NN(T − ∆t, X, S)
8 for t = T − 2∆t to ∆t do
9 Compute optimal allocation πm

t with NN(t + ∆t, X, S) and Equation (10)
given W0, Sm

t , and Xm
t ;

10 Simulate wealth Ŵm,n
t+∆t(π

m
t ), Ŝm,n

t+∆t and X̂m,n
t+∆t given W0, Sm

t , πm
t and Xm

t at t
f or n = 1...N;

11 Compute
12 v̂m =

ln [ 1
N

N
∑

n=1
(Wm,n

t+∆t(π
m
t ))

1−γexp(NN(t + ∆t, X̂m,n
t+∆t, Ŝm,n

t+∆t))]− (1− γ) ln [W0]

f or m = 1...nr ;
13 Train a new network with input (Xm

T−∆t,S
m
T−∆t) and output v̂m and denote it by

NN(t, X, S) ;

14 while t = 0 do
15 Compute π∗0 with with NN(∆t, X, S) and Equation (10);
16 Generate new paths of Sz

t , Xz
t f or z = 1...N0, use the estimation of

transformed value function NN(t, X, S) to compute πz
t and Wz

T .

17 The expected utility is, V̂(0, W0, S0, X0) =
1

N0

N0
∑

n=1
U(Wz

T)

18 return π∗0 , V̂(0, W0, S0, X0)

4. Application to 4/2 Model

Grasselli (2017) unified the 1/2 and 3/2 SV models and proposed the 4/2 SV model.
The 4/2 model better captures the evolution of the implied volatility surface and uniformly
bounds the instantaneous variance away from zero when weights on 1/2 and 3/2 factors
are positive. We implement the NNMC on the 4/2 model and report the optimal allocation,
expected utility and the annualized CER defined by

U(W0(1 + CER)T) = V(0, W0, S0, X0) (15)

Three versions of the 4/2 model are considered; all are specific cases of the generalized
model (1). The first assumes market price of risk proportional to the volatility driver. In
other words, the value function and the optimal allocation are solvable in closed form.
The second incorporates stochastic jumps into the 4/2 model, while the last uses the
preferred setting for the market price of risk in the economics/finance literature (i.e.,
proportional to the instantaneous volatility). The parameters used in this section are
presented in Table 2 1 and are estimated from the S&P 500 and its volatility index (VIX) in
Cheng and Escobar-Anel (2021).
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Table 2. Parameter values for 4/2 model.

Parameter Value Parameter Value

T 1 X0 0.04
r 0.05 λS 2.9428

∆re
t

1
10 ∆si

t
1

60
S0 1.0 M0 1.0
W0 1 nr 100
N 2000 N0 200000
κX 7.3479 θX 0.0328
σX 0.6612 as 0.9051
bS 0.0023 ρ −0.7689

4.1. A Solvable Case

Cheng and Escobar-Anel (2021) found the closed-form solution for an optimal dynamic
portfolio when the stock price follows a 4/2 model with a market price of risk linear to
the square root of the volatility driver

√
Xt. The dynamics of stock price St and volatility

driver Xt are exhibited in (16):
dMt
Mt

= rdt
dSt
St

= (r + λS(aSXt + bS))dt + (aS
√

Xt +
bS√
Xt
)dBS

t

dXt = κX(θX − Xt)dt + σX
√

XtdBX
t .

< BS
t , BX

t >= ρt (16)

Solving the associated Hamilton–Jacobi–Bellman (HJB) equation:

0 = sup
π

{
Vt + Wt(r + λS(aSXt + bS) + κX(θX − Xt)VX

+
1
2

W2
t π2(aS

√
Xt +

bS√
Xt

)2VWW +
1
2

σ2
XXtVXX + πWt(aSXt + bS)σXρVWX

}
,

(17)

the optimal trading strategy and value function are given by

V(t, W, X) =
W1−γ

1− γ
ea(T−t)+b(T−t)X

π∗t =
X

aX + b
[
σXρSXb(T − t)

γ
+

λS
γ
].

(18)

The functions a(T − t) and b(T − t) are:

a(T − t) = γr(T − t) +
2κXθX

k2
ln

2k3e0.5(k1+k2)(T−t)

2k3 + (k1 + k3)(ek3(T−t) − 1)

b(T − t) =
k0(ek3(T−t) − 1)

2k3 + (k1 + k3)(ek3(T−t) − 1)
,

(19)

with auxiliary parameters k0 = 1−γ
γ λ2

S, k1 = κX − 1−γ
γ ρSXσXλS, k2 = σ2

X +
(1−γ)σ2

Xρ2
SX

γ and

k3 =
√

k2
1 − k0k2.

The closed-form solution (see (18)) reveals that the value function in this case is an ex-
ponential linear function. Hence, we set the degree of polynomial to 1 when implementing
NNMC with both the SEN and the IEN. Table 3 compares the optimal allocation, expected
utility and CER from NNMC, the embedded PAMC and the theoretical solution. PAMC
takes the least computational time. The optimal allocation obtained from PAMC is more
accurate than the results from NNMC, while the differences in expected utility and CER
are not significant. Furthermore, SEN slightly outperforms IEN in terms of the accuracy of
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optimal allocation and computation efficiency. Moreover, the ReLU activation function is
superior to the sigmoid and ELU function when the IEN is applied.

Table 3. Results for the 4/2 model with a market price of risk λS
√

Xt. We reported the optimal weights, expected utility
and CER obtained with the theoretical result and with the approximation method for different levels of risk aversion γ. The
standard deviation of estimated expected utility and CER from 100 runs is displayed in parentheses.

γ = 2.0 γ = 4.0 γ = 6.0 γ = 8.0 γ = 10.0

Theoretical

Weights (π∗0 ) 1.614 0.832 0.561 0.423 0.340
Expected utility (V∗0 ) −0.878 −0.253 −0.135 −0.087 −0.061

CER (%) 13.85 9.62 8.15 7.40 6.95

PAMC

Weights (πPAMC
0 ) 1.615 0.833 0.561 0.423 0.340

Relative error(%) 0.001 0.05 0.05 0.04 0.04
Expected utility (VPAMC

0 ) −0.879 (0.0005) −0.253 (0.0002) −0.135 (0.0001) −0.087 (0.0001) −0.061 (0.0001)
Relative error (%) 0.04 0.04 0.05 0.06 0.08

CER (%) 13.80 (0.065) 9.60 (0.033) 8.14 (0.023) 7.40 (0.017) 6.95 (0.014)
Computational time (seconds) 31.3 30.6 30.3 30.0 30.4

NNMC-SEN

Weights (πSEN
0 ) 1.612 0.831 0.560 0.422 0.339

Relative error(%) 0.15 0.18 0.20 0.22 0.23
Expected utility (VSEN

0 ) −0.879 (0.0005) −0.253 (0.0002) −0.135 (0.0001) −0.087 (0.0001) −0.061 (0.0001)
Relative error(%) 0.05 0.04 0.05 0.06 0.06

CER (%) 13.80 (0.065) 9.60 (0.033) 8.14 (0.026) 7.40 (0.017) 6.95 (0.014)
Computational time (seconds) 56.4 57.2 57.6 57.0 57.9

NNMC-IEN (ReLU)

Weights (π IEN ReLU
0 ) 1.612 0.831 0.560 0.422 0.339

Relative error(%) 0.14 0.19 0.22 0.25 0.27
Expected utility (V IEN ReLU

0 ) −0.879 (0.0005) −0.253 (0.0002) −0.135 (0.0001) −0.087 (0.0001) −0.061 (0.0001)
Relative error(%) 0.05 0.04 0.05 0.06 0.06

CER (%) 13.80 (0.065) 9.60 (0.033) 8.14 (0.023) 7.40 (0.017) 6.95 (0.014)
Computational time (seconds) 62.1 63.4 64.8 63.5 63.5

NNMC-IEN (sigmoid)

Weights (π IEN sigmoid
0 ) 1.612 0.831 0.560 0.422 0.339

Relative error(%) 0.15 0.20 0.23 0.27 0.27
Expected utility (V IEN sigmoid

0 ) −0.879 (0.0005) −0.253 (0.0002) −0.135 (0.0001) −0.087 (0.0001) −0.061 (0.0001)
Relative error(%) 0.05 0.04 0.05 0.10 0.10

CER (%) 13.80 (0.065) 9.60 (0.033) 8.14 (0.023) 7.39 (0.017) 6.94 (0.014)
Computational time (seconds) 63.6 62.2 63.1 79.2 75.1

NNMC-IEN (ELU)

Weights (π IEN ELU
0 ) 1.612 0.831 0.560 0.422 0.339

Relative error(%) 0.16 0.19 0.19 0.28 0.31
Expected utility (V IEN ELU

0 ) −0.879 (0.0005) −0.253 (0.0002) −0.135 (0.0001) −0.087 (0.0001) −0.061 (0.0001)
Relative error(%) 0.06 0.10 0.05 0.18 0.20

CER (%) 13.78 (0.065) 9.58 (0.034) 8.14 (0.023) 7.38 (0.017) 6.93 (0.014)
Computational time (seconds) 78.2 74.6 62.1 77.4 75.3

We repeat the estimation of expected utility (i.e., steps 14–16 in NNMC-SEN and
steps 15–17 in NNMC-IEN) after the value function and optimal strategy are obtained. All
approximation methods have similar standard deviations of the estimated expected utility
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and CERs. Moreover, standard deviation decreases with an risk aversion level γ, which
indicates that our approximation is more accurate for higher risk averse investors.

Figure 3 displays the expected utility and CER as a function of time to maturity T
when γ = 2. The expected utility increases with maturity T as expected, while the CER
decreases. Expected utility from PAMC, NNMC and the theoretical solution are visually
the same. The comparison in portfolio performance is clearer by showing the CER: PAMC
and NNMC produce CERs that are slightly smaller than the theoretical result. Furthermore,
ELU seems to be inferior to the ReLU and sigmoid function, and the CER obtained from
NNMC with the ELU activation function is slightly smaller than the results from other
methods when the investment horizon is small.

(a) Expected utility (b) CER

Figure 3. St follows the 4/2 model with a market price of risk λS
√

Xt, where (a) shows the expected
utilities obtained with theoretical results and approximation methods versus investment horizon T;
and (b) shows the CERs versus investment horizon T given γ = 2.

4.2. An Unsolvable Case, 4/2 Model with Jumps

We then extended the 4/2 model to account for stochastic jumps. The dynamics of
stock prices and volatility drivers are summarized by the SDE:

dMt
Mt

= rdt
dSt
St

= (r + λS(aSXt + bS)− λQXtµN)dt + (aS
√

Xt +
bS√
Xt
)dBS

t + µNdNt

dXt = κX(θX − Xt)dt + σX
√

XtdBX
t .

< BS
t , BX

t >= ρt (20)

Volatility and market price of risk are the same with the 4/2 model given in (16). Nt
is an independent Poisson process with intensity λN Xt, µN is the jump size, and λQXt
captures the market price of jump risk.

We used the set of jump risk parameters given in Liu and Pan (2003): λN = λQ =
0.1/θX and µN = 0.1. Notably, the stock is expected to jump once every 10 years if Xt stays
at its mean level θX . The degree of polynomial in PAMC and NNMC was chosen to be 1. In
this case, the optimal strategy cannot be explicitly solved given the approximation of the
value function at the next rebalancing time (see Propositions 1 and 2), which is therefore
obtained by the Newton–Raphson method in NNMC. The optimal allocation, expected
utility, CER obtained with NNMC and PAMC are reported in Table 4. When the stock
follows the 4/2 model with jumps, PAMC is faster, followed by NNMC-SEN. Moreover,
the accuracy of the estimated expected utility and CER from PAMC and NNMC are similar;
the standard deviations of these approximation methods have little difference.

Figure 4 exhibits the expected utility and CER as a function of investment horizon T.
Portfolios with a longer investment horizon are expected to achieve a better performance
(i.e., higher expected utility) while CER decreases with T.
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Table 4. Results for the 4/2 model with stochastic jumps. We report the optimal weights, expected utility and CER obtained
via the approximation methods for different levels of risk aversion γ. The standard deviation of estimated expected utility
and CER from 100 runs is displayed in parentheses.

γ = 2.0 γ = 4.0 γ = 6.0 γ = 8.0 γ = 10.0

PAMC

Weights (πPAMC
0 ) 1.545 0.797 0.537 0.405 0.325

Expected utility (VPAMC
0 ) −0.882 (0.0006) −0.255 (0.0003) −0.136 (0.0002) −0.087 (0.0001) −0.061 (0.0001)

CER (%) 13.43 (0.075) 9.41 (0.039) 8.01 (0.027) 7.30 (0.020) 6.87 (0.016)
Computational time (seconds) 47.1 48.4 47.1 47.2 47.1

NNMC-SEN

Weights (πSEN
0 ) 1.545 0.797 0.537 0.405 0.325

Expected utility (VSEN
0 ) −0.882 (0.0006) −0.255 (0.0003) −0.136 (0.0002) −0.087 (0.0001) −0.061 (0.0001)

CER (%) 13.43 (0.075) 9.41 (0.040) 8.01 (0.027) 7.30 (0.020) 6.87 (0.016)
Computational time (seconds) 74.2 77.3 72.5 72.3 82.7

NNMC-IEN (ReLU)

Weights (π IEN ReLU
0 ) 1.544 0.796 0.536 0.405 0.325

Expected utility (V IEN ReLU
0 ) −0.882 (0.0006) −0.255 (0.0003) −0.136 (0.0002) −0.087 (0.0001) −0.061 (0.0001)

CER (%) 13.43 (0.075) 9.41 (0.040) 8.01 (0.027) 7.30 (0.020) 6.87 (0.016)
Computational time (seconds) 93.1 89.4 86.8 83.7 83.2

NNMC-IEN (sigmoid)

Weights (π IEN sigmoid
0 ) 1.544 0.796 0.537 0.404 0.324

Expected utility (V IEN sigmoid
0 ) −0.882 (0.0006) −0.255 (0.0003) −0.136 (0.0002) −0.087 (0.0001) −0.061 (0.0001)

CER (%) 13.43 (0.075) 9.41 (0.040) 8.01 (0.027) 7.30 (0.020) 6.87 (0.016)
Computational time (seconds) 93.1 92.7 90.3 83.5 82.1

NNMC-IEN (ELU)

Weights (π IEN ELU
0 ) 1.544 0.796 0.537 0.404 0.325

Expected utility (V IEN ELU
0 ) −0.882 (0.0006) −0.255 (0.0003) −0.136 (0.0002) −0.087 (0.0001) −0.061 (0.0001)

CER (%) 13.43 (0.075) 9.41 (0.040) 8.01 (0.027) 7.30 (0.020) 6.87 (0.016)
Computational time (seconds) 81.3 83.9 88.1 81.5 85.6

(a) Expected utility (b) CER

Figure 4. St follows a 4/2 model with stochastic jump, where (a) shows the expected utilities
obtained with the approximation methods versus investment horizon T; and (b) shows CERs versus
investment horizon T given γ = 2.

4.3. An Unsolvable Case, Market Price of Risk Proportional to Volatility

In this section, we consider an excess return, proportional to the instantaneous vari-
ance. The dynamics are given in (21), and a closed-form solution has not yet been found.
We report the optimal allocation and expected utility from PAMC and NNMC, as well as
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investigated the impact of maturity T. The degree of polynomial in PAMC and NNMC
remains 1:

dMt
Mt

= rdt
dSt
St

= (r + λS(aS
√

Xt +
bS√
Xt
)2)dt + (aS

√
Xt +

bS√
Xt
)dBS

t

dXt = κX(θX − Xt)dt + σX
√

XtdBX
t .

< BS
t , BX

t >= ρt (21)

Table 5 reports the optimal allocation, expected utility and CER from PAMC and
NNMC. PAMC is still the most efficient method, followed by the NNMC-SEN. All methods
achieve similar portfolio performance in terms of the expected utility and CER as well as
the corresponding standard deviation. Figure 5 plots the expected utility and CER versus
maturity T when γ = 2, which further verifies the non-significant difference in expected
utility and CER obtained from the methods.

Table 5. Results for the 4/2 model with a market price of risk λS(aS
√

Xt +
bS√
Xt
). We report the estimation of optimal

weights, expected utility and CER obtained via approximations given different levels of risk aversion γ. The standard
deviation of estimated expected utility and CER from 100 runs is displayed in parentheses.

γ = 2.0 γ = 4.0 γ = 6.0 γ = 8.0 γ = 10.0

PAMC

Weights (πPAMC
0 ) 1.539 0.789 0.531 0.400 0.321

Expected utility (VPAMC
0 ) −0.882 (0.0005) −0.255 (0.0002) −0.136 (0.0001) −0.087 (0.0001) −0.061 (0.0001)

CER (%) 13.38 (0.065) 9.36 (0.033) 7.97 (0.022) 7.26 (0.017) 6.84 (0.013)
Computational time (seconds) 33.9 33.6 34.0 35.4 33.2

NNMC-SEN

Weights (πSEN
0 ) 1.537 0.788 0.530 0.399 0.320

Expected utility (VSEN
0 ) −0.882 (0.0005) −0.255 (0.0002) −0.136 (0.0001) −0.087 (0.0001) −0.061 (0.0001)

CER (%) 13.38 (0.065) 9.36 (0.033) 7.97 (0.022) 7.26 (0.017) 6.84 (0.013)
Computational time (seconds) 62.7 62.6 62.4 62.7 62.9

NNMC-IEN (ReLU)

Weights (π IEN ReLU
0 ) 1.537 0.788 0.530 0.399 0.320

Expected utility (V IEN ReLU
0 ) −0.882 (0.0005) −0.255 (0.0002) −0.136 (0.0001) −0.087 (0.0001) −0.061 (0.0001)

CER (%) 13.38 (0.065) 9.35 (0.033) 7.97 (0.022) 7.26 (0.017) 6.84 (0.013)
Computational time (seconds) 70.8 69.8 69.0 69.4 69.6

NNMC-IEN (sigmoid)

Weights (π IEN sigmoid
0 ) 1.537 0.788 0.530 0.399 0.320

Expected utility (V IEN sigmoid
0 ) −0.883 (0.0005) −0.255 (0.0002) −0.136 (0.0001) −0.088 (0.0001) −0.061 (0.0001)

CER (%) 13.38 (0.065) 9.35 (0.033) 7.97 (0.022) 7.26 (0.017) 6.84 (0.013)
Computational time (seconds) 69.0 68.0 68.9 68.4 68.7

NNMC-IEN (ELU)

Weights (π IEN ELU
0 ) 1.537 0.788 0.530 0.399 0.320

Expected utility (V IEN ELU
0 ) −0.882 (0.0005) −0.255 (0.0002) −0.136 (0.0001) −0.087 (0.0001) −0.061 (0.0001)

CER (%) 13.38 (0.065) 9.35 (0.033) 7.97 (0.022) 7.26 (0.017) 6.84 (0.013)
Computational time (seconds) 69.3 69.4 68.3 71.6 68.5
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(a) Expected utility (b) CER

Figure 5. St follows the 4/2 model with a market price of risk λS(a
√

Xt +
b√
Xt
), where (a) shows the

expected utilities obtained with theoretical results and approximation methods versus investment
horizon T; and (b) shows the CERs versus investment horizon T given γ = 2.

5. Application to the OU 4/2 Model

Motivated by the 4/2 stochastic volatility model and mean-reverting price pattern
popular among various asset classes (e.g., commodities, exchange rates, volatility indexes),
Escobar-Anel and Gong (2020) defined an Ornstein–Uhlenbeck 4/2 (OU 4/2) stochastic
volatility model for volatility index option and commodity option valuation. Equation (22)
presents the dynamics involved in the OU 4/2 model, which is a specific case of (1)
given θ(Xt, St) = (LS + (λS − 1

2 )(aS
√

Xt +
bS√
Xt
)2 − βS ln St), σ(Xt, St) = (aS

√
Xt +

bS√
Xt
),

a(Xt) = κX(θX −Xt) and b(Xt) = σX
√

Xt. The parameters used in this section are reported
in Table 6, which is estimated from the data of gold Exchange-traded fund (ETF) and the
volatility index of gold ETF in Escobar-Anel and Gong (2020). There are two state variables
in the OU 4/2 model; hence, the input in both the SEN and the IEN are 2. Furthermore, the
degree of polynomial in PAMC and NNMC is 2:

dMt
Mt

= rdt
dSt
St

= (LS + λS(aS
√

Xt +
bS√
Xt
)2 − βS ln St)dt + (aS

√
Xt +

bS√
Xt
)dBt,

dXt = κX(θX − Xt)dt + σX
√

XtdBX
t

< dBt, dBX
t >= ρdt.

(22)

Table 6. Parameter value for the OU 4/2 model.

Parameter Value Parameter Value

T 1 X0 0.04
r 0.05 λS 0.572

∆re
t

1
60 ∆si

t
1

60
S0 120.0 M0 1.0
W0 1 nr 100
κX 4.7937 θX 0.0395
σX 0.2873 aS 1
bS 0.002 ρ −0.08
L 3.7672 βS 0.78
N 2000 N0 200,000
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SEN performs worse than IEN when fitting the value function with the OU 4/2
model. Sometimes, SEN significantly deviates from the true value function, which results
in poor portfolio performances and the occurrence of negative terminal wealth. Therefore,
we excluded the results from NNMC-SEN in this section. Table 7 compares the optimal
allocation, expected utility and CER obtained for the OU 4/2 model. PAMC and NNMC-
IEN produce similar optimal allocations, both outperforming NNMC-SEN. Furthermore,
we also estimated the standard deviation of expected utility and CER, which demonstrates
that NNMC leads to a less volatile estimation of expected utility and CER than PAMC in
most cases. In contrast to the results for the 4/2 model, IEN is more efficient than SEN. We
conclude that IEN is suitable for the model with a complex structure and multiple state
variables. The expected utility and CER as a function of the maturity T when γ = 2 is
plotted in Figure 6. Both the expected utility and CER increase with T. The expected utility
and CER obtained from PAMC and NNMC-IEN visually overlap and are slightly higher
than that of NNMC-SEN. Moreover, the selection of activation function in IEN makes
little difference.

Table 7. Results for the OU 4/2 model. We report the estimation of optimal weights, expected utility and CER obtained via
approximations for different levels of risk aversion γ. The standard deviation of estimated expected utility and CER from
100 runs is provided in parentheses.

γ = 2.0 γ = 4.0 γ = 6.0 γ = 8.0 γ = 10.0

PAMC

Weights (πPAMC
0 ) 0.068 0.026 0.015 0.010 0.008

Expected utility (VPAMC
0 ) −0.888 (0.0006) −0.255 (0.0003) −0.136 (0.0002) −0.087 (0.0002) −0.061 (0.0001)

CER (%) 12.65 (0.073) 9.28 (0.047) 8.00 (0.035) 7.32 (0.028) 6.90 (0.024)
Computational time (seconds) 103.9 104.6 104.4 104.5 104.3

NNMC-SEN

Weights (πSEN
0 ) 0.134 0.056 0.042 0.040 0.029

Expected utility (VSEN
0 ) −0.888 (0.0006) −0.256 (0.0003) −0.136 (0.0002) -0.087 (0.0001) −0.061 (0.0001)

CER (%) 12.62 (0.076) 9.26 (0.045) 7.97 (0.032) 7.29 (0.025) 6.87 (0.020)
Computational time (seconds) 439.5 477.5 434.3 446.9 449.7

NNMC-IEN (ReLU)

Weights (π IEN ReLU
0 ) 0.070 0.028 0.016 0.011 0.007

Expected utility (V IEN ReLU
0 ) −0.888 (0.0006) −0.255 (0.0003) −0.136 (0.0002) −0.087 (0.0002) −0.061 (0.0001)

CER (%) 12.65 (0.072) 9.29 (0.045) 8.00 (0.033) 7.32 (0.026) 6.90 (0.022)
Computational time (seconds) 190.3 190.6 190.4 187.8 185.1

NNMC-IEN (sigmoid)

Weights (π IEN sigmoid
0 ) 0.067 0.026 0.015 0.010 0.007

Expected utility (V IEN sigmoid
0 ) −0.888 (0.0006) −0.255 (0.0003) −0.136 (0.0002) −0.087 (0.0001) −0.061 (0.0001)

CER (%) 12.65 (0.072) 9.28 (0.044) 8.00 (0.033) 7.32 (0.026) 6.90 (0.022)
Computational time (seconds) 185.7 186.0 185.2 181.4 181.9

NNMC-IEN (ELU)

Weights (π IEN ELU
0 ) 0.072 0.031 0.015 0.010 0.008

Expected utility (V IEN ELU
0 ) −0.888 (0.0006) −0.255 (0.0003) −0.136 (0.0002) −0.087 (0.0001) −0.061 (0.0001)

CER (%) 12.65 (0.072) 9.28 (0.044) 8.00 (0.033) 7.32 (0.026) 6.90 (0.022)
Computational time (seconds) 185.6 184.1 188.1 195.1 193.7
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(a) Expected utility (b) CER

Figure 6. St follows the OU 4/2 model, where (a) shows the expected utilities obtained via approxi-
mation methods versus investment horizon T; and (b) shows the CERs versus investment horizon T
given γ = 2.

6. Conclusions

This paper investigated fitting the value function in an expected utility, dynamic
portfolio choice using a deep learning model. We proposed two architectures for the
neural network, which extends the broadest solvable family of value functions (i.e., the
exponential polynomial function). We measured the accuracy and efficiency of various
types of NNMC methods on the 4/2 model and the OU 4/2 model. The difference in
optimal allocation, expected utility and CER is insignificant when the stock price follows
the 4/2 model. The embedded PAMC is superior to NNMC due to the lower parametric
space, hence its efficiency. Furthermore, when considering the OU 4/2 model, NNMC-SEN
is inferior to a polynomial regression (PAMC) and to the NNMC-IEN in terms of expected
utility and CER.

In summary, NNMC benefits from the popular exponential polynomial representation
(embedded PAMC method) to propose a network architecture flexible enough to reach
beyond affine models. Although the best setting, NNMC-IEN (ELU), is not as efficient as
PAMC, neural networks demonstrate the way to tackle more advanced models along the
lines of Markov switching, Lévy processes and fractional Brownian processes.
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Note
1 ∆re

t is the portfolio rebalancing interval, 1
∆re

t
indicates the rebalancing frequency. The Euler method with step size ∆si

t
is applied in generating the stock price and states variables.
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