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Abstract: The global financial crisis of 2007–2009 caused major economic disturbances in the oil
market. In this paper, we consider five variables that describe the microeconomics of the supply
of and demand for oil, and evaluate their importance before, during and after the global financial
crisis. We consider five dissimilar regimes during the period of January 1986 to the end of 2020:
two regimes prior to the global financial crisis, the regime during the crisis, and two regimes after
the crisis. The main hypothesis tested is that oil fundamentals of supply and demand remained
important, even though the five regimes were dissimilar. We built five boosted and over-fitted neural
networks to capture the exact relationships between spot oil prices and oil data related to these prices.
This analysis shows that, while the inputs into an accurate neural network can remain the same, the
impact of each variable can change considerably during different regimes.

Keywords: oil price regimes; neural network methodology; 2007–2009 global financial crisis; struc-
tural breaks

1. Introduction

Global oil markets are complex, and the price of oil exhibits significant volatility.
During the past four decades, the price of oil was as low as about USD 20 in the late 1990s
and as high as USD 150 before the global financial crisis. Baumeister and Kilian (2016)
conducted an excellent overview of the behavior of oil prices over the past forty years, with
a special focus on the fluctuations of these prices. They emphasized that fluctuations of
such magnitude contain a large component of surprise, in the sense that ordinary economic
foresight could not penetrate the dynamic succession of regime shifting in oil markets. For
example, events such as the 1973–1974 oil crisis, which saw deliberate cuts in oil production
in Arab OPEC countries, were followed by the unexpected period of Great Moderation
during the mid-1980s.

The moderation of inflation and the reduction of real GDP fluctuations created con-
ditions for increased risk-taking and the housing bubble of 2002 to 2007, which was
characterized by an associated global boom in emerging markets such as China, India
and Brazil that fueled big increases in the price of oil. Then, the world experienced the
unforeseen global financial crisis (GFC) and the ushering in of unconventional monetary
policies around the world, which brought oil prices from about USD 150 down to USD 40.

The post-crisis period during 2009 to 2013 recorded steady increases in the price of
oil, from a low of about USD 40 to a high of USD 110, primarily because of the economic
recovery of the global economy. The most recent period, from June 2013 to December 2020,
shows how U.S. fracking technology, with its strong shale production, combined with rising
OPEC output and slowing demand from China, have contributed to dramatic declines in
oil prices, from a high of USD 100 in June 2014 to a low of USD 30 in February 2016. During
the 2016–2020 period, oil prices fluctuated between a low of USD 30 in February 2016 to
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a high of USD 75 in September 2018, to drop again to USD 20, one of oil’s lowest prices,
during April 2020, when the COVID-19 crisis destabilized the entire global economy.

Baumeister and Kilian (2014, 2015, 2016) carried out a comprehensive analysis of
this period, while other authors have examined specific topics and periods, such as
Hamilton (1983); Bernanke et al. (1997); Nakov and Pescatori (2010); Kilian (2008).

The focus of this paper is the pricing of oil and its determinants. We consider five
variables that describe the microeconomics of the supply of, and demand for oil, motivated
by a similar approach proposed by Kilian (2009). We evaluate their importance as oil
determinants and their variability before, during, and after the GFC. We consider five
dissimilar regimes during the period of January 1986 to the end of 2017: two regimes
prior to the global financial crisis, the regime during the crisis, and two regimes after the
crisis. Malliaris and Malliaris (2020) studied the behavior of the global price of oil using
macroeconomic variables and employing the methodology of overlapping regressions.
Bhar et al. (2021) focused on U.S. oil production.

The classic paper on regime changes is Ang and Timmermann’s (2012), which instructs
us about the methodology used. Economists are familiar with two regime methodologies
from the analysis of business cycles. One regime contains periods of economic growth
and the next regime includes periods of decline. The fundamental assumption is that
all regimes of growth are similar in all other respects; the same is assumed for regimes
of decline. However, regimes need not repeat themselves between just the two states of
growth and decline.

Most techniques consider two regimes, and in the case of oil, these have been applied
extensively in papers such as Bhar and Malliaris’s (2011) and Tsai’s (2015). Related papers
are Noguera’s (2013); Salisu and Fasanya’s (2013); Xiong et al.’s (2013). In our case,
we identify five regimes, described in Section 2, and assume that each such regime is
distinctive.

The main hypothesis tested is that the oil fundamentals of supply and demand remain
important even though the five regimes are dissimilar. We build five boosted and over-
fitted neural networks to capture the exact relationships between spot oil prices and oil
data related to those prices. Overfitting involves letting the model train on a specific data
set until it fits that data very closely. Such a model cannot generalize well to other datasets,
but can explain one specific set well. This analysis shows that, while the inputs into an
accurate neural network can remain the same, the impact of each variable can change
considerably during different regimes. We find that the shifts in impacts of the various
inputs are great enough to support the hypothesis that there are important structural breaks
between periods.

There are many reasons to avoid overfitting a neural network, particularly because
it destroys any chance of building a generalized model that will be suitable over time.
However, in this paper, we use the downsides of overfitting to our benefit. By overfitting
models of five different time periods, we are able to highlight why generalization is difficult
over the entire period. By building, then comparing, five bespoke networks, we can identify
the specific areas where general models will need to improve in order to forecast well.
Although we do not perform any forecasting, the neural network methodology applied
in this paper, the microeconomic data of the independent inputs used, and the results
obtained provide an excellent impetus for further work in this area along the lines of
Chen’s (2014); Jammazi and Aloui’s (2012) and Shin et al.’s (2013).

In this paper, we build five neural network models and overfit them in order to
capture the relationships among the inputs in the ways that most perfectly match their
configurations in a specific period. As indicated, it is not our purpose to build forecasting
models with validation sets. Rather, we want to create descriptive models that encapsulate
existing relationships in different regimes of the data set. This will help us to understand
shifts in variable impact over the various regimes.
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2. Data

The data for this study comprise inputs related to oil and supply and demand for oil.
There are five variables: the spot price of oil, the stored stocks of oil except for that held
by the government as strategic petroleum reserves, net imports of oil, oil production, and
product supplied. The US Energy Information Administration (EIA) uses product supplied
as a representation for the amount of petroleum products consumed. All data are monthly,
rather than seasonally adjusted, and were downloaded from the EIA. They cover the time
period from January 1986 through to the end of 2020. Table 1 gives the source of the data
for each of these variables, and the abbreviated name used in the models.

Table 1. Variables and their sources.

Variable Data Source Short
Name Source URL

Production of Oil in the U.S. MCRFPUS1 from EIA Prod https://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_
mbbl_m.htm (accessed on 14 March 2021)

Net Imports of Oil in the U.S. MTTNTUS2 from EIA NetImp
https://www.eia.gov/dnav/pet/hist/LeafHandler.
ashx?n=PET&s=MTTNTUS2&f=M (accessed on 14 March
2021)

Oil Stocks excluding the
Strategic Petroleum Reserve MTESTUS1 from EIA Stks

https://www.eia.gov/dnav/pet/hist/LeafHandler.
ashx?n=PET&s=MTESTUS1&f=M (accessed on 14 March
2021)

Product Supplied
(Consumption) of Oil MTTUPUS1 from EIA Con https://www.eia.gov/dnav/pet/pet_cons_psup_dc_

nus_mbbl_m.htm (accessed on 14 March 2021)

Spot Price of Cushing Oil RWTC from EIA SpotPr https://www.eia.gov/dnav/pet/pet_pri_spt_s1_m.htm
(accessed on 14 March 2021)

Month of the year Derived from data above Month

The spot price of oil is the price of a single transaction for delivery of a determined
quantity of oil to a specified place. Demand for oil does not change rapidly, but is seasonal.
As demand varies, we see its effects on production, on imports, and on the amount of
oil in storage. The stocks of oil, excluding the strategic petroleum reserves, includes the
inventories stored for future use, and is reported in thousands of barrels on the last day
of the week. The strategic petroleum reserve is an amount of stock maintained by the
government for use during any period where there is a major disruption in supply. The
values of net imports are measured in thousands of barrels imported, and include oil from
the 50 states, the District of Columbia, and U.S. possessions and territories. Net imports is
the amount of imports minus the amount of exports. Production is measured in thousands
of barrels. Production covers the volume of oil produced from U.S. oil reservoirs. It
includes the volume from the point of custody transfer to trucks, pipelines, or other means,
with the intent to be transported to refineries. The quantities are estimated by the state
and summed to the Petroleum Administration district (PADD) and then to the U.S. level.
The Product Supplied is used as a stand-in for the consumption of petroleum products,
since it is calculated as the amount of petroleum products removed from principal origins.
These five variables form the fundamentals of supply: production, plus net imports, plus
oil stock (inventory) and oil demand, which all determine the price of oil in the U.S.
Variables were then scaled to be between zero and one. This set of variables includes the
abbreviation of the original variable name followed by Scld. Scaling allows the model to
treat the variables on a more equal basis, but all values will be positive, as they refer to
quantities and prices. Scaling the data to be between 0 and 1, referred to as Feature Scaling
in machine learning (ML), is an important process, especially when neural networks are
being used. Because neural network algorithms use gradient descent as a process, they
will have a better and more rapid convergence to the target when feature scaling has been
used. With ML algorithms that calculate distances, larger valued attributes can dominate

https://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_m.htm
https://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_m.htm
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MTTNTUS2&f=M
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MTTNTUS2&f=M
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MTESTUS1&f=M
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MTESTUS1&f=M
https://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbbl_m.htm
https://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbbl_m.htm
https://www.eia.gov/dnav/pet/pet_pri_spt_s1_m.htm
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the output because the algorithm is affected by the relative sizes of the variables. Thus,
scaling the variables speeds up the learning phase in a neural network feedforward back
propagation algorithm, and helps prevent variables with large ranges from over-weighting
node connections for variables with smaller ranges (Han et al. (2012); Guidici (2003);
Weiss and Indurkhya (1998)). The target for each network was the scaled value of the spot
price of oil.

The data set was split into five parts using the structural breaks created by the interven-
ing economic crisis. These five time periods are shown in Table 2, along with the beginning
and ending dates, and the number of months involved. Our entire data set begins in
January of 1986 and shows a sideways movement of spot prices until late 2001, followed
by a steady growth of spot prices, with some noise, until late 2007. The crisis period is
the one determined by the National Bureau of Economic Research and coincides with the
Great Recession that began in December 2007 and ended in May/June 2009. During this
period, the oil bubble continued to grow in late 2007 and early 2008, and then collapsed
with Lehman Brothers’ bankruptcy in mid-September 2008. A small bounce at the bottom
led eventually to a resumption in the steady growth of prices after mid-2009. After this
time period, we see another sharp downward trend, followed by a slight upward move.
Thus, the middle regime is chosen objectively, since it describes the period of the Great
Recession, while the two regimes before it, and the two after it, are decided by subsets
that differ in terms of price volatility. Viewed together, these five regimes are dissimilar in
terms of the economic conditions driving the oil market.

Table 2. Data set time periods.

Regime Begin End Number of Months

Pre-Bubble January 1986 December 2001 180
Bubble Forming January 2001 November 2007 83

Crisis December 2007 May 2009 18
After Crisis June 2009 May 2013 48

Recent June 2013 December 2020 91

We used economic reasoning to characterize the subdivisions proposed. Our economic
reasoning was driven by a careful and realistic assessment of important developments
in the global oil market. The five periods chosen and described as: Pre-Bubble, Bubble
Forming, Crisis, After Crisis, and Recent, were determined by starting with the well-
defined period called the Global Financial Crisis. There is much consensus that this period
started in December 2007 and ended in May 2009. Using this period as an anchor, we chose
a pre-crisis and a post crisis period, and further analysis of these two broad categories
guided us towards subdividing each of these into two, because numerous authors we
cite in the paper have described the emergence of pre-crisis bubbles as well as post-crisis
developments in fracking. This paper’s claim is: by proposing five economic regimes and
building five boosted and over-fitted neural networks to capture the exact relationships
between spot oil prices and oil data related to those prices, we will receive more insightful
results than if we had just analyzed a single period. This analysis shows that, while the
inputs into an accurate neural network can remain the same, the impact of each variable can
change considerably during different regimes, and the insights from our specific regimes
are more useful than the results from the whole sample period. We do not claim that we
have proposed the most optimal five regimes among all possible combinations.

Support for our approach is provided by studies such as Balcilar and Ozdemir’s (2013)
and Zhu et al.’s (2017). Balcilar and Ozdemir (2013) investigated the regime-switching
causal nexus between U.S. oil and equity markets. The data used were the log returns of
monthly crude oil futures contracts traded on the New York Mercantile Exchange and a
sub-grouping of the S&P500 index. Their sample period covered the 1991 to 2011 period,
which includes several important developments in the oil sector. These include the Gulf
Crisis in 1991, the Asian financial crises in 1997–98, the 9/11 Terrorist Attack in 2001, the
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second Gulf War in 2003, and finally, the global financial crisis in 2007–9. The authors
derived four regimes and studied relationships between the price of oil and equity markets.

Zhu et al. (2017) considered the impact of oil supply and demand shocks on stock
returns during the period of 1985 to 2015, using a two-regime Markov regime-switching
model. Unlike Balcilar et al., Zhu et al. examined the asymmetric effects of oil supply
and demand shocks on stock returns in high- and low-volatility states. Their two-regime
Markov regime-switching model lends support to the underlying asymmetric responses of
stock returns to oil supply and demand shocks for both oil-importing and oil-exporting
countries. Our use of five regimes is inspired by both Balcilar et al. and Zhu et al., who
offer empirical evidence that regimes differ, and thus focusing on a number of regimes will
enrich our understanding. While they applied a two-regime Markov methodology, we
apply in this paper a neural network methodology, and our data are extended to include
oil data during the period of 2016 to 2020. Increasing the number of regimes substantially
beyond 5, say to 10 or 15, dilutes the impact of the major events that occur in markets, and
diminishes the ability to reach meaningful conclusions. Simply put, too much detail may
obscure critical relationships.

Figure 1 shows this graphically, along with the five periods. In Figures 2–5, graphical
representations of each of the scaled input variables are depicted. Net imports shows a great
amount of inter-week volatility and an underlying inverted parabola shape, increasing
prior to the GFC, and decreasing afterwards. Production moves in an upward parabolic
shape, with periodic seasonal drops observed where oil demand slows. Following the
GFC, production increased significantly, then took a dip. Stocks also exhibit a seasonal
pattern, with a sharp increase observed in the recent time period. Consumption shows a
seasonal increasing pattern that dropped during the GFC and has been gradually increasing
since then.
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Figure 1. Spot prices over five regimes.
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Figure 2. Net imports.
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Figure 3. Production.
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Figure 4. Stocks.
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Figure 5. Consumption.

In Table 3, correlations between the input variables and the spot prices during each of
the time periods are shown. Bold values highlight the input with the highest correlation
in a given regime. As a first indication of the shifting relationships, we see that the set of
negative correlations is not consistent from period to period. No input is always positive
or negative. Production is negatively correlated with spot prices, except in the period
following the crisis. Consumption has a positive correlation with the spot prices before
and through the crisis period, then turns negative for both periods following the crisis. The
amount of oil held in stocks has a negative correlation with the spot prices except when
the bubble was beginning to form, while net imports have a positive relationship with the
spot prices except during the period immediately after the crisis, where the relationship
turned sharply negative. These shifting correlation relationships are an indication that the
importance of each of these variables in relation to spot prices may change within each of
the neural network models.

Table 3. Correlations between input variables and the spot price, per period.

Production Consumption Stocks NetImports

Pre-Bubble −0.2910 0.2516 −0.4449 0.2274
BubbleForming −0.7807 0.4873 0.2760 0.6817

Crisis −0.1076 0.4285 −0.7961 0.4046
AfterCrisis 0.4442 −0.2450 −0.4839 −0.5623

Recent −0.4035 0.0670 −0.8750 0.4553

3. Models

Each of the data sets was used to build a neural network with IBM’s Modeler 17.0
data mining software. Each model had five input variables and one target. The multi-
perceptron networks had one hidden layer. Since the objective was to build models that
were based as precisely as possible on each data set, boosting was used to enhance the
model accuracy. For replicability, the same seed of 229,176,228 was used for each of the
networks. The models were set to stop after a maximum of 15 min, though each trained for
under a minute.

In Modeler, boosting is done by creating an ensemble model. That is, a sequence of ten
models is built. In this group of component models, each one is built based on the entire
data set of the given period. Before building the next successive component model, all
the rows are weighted based on the residuals from the immediately previous component
model. Rows with large residuals receive relatively higher analysis weights in order to
force the following component model to forecast these particular records accurately. The
component models together form the ensemble model. This ensemble model then scores
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records by using a combining rule. This combining rule assigns to the target the value that
has the highest probability most often across the component models. This is done to help
the network to most accurately mirror the relationships within that financial regime of the
data.

In Modeler, all developments occur through nodes, and they flow from the first
node to the last. Nodes are added to the stream by dragging up into the stream the
type of node wished for from the possible set at the bottom of the stream’s screen area.
Figure 6 illustrates one of the streams constructed for this problem. It shows an Excel node
connected to a Type node, then to a Select node followed by a neural network node. The
network generates a trained node (shown as a gold nugget) through which it sends data
to generate a forecast for each dataset row. The last node, a table, is used to display the
results.
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Figure 6. Modeler stream.

Settings within a node are easily accessed by right-clicking on the node and opening
a submenu. The data is first read in using an Excel node which forms the connection to
the specific data set. It then flows through a Type node where the role each field will play
is specified. As Modeler reads the data, it also displays the largest/smallest values the
variables take on, the type of data it is assigning to each variable, and whether or not there
are any missing or unreadable data in the set. The Type node, opened in its Edit screen,
allows all these setting to be checked.

From the Type node, the data are fed through a Select node, which allows the user to
narrow the data set to a specific time period. From this node, the data flows to the neural
network node. Within the neural network node, the settings for model size and purpose
(boosting) are controlled. There are many possible settings within the Edit screen of this
node. In Objectives, one can choose to build a standard model, to model for accuracy,
or to model for stability. Stopping rule limits can be set for time, for a number of cycles,
or for accuracy. When using either boosting or bagging, settings under Ensembles allow
the user to specify the type of combining rule that will be used for either continuous or
category type targets. Under the Advanced menu, the user can specify the random seed
for the network run in order to replicate results, and whether or not missing values will be
imputed.

The neural network is then executed and this generates a trained model. The trained
model can be browsed to view the sensitivity analysis and structure of the model. Once a
trained model is generated, other data sets can be run through it to generate future forecasts
or to compare accuracies on a validation set. The trained model’s specific output can be
viewed by attaching a table to the trained node and running the data through it. A network
similar to the one shown was developed for each of the five data sets.
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The accuracy of these networks can be seen in the next graph, Figure 7, which shows
the actual spot price versus the spot price generated by the trained networks. To generate
this graph, the data from all five sets were recombined into a single set. The trained
networks closely mimic the actual prices, with a mean absolute deviation of 0.007 across all
periods.
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Figure 7. Actual vs. neural network spot prices.

With this high level of accuracy, we now turn to the sensitivity analysis. The sensitivity
analysis allows us to see the impact of each of the input variables on the neural network
target value. The values of a sensitivity analysis are relative to each other and, within a
single model, always sum up to one. While these values have no directly interpretable
meaning in terms of determining the output value, they do show how the model ranks each
input relative to the others in deciding the target’s final value. A larger value indicates a
greater impact on the target. Table 4 shows the sensitivity analysis (or, relative importance)
of each variable on the spot price of oil during each period of time. The variable with the
highest impact is highlighted. Figure 8 shows these values in a graph.

Table 4. Relative importance of variables per data set, largest value in bold.

Input Variable PreBubble BubbleForming Crisis AfterCrisis Recent

Consumption 0.16 0.15 0.29 0.07 0.01
Month 0 0 0 0.03 0

NetImports 0.14 0.32 0.21 0.39 0.13
Production 0.21 0.48 0.04 0.23 0.1

StocksExcSPR 0.49 0.05 0.46 0.27 0.76
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The stored stock of oil had the greatest role in determining the spot prices during the
pre-bubble, the crisis, and the recent periods. However, in the periods between those, its
impact dropped greatly. During the bubble-forming period, production had the greatest
impact, and during the period immediately after the crisis, net imports had the most
influence on the spot price.

Table 5 shows the amount of error in the model estimates for each period. A mean
absolute error across all periods of 0.007 was recorded. We also see a very high linear
correlation between the actual and model-generated values for the target.

Table 5. Error per period.

Pre-Bubble BubbleForming Crisis AfterCrisis Recent

Minimum Error −0.019 −0.036 −0.016 −0.105 −0.059
Maximum Error 0.024 0.052 0.013 0.019 0.052

Mean Error 0 −0.001 0 −0.003 0.002
Mean Absolute Error 0.004 0.009 0.007 0.008 0.011
Standard Deviation 0.006 0.014 0.008 0.019 0.017
Linear Correlation 0.988 0.996 1 0.978 0.995

Occurrences 180 83 18 48 91

4. A Solitary Model

Suppose that, rather than developing individual neural network models for each
period, we instead develop one model using all the data. How well would that model do
in comparison, and what variables would be the most important? The results from doing
this are shown in Figure 9, and in Tables 6 and 7. Figure 9 shows a graph of the two sets of
prices over time. The graph shows some periods where the two are close, and some where
the prices are more divergent, such as in the late Pre-Bubble and Bubble Forming periods,
and at the end of the GFC. Table 6 shows that the overall network spot prices had a mean
absolute error from the actual prices of 0.031. This is in comparison to the mean absolute
error of 0.007 across the networks developed on individual periods. Table 7 lists the overall
variable importance for the inputs. This combined variable importance, generated by one
network for all the data, hides from us the changing impact of variables over time. For
example, we see in Table 7 that Consumption had a variable importance of 0.8772, much
higher than in any individual period. If we were to average the effect of consumption over
separate periods, we would get a value of about 0.13. This is about one fourth of the value
it has in the single network. StocksExcSPR had the greatest relative importance in three of
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the five networks on individual sets, but had only an importance of 0.09 here. Inspection
of the other inputs shows a similar story of difference in relative importance compared to
individually developed networks. By not developing the neural networks for individual
regimes, our picture of the variables’ impacts during the separate periods is hidden.
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Figure 9. Actual vs. model Price, one model for all data.

Table 6. Error calculations for one network for all the data.

Statistic Value

Minimum Error −0.152

Maximum Error 0.139

Mean Error −0.001

Mean Absolute Error 0.031

Standard Deviation 0.04

Linear Correlation 0.985

Occurrences 420

Table 7. Relative variable importance over one network.

Variables Importance

Consumption 0.8772

Month 0.0000036

NetImports 0.0013

Production 0.0294

StocksExcSPR 0.0921

This analysis shows that, by separating the data into regimes motivated by economic
reasoning, the neural network results both have a lower error and allow us to see the chang-
ing paths of variable influence. We do not claim that the selection of these specific regimes
is the optimal set of periods. Further subdivision may give even more insightful results.



J. Risk Financial Manag. 2021, 14, 391 12 of 13

5. Conclusions

This paper considers the spot price of oil, net imports of oil, production of oil, the
stored supply of oil, and petroleum supplied (a proxy for petroleum consumption) in
order to analyze the microeconomic fundamentals of oil in the U.S. markets. Each of
these variables was scaled to be between zero and one. In addition, the month of the
year was also employed as an input to account for seasonality in the demand for oil. The
data were divided into five periods, or regimes, from 1986 through 2020: two before, one
during, and two after the GFC of 2007–2009. Using these inputs, we built boosted neural
networks to explain the spot price of oil, advancing the hypothesis that different inputs
receive fundamental importance along dissimilar economic regimes. Put differently, these
networks were built with the intent of analyzing the variables’ impacts across time periods
to see whether or not the variable importance remained the same through these very
different periods. If we found that a set of variables stayed the same in impact across the
financial structural breaks, then we could look for a single network that could be used to
successfully forecast across widely varying time periods.

Our methodology shows that, while the inputs into an accurate neural network can
remain the same, the impact of each variable changes considerably during different regimes.
We find that the shifts in impacts of the various inputs are great enough to support the
hypothesis that there are important structural breaks between periods. We conclude that,
in the presence of structural breaks, there is a shift in the way the neural network uses and
values the inputs. One common approach to forecasting involves a rolling time period for
training followed by a short validation set. When structural breaks occur, it is unlikely
that this methodology would be successful. A structural break indicates a clear-cut shift in
market movement and relationships. Even with frequent re-training, the shift across these
breaks is significant enough that the time period for training and that for validation will be
so different that the network will not be successful for a future set. With an indication of a
structural break, we might need to shift to very short training sets in order to mirror the
current relationships.

Our methodological conclusion concurs with Baumeister and Kilian (2016), who
conducted a rich and informative narrative of the oil market during the past forty years
and concluded that oil prices have continued to surprise us and may continue to do so
in the future, both because of the complex fundamentals of this global market and the
sequence of unexpected shifts in economic and financial regimes.
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