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Abstract: Over through the years, people have invested in stock markets in order to maximize
their profit from the money they possess. Financial sentiment analysis is an important topic in stock
market businesses since it helps investors to understand the overall sentiment towards a company
and the stock market, which helps them make better investment decisions. Recent studies show that
stock sentiment has strong correlations with the stock market, and we can effectively monitor public
sentiment towards the stock market by leveraging social media data. Consequently, it is crucial to
develop a model capable of reliably and quickly capturing the sentiment of the stock market. In
this paper, we propose a novel and effective sequence-to-sequence transformer model, optimized
using a sparse attention mechanism, for financial sentiment analysis. This approach enables investors
to understand the overall sentiment towards a company and the stock market, thereby aiding in
better investment decisions. Our model is trained on a corpus of financial news items to predict
sentiment scores for financial companies. When benchmarked against other models like CNN, LSTM,
and BERT, our model is “lightweight” and achieves a competitive latency of 10.3 ms and a reduced
computational complexity of 3.2 GFLOPS—which is faster than BERT’s 12.5 ms while maintaining
higher computational complexity. This research has the potential to significantly inform decision
making in the financial sector.

Keywords: sentiment analysis; stock market; transformer; social media; text mining; sparse attention

1. Introduction

A nation’s stock market is one of the foundations of its economy Gupta and Singh
(2017); Sanboon et al. (2019). As part of economic liberalization, stock markets play the
most significant role in the financial strategies of the worldwide corporate sector Gandhmal
and Kumar (2019); Jiang (2021). On the other hand, emotion-driven trading has emerged as
a powerful influence on the dynamics of the stock market. Understanding the sentiment
around a financial asset can provide valuable insights into its future performance. In this
digital era, social media platforms like Twitter serve as a vast source of public opinion
and sentiment, which can be used to make more informed financial decisions. The most
important choice for investors is what to do with a particular stock, i.e., whether to buy,
sell, or hold the stock’s shares. If investors are able to invest in the proper stocks, they
will generate substantial profits; otherwise, they risk losing their money, which would be
detrimental to them and their country. Therefore, it is necessary to develop such prediction
models Nabipour et al. (2020); Pang et al. (2020) that can help more accurately and effectively
anticipate the values of stocks. Understanding the sentiment towards a particular stock
or the market as a whole is crucial to making informed investment decisions. These
decisions, in turn, have far-reaching implications not only for individual investors but also
for the broader economic landscape Gupta and Singh (2017); Sanboon et al. (2019). Stock
markets serve as the backbone of a nation’s economy. Their performance is a key indicator
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of economic health, making it vital to develop tools that can guide investors in making
profitable choices Arora et al. (2017); Saxena et al. (2021). However, the volatile nature of
financial markets makes it a risky endeavor, where the line between substantial profits
and crippling losses is exceedingly thin Gupta and Singh (2020); Singh and Gupta (2020).
Given the significant role that stock markets play in economic liberalization and corporate
financing strategies worldwide Gandhmal and Kumar (2019); Jiang (2021), accurate and
effective prediction models are of paramount importance Nabipour et al. (2020); Pang et al.
(2020). This paper proposes a novel and effective model for financial sentiment analysis,
with the aim of better equipping investors in this uncertain environment.

Numerous studies in the literature have consistently demonstrated the significant
association between the sentiment of social media and the stock market Liu (2012). Con-
sequently, there is substantial value in analyzing the sentiment of the stock market for
practical and research purposes. Recently, emerging attention has been paid to analyzing
investor sentiment via social media, particularly among young and inexperienced investors.
Several research works have focused on using Twitter sentiment to forecast stock market
trends Gandhmal and Kumar (2019); Jiang (2021); Mishev et al. (2020); Pang et al. (2020);
Pota et al. (2020); Zhao et al. (2016).

Sentiment analysis is regarded as a classical problem in natural language processing
(NLP), which aims to determine people’s opinions, sentiments, and preferences regard-
ing entities such as products, services, organizations, and individuals. However, stock
sentiment analysis faces two major challenges, as shown below:

• Challenge 1: Mismatch between conventional and stock sentiment. The first chal-
lenges results from the fact that conventional sentiment analysis significantly differs
from stock sentiment analysis. In a detailed analysis, it becomes evident that stock
sentiment, though bearing certain correlations, markedly diverges from the traditional
sentiment often assessed in academic contexts such as consumer feedback studies,
literature reviews, and broader public sentiment analyses. Traditional sentiments
are primarily anchored in the emotional spectrum, capturing the nuances between
positive and negative affective states Liu (2012). On the contrary, stock sentiment is
intrinsically tied to market dynamics, reflecting anticipations of stock price move-
ments and whether they indicate bullish or bearish trends. While there are scenarios
where stock sentiment aligns with traditional sentiment, there are also instances where
the two sentiments manifest stark disparities. For instance, a public discourse may
show skepticism toward a particular economic event, yet there could be an underlying
optimism about the potential appreciation in stock value for a company like $TSLA,
highlighting a bullish stock sentiment. An extensive compilation of such instances is
presented in Table 1.

Table 1. The social media examples on Twitter show the sentiment mismatches between conventional
sentiment and stock sentiment due to the difference in sentiment definitions.

Social Media Content Conventional Sentiment Stock Sentiment

$TSLA long. Negative Positive

Be Prepared For A DOGE Crash Elon on
SNL Dogecoin New Price Predictions.

Negative Neutral

Buy the f*cking dip! Hold the line! $AMC
$GME $NOK

Negative Positive

• Challenge 2: High computational complexity of deep learning models. In recent
years, deep learning models, particularly transformers, have achieved state-of-the-
art performance across a myriad of tasks in natural language processing, computer
vision, and beyond. However, a significant impediment to their broader applica-
tion and scalability remains the high computational complexity associated with their
architecture Lin et al. (2022). Such complexity not only demands substantial computa-
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tional resources but also poses challenges for real-time processing and deployment in
resource-constrained environments. Figure 1 shows that computing the softmax at-
tention constantly dominates (52–58%) the MHA runtime in transformer architecture,
particularly as devices grow less powerful and resource constrained. Recognizing
these challenges, this paper proposes the adoption of sparse transformers, a variant
optimized to reduce computational overhead without compromising the model’s
efficacy. By leveraging the sparsity inherent in the transformer’s attention mechanism,
we aim to achieve a balance between computational efficiency and model performance,
paving the way for more sustainable and scalable deep learning applications.

Figure 1. Runtime breakdown of MHA on various devices.

This research realizes more computationally efficient financial sentiment analysis using
a sequence-to-sequence model. And the most trending model nowadays is transformer
Vaswani et al. (2017), which is a type of natural language processing (NLP) model that can
provide outputs that are responsive to context Yang et al. (2020). The transformer model
is trained to predict sentiment scores for financial companies using a corpus of financial
news items. This sentiment forecast is then utilized to determine the market sentiment
Mishev et al. (2020) as a whole. The results demonstrate that the transformer model can
generate reliable sentiment ratings and can be used to detect market sentiment in real time.
Additionally, the algorithm can generate sentiment scores that are sensitive to the dynamic
character of the financial market. In this paper, we present a novel approach for financial
sentiment analysis using a sequence-to-sequence model transformer Pota et al. (2020) with
sparse attention. The transformer model was first introduced by Google Vaswani et al.
(2017) to finish tasks involving machine translation, which is adept at recognizing long-
term dependencies from data. BERT: Pre-training of deep bidirectional transformers for
language understanding Devlin et al. (2018), a transformer-based model using only encoder
modules in natural language processing, attempts to broaden the original transformer’s
applicability so that it may serve as a general-purpose backbone for tasks in NLP.

The following is a summary of the key contributions: (1) In this paper, a novel and
effective method for financial sentiment analysis is proposed, and its applicability is proven
using a real-world sentiment analysis dataset. According to the findings of the trial, the
proposed strategy exceeds the most recent methodologies on three performance metrics.
(2) According to our knowledge, this is the case. Compared with the original transformer,
the performance of this Bert-based transformer structure is superior to SVM, LR, and NBM
Neuenschwander et al. (2014); Sohangir et al. (2018); Zhao et al. (2016). The remainder of
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this paper is organized as follows. In Section 2, the related work is introduced in detail. The
proposed method is subsequently presented in Section 3. In Section 4, the outcomes are
depicted. Section 5 concludes with a brief conclusion, limitations, and future work analysis.

2. Related Works
2.1. Sentiment Analysis and Related Financial Applications

Sentiment analysis is a critical workload that has been widely studied in the research
community Aziz et al. (2022); Hasselgren et al. (2022); Pathak et al. (2021); Ruan et al. (2018).
One of the previous works Pathak et al. (2021) leverages the topic-level sentiment analysis
model, which extracts the topic at the sentence level using online latent semantic indexing,
and then applies the topic-level attention mechanism in a long short-term memory network.

Financial applications of sentiment analysis include a variety of topics, and previous
work performed sentiment analyses at various levels of granularity. The authors in Aziz
et al. (2022) propose the Light Gradient Boosting Machine (LGBM) approach to accurately
identify fraud for blockchain transactions, such as Ethereum. A trust management frame-
work based on sentiment analysis is proposed in Ruan et al. (2018) to build a trust network
for Twitter users. This work considers a reputation mechanism to amplify the correlation
between firms’ Twitter sentiment valence and the corresponding stock’s abnormal returns.
Hasselgren et al. (2022) studied how to use the sentiment of public social networks to make
investment decisions. The authors present a model to track stock market performance
based on the results of sentiment analysis obtained from social media.

2.2. Existing Deep Learning Models for Sentiment Analysis
2.2.1. Seq2Seq Model

Sequence to Sequence (Seq2Seq) models are an effective sort of neural network em-
ployed in NLP applications. They are neural networks that receive a data sequence as input
and produce another data sequence as output. Seq2Seq models can learn the context of a
sentence and derive the meaning of individual words and phrases. They are utilized in
numerous applications, including machine translation, chatbot creation, automatic sum-
marization, and text-to-speech conversion. Seq2Seq models like long short-term memory
(LSTM) Hochreiter and Schmidhuber (1997), recurrent neural networks (RNNs) Medsker
and Jain (2001), and Gated Recurrent Unit (GRU) Dey and Salem (2017) have demonstrated
efficacy in a range of tasks, making them an in-demand resource in the field of natural
language processing.

2.2.2. LSTM Model

The use of long short-term memory (LSTM) networks has been researched in the area
of financial sentiment analysis in recent years Gupta et al. (2022). Financial sentiment
analysis is an important issue in stock market businesses, since it can help investors
understand the overall sentiment towards a company and the stock market, which can
help them make better investment decisions. Sentiment analysis can also help provide
insight into general public opinion, which can be useful for making business decisions
Man et al. (2019); Wang et al. (2016). LSTM networks, which are a sort of recurrent neural
network, are suitable for modeling temporal data and have been proven to be effective
in a variety of applications (Lin et al. 2017; Wang et al. 2019; Zhao et al. 2017), including
financial sentiment analysis. LSTM can extract useful information from time series data;
however, its performance decreases as the input sequence increases Qin et al. (2017).

2.2.3. Transformer Model

In recent years, the fast development of AI technology has led to the emergence of
increasingly powerful algorithms. In general, newer, more potent algorithms have a better
data processing capacity Zhou and Xue (2018). The transformer model Vaswani et al. (2017)
is a unique and cutting-edge AI program. Lin et al. (2022). Recent research has examined
the use of transformer-based models in various complex tasks. A transformer is a type of
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neural network design that has been shown to perform well in natural language processing
tasks and has been implemented in a number of other disciplines as well Dong et al. (2018);
Dosovitskiy et al. (2020); Khan et al. (2022). We adopt a bidirectional transformer for
financial sentiment analysis, a BERT-based transformer Devlin et al. (2018), which greatly
outperforms the traditional transformer.

2.2.4. BERT

Google AI created BERT (Bidirectional Encoder Representations from Transformers)
in 2018 Devlin et al. (2018) as a new natural language processing (NLP) technique. Its
performance has surpassed the accuracy of numerous existing cutting-edge NLP models.
BERT is a deep learning model based on unsupervised learning that can efficiently learn
from unlabeled text, enabling it to perform a variety of tasks like sentiment analysis,
text classification, text generation, question answering, and entity extraction. BERT is a
powerful tool for natural language processing and comprehension that has been utilized
effectively in a variety of applications and is rapidly becoming the industry standard for
NLP tasks.

3. Proposed Methods

The primary objective of this paper is a financial sentiment analysis using a deep
learning-based sequence model. Hence, a pre-trained model BERT using transformer
architecture was used for classification, specifically by first taking financial texts as inputs
and then feeding them into BERT. The details will be introduced in Section 3.3.

3.1. Overview of Sentiment Analysis Pipeline

Figure 2 depicts the comprehensive pipeline of our proposed approach. Within this
schematic, the letter “E” stands for embedding. This is the preliminary phase where
the Twitter dataset undergoes preprocessing to convert its textual content into machine-
readable vector representations. Subsequently, the symbols “C” and “T” signify the ultimate
hidden states generated by the transformer architecture, encapsulating deep contextual
information within the text. In particular, the unique token “[CLS]” in BERT is employed
as a specialized marker for classification tasks, serving to encapsulate an aggregated
understanding of the entire sentence or text segment.

Figure 2. Overview of the pipeline. E stands for embedding, C and T stand for the ultimate concealed
states provided by the transformer architecture, and [CLS] is the BERT special classification token.

Central to this pipeline is a BERT-based classification model, an advanced deep learn-
ing model particularly specialized in text classification tasks. The process begins with
the preprocessing of the Twitter dataset to ensure data quality and uniformity. Upon
preprocessing, the data are ingested into the model and traverse through the multi-layered
transformer architecture, ultimately resulting in the final classification outcome.

Our selection of the Twitter dataset is motivated by its abundant textual content and
its characteristics in real time, which offer a wide range of training samples for our model.
Additionally, BERT-based models have previously exhibited exceptional performance in a
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diverse range of tasks. Taking advantage of this proven architecture, we aim to achieve
efficient and precise classification of Twitter text data.

3.2. Transformer Architecture

Transformer architecture is typically separated into two components, as shown in the
figure; one is for the encoder, as shown in Figure 3, and the other for the decoder. Only
the encoder needs to travel through the encoder to learn the representation because we
only need to classify the texts for sentiment analysis. Devlin et al. (2018); Dosovitskiy
et al. (2020); Liu et al. (2021). To produce predictions or perform classification for the
downstream model, the transformer encoder is made to take in a sequence of tokens as an
input and encode them into a lower-dimensional representation. The model can capture
long-range dependencies in the inputs and produce a more accurate representation of the
inputs, thanks to the transformer encoder’s self-attention mechanism.

Figure 3. Transformer encoder architecture.

The separation of vectors from input tokens (for example, words, signals, images, etc.),
or embeddings, is the initial stage in the encoding process. We assume that a sequence of
input length n is (x1, x2, . . . , xn), x ∈ Rdmodel . These embeddings preserve the meaning of
each token in the input sequence and serve as the foundation for the model’s calculation.

Positional Encoding. The order of the tokens is significant in some tasks, but the trans-
former model, which employs a self-attention mechanism, is not naturally able to capture
this order. As a result, the model uses positional encoding (1) to supplement the input
embeddings with additional information that encodes the positions of each token in the
input sequence.

PEpos,2i = sin(pos/100002i/dmodel )

PEpos,2i+1 = cos(pos/100002i/dmodel )
(1)
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The input embeddings are then subjected to self-attention techniques by the trans-
former encoder. By valuing each input embedding according to its importance to all other
input embeddings, self-attention enables the model to capture long-range dependencies
in the input text. The transformer encoder adds one or more feed-forward layers to the
encoded representation after applying the self-attention methods.

Self-attention mechanism. The input token consists of queries (Q), keys (K) and values (V)
of dimension dmodel . It is created by averaging the input across the three learnable matrices
Wq, Wk and Wv.

Q, K, V = X ·Wq, X ·Wk, X ·Wv, (2)

Attention(Q, K, V) = So f tmax(
QKT
√

dk
)V. (3)

Concretely, dk is the hidden dimension, which can be the same as dmodel , and scaled
dot-product attention is used in this work.

Multi-head attention mechanism. The input embeddings are divided into various “heads”
for the multi-head attention mechanism, and self-attention is applied to each head sep-
arately. The model can capture various kinds of dependencies in input tokens because
each head learns to weight the input embeddings based on their relevance to the other
input embeddings in the head. The output of multi-head attention looks like this (4), and it
illustrates the detailed information between scaled dot-product attention and multi-head
attention, as shown in Figure 4:

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO,

headi = Attention(XWQ
i , XWK

i , XWV
i ),

(4)

where the projections are matrices of parameters WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈

Rdmodel×dk and WO ∈ Rhdv×dmodel . Here, hdv = dk, usually h, can be set as eight.

Figure 4. (Left) Scaled dot-product attention. (Right) Multi-head attention consists of numerous
concurrent attention levels.

3.3. Pre-Trained Model BERT

BERT Devlin et al. (2018) is one of the most well-liked designs for contemporary
language modeling. Its capacity for generalization enables it to be tailored to various down-
stream tasks depending on the requirements, whether it is NER, classification, question-
answering, or sentiment analysis. The parameters of the most internal layers of the archi-
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tecture are fixed because the core of the architecture was trained on exceptionally huge
text corpora. Instead, the layers closest to the surface are those that adjust to the task and
are where the so-called fine-tuning is conducted. In Figure 5, a condensed overview is
displayed.

Figure 5. Input representation and the BERT architecture. The total of the token embeddings,
segmentation embeddings, and position embeddings constitutes the input embeddings.

The foundation of BERT is the transformer. Think of the input x, which consists of two
different phrases. The [SEP] token is situated in a specific position, while the [CLS] token
is situated before x. LN is the normalization layer and E is the embedding function. Then,
the embedding is obtained by:

ĥ0
i = Epos(i) + Eseg(xi) + E(xi) (5)

The embeddings are subsequently put through M transformer blocks. For each
transformer block, it is true that using the Feed Forward (FF) layer, the Multi-Head Self-
Attention (MHSA) function mentioned above, and the element-wise Gaussian Error Linear
Units (GELU) activation function Hendrycks and Gimpel (2016):

ĥi+1
. = LN(FF, LN(MHSA, h.i)) (6)

LN( f , h) = LayerNorm(h + Dropout( f (h))) (7)

The loss function in BERT is a measure of how well the model is able to predict the
correct word in a given context. It is a combination of two objectives: the probability of a
correct prediction, and the Masked Language Model (MLM). The MLM objective forces the
model to predict randomly masked words from the input sentence, and encourages the
model to learn the surrounding context to make the correct predictions. The overall loss is
then the sum of the individual losses for each prediction:

LMLM = −
k

∑
i=1

log(P(MASKi = tokeni|X̄; θ)) (8)

where 15% of the input tokens are randomly masked via the Masked Language Modeling
(MLM) method used by BERT. As a result, it may learn the connections between the words
in the phrase as well as their context. Devlin et al. (2018). The transformer encoder uses θ
to describe the probability P. MASKi denotes the masked token at the ith point in the token
sequence, and X̄ represents X after masking.
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3.4. Sparse Attention Mechanism

A self-attention layer includes a connection pattern S = {S1, . . . , Sn}, where Si denotes
the set of indices of the input vectors to which the i-th output vector attends. A self-attention
layer transfers a matrix of input embeddings X to an output matrix. The output vector is a
weighted sum of the transformations of the input vectors:

A(X, Si) = Attention(Qi, KSi , VSi ) (9)

Attention(Qi, KSi , VSi ) = So f tmax(
Qi · KT

Si√
dk

) ·VSi (10)

For transformer models, full self-attention (Si : {∀xj ∈ X}) allows each element to
pay attention to both its own position and all prior and subsequent locations, which is
shown in the left of Figure 6. According to Child et al. (2019), layers may learn a wide
range of specialized sparse structures, which may explain their adaptability to different
domains. Several of the network’s early layers learn locally connected patterns that mimic
convolution. In a deeper layer, the network learns to divide its attention into rows and
columns, essentially factoring the global attention calculation. Moreover, various attention
layers exhibit global, data-dependent access patterns. Since the image is being used as an
input, a natural approach for computer vision to define a factorized attention pattern in
two dimensions is to use strided attention, in which one head attends to the previous lth
places while the other attends to the subsequent lth locations; l is usually chosen to be close
to
√

n. The right of Figure 6 shows the length of l is two.

Figure 6. Comparing the full self-attention pattern and the configuration of attention patterns.

Formally, A(1)
i = {i − l, i − l + 1, . . . , i + l} and A(2)

i = {j : |i− j| mod l = 0}.
This formulation is useful if the data already have a natural structure that fits the stride,
such as photos or some kinds of music. In light of the aforementioned advantages of
the sparse attention mechanism, we integrated this approach into our customized BERT
model for stock sentiment analysis. By doing so, we anticipate not only a substantial
reduction in computational complexity but also an enhancement in the model’s ability
to discern intricate patterns in stock-related textual data. The adaptability of the sparse
attention mechanism, as demonstrated in various domains, holds promise for capturing
the nuanced sentiments and fluctuations inherent in stock market discourse. Preliminary
results, as will be discussed in subsequent sections, demonstrate that the sparse attention
mechanism significantly reduces the computational complexity faced by our BERT model
for stock sentiment analysis. This optimization not only streamlines the processing but
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also sets a foundation for the development of more efficient models in the domain without
compromising performance.

4. Experiments

This section examines and explains the proposed stock sentiment methods based on the
BERT transformer. The datasets that were used in this study are thoroughly introduced. The
metrics and experimental results of this technique are illustrated in the following sections.

4.1. Experimental Setup
Dataset Introduction and Acquisition

Setup. We performed our experiments on one of the most well-known microblogging
platforms, Twitter, which is crucial in sentiment research for a number of areas, including
predicting election results and cryptocurrency prices Abraham et al. (2018). We used the
official API tool, Tweepy Almatrafi et al. (2015), to collect tweet data for research purposes.
We also used the open-source Python text processing toolkit, TextBlob, which offers an
API for standard NLP operations like part-of-speech tagging, noun phrase extraction,
sentiment analysis, etc. We conducted our experiments on a high-performance computing
environment equipped with a 12-core Intel CPU and NVIDIA RTX 3090 graphics card.
This configuration allowed us to train and test our models efficiently, thanks to the card’s
superior computational capabilities.

Evaluation Dataset Overview. We used the TweetFinSent dataset, which is a collection
of 2113 tweets, specifically curated for sentiment analysis in the financial domain Pei et al.
(2022). Table 2 summarizes the key characteristics of the evaluated dataset. The dataset’s
sentiments are categorized into positive, neutral, and negative labels, with respective
sample counts of 816, 1030, and 267. The dataset mostly covers the retailing sector since the
Twitter tickers include the famous retailing brands, such as AMC, GameStop (GME), and
Tesla (TSLA). Notably, the dataset exhibits an imbalance in sentiment distribution, with
negative samples being the least represented.

Table 2. Key properties of the evaluated TweetFinSent dataset Pei et al. (2022).

Dataset Property Value

Language English

Training samples 1113
Testing samples 1000
Total samples 2113

Positive samples 816
Neutral samples 1030
Negative samples 267

Ticker AMC, BABA, BB, BBBY, CLOV, GME, NOK, PFE, PLTR, SHOP, SOFI,
SPCE, SQ, TLRY, TSLA, VIAC, ZM

Data Preparation. After collecting the social media content from the Internet, the raw
data cannot be directly loaded into the sentiment analysis pipeline in Figure 2. This is because
the collected dataset often contains noise and content (due to the random and creative use of
social media by users) that are difficult to be parsed by the transformer model. For instance,
tweets from Twitter normally contain special contents such as emojis, emoticons, hashtags,
and user mentions, as well as web constructs like email addresses and URLs. Moreover, there
are other noises, including phone numbers, percentages, money amounts, times, dates, and
generic numbers that impact the effectiveness of down-stream sentiment analysis. In this
work, we adopt a series of data preprocessing techniques to convert noisy data into noise-less
contents. We preprocess the raw data from social media in the following steps based on the
given content: 1. We first preprocess the collected data by removing the impact of various
types of data: dates, emails, money amounts, numbers, percentages, and phone numbers. 2.
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Secondly, URLs, username, and hashtags are not processed since these contents may indicate
meaningful sentiment in the financial domain.

Annotation and Agreement. To ensure the quality and reliability of annotations, the
dataset employed a rigorous annotation process. Inter-annotator agreement was assessed us-
ing Cohen’s Kappa (κ), yielding an average κ of 0.67, indicating a moderate level of agreement.
To further enhance data quality, conflicts in annotations were resolved through discussions
among annotators. In the post-conflict resolution, the dataset achieved an impressive over-
all agreement of 88.5%, surpassing some existing sentiment analysis datasets, such as the
Obama–McCain Debate dataset with an agreement of 83.7%.

Sentiment Distribution and Analysis. The dataset’s sentiment distribution reveals in-
sights into the prevailing discussions on social media during the data collection period. The
most discussed stocks, often referred to as “meme stocks”, gained significant traction among
retail investors. A deeper dive into the dataset’s content is visualized in Figure 7. The most
frequent terms in TweetFinSent with different sentiment classes reveal distinct terminologies
and expressions associated with each sentiment category. Positive tweets frequently contained
phrases like “to the moon” and “buy the dip”, indicating optimistic financial outlooks. In
contrast, negative tweets often discussed overvalued stocks and potential sales, reflecting
pessimistic sentiments. Neutral tweets, on the other hand, predominantly shared news or
statistical insights about the stock market.

Textual Analysis. Further insights into the dataset can be gleaned from Figure 8 on the
relationship between (a) word count and (b) sentiment score vs. text length for the evaluated
social media dataset. This figure provides a correlation between the length of the tweets and
the sentiment scores, offering a nuanced understanding of how text length might influence
sentiment in financial tweets.

(a) Positive (b) Negative
Figure 7. Most frequent terms in TweetFinSent with different sentiment classes.

(a) Word count vs. Text Length (b) Sentiment Distribution vs. Text Length
Figure 8. Relationship between (a) word count and (b) sentiment scores vs. text length for the
evaluated social media dataset.

4.2. Model Configuration

In our exploration of BERT configurations, we identified key distinctions among BERT-
Tiny, BERT-Base, and BERT-Large models. These differences are primarily manifested in
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four areas Vaswani et al. (2017): the number of transformer encoder hidden layers, the
count of attention heads, the hidden size within feed-forward networks, and the maximum
sequence length parameter, which dictates the upper limit of the input vector size. While
BERT-Tiny offers a more compact architecture, BERT-Large stands out with its enhanced
complexity and capacity, accommodating larger input vectors. For the scope of this article,
we have chosen to harness the BERT-Base model, with its corresponding hyper-parameters
detailed in Table 3.

Table 3. Hyper-parameters of the fine-tuned financial sentiment analysis BERT model.

Hyperparameter Value

Attention heads 12
Batch size 8
Epochs 5
Gradient accumulation steps 16
Hidden size 768
Hidden layers 6, 12, 18
Learning rate 0.00003
Maximum sequence length 128

In more depth, the base and the big architecture of BERT can be distinguished. In
our study, as detailed in Table 3, we evaluated various BERT model configurations to
understand the trade-offs between model complexity and performance. BERT-Tiny, with
its 10 M parameters, serves as a lightweight model, while BERT-Large, encompassing 340
M parameters, represents the pinnacle of complexity in our dataset.

4.3. Evaluation Metrics

Using the unknown data as the test dataset, we evaluated the outputs of the training
models to gauge the performance of the transformer model. The efficacy of classification is
commonly gauged using traditional statistical metrics. One such metric is Precision, which
is defined in Equation (11). Here, TP, FP, and FN represent the True Positive, False Positive,
and False Negative counts, respectively.

Precision =
TP

TP + FP
(11)

Precision provides insight into the model’s ability to correctly classify positive in-
stances. A higher precision value indicates that the model is better at distinguishing true
positives from false positives.

In addition to Precision, two other crucial metrics for classification are Recall and the
F1 Score. Recall, defined in Equation (12), measures the model’s capability to identify all
relevant instances, or in other words, how many of the actual positives our model captures
through labeling them as positive.

Recall =
TP

TP + FN
(12)

The F1 Score, defined in Equation (13), is the harmonic mean of Precision and Recall.
It provides a single score that balances both the concerns of Precision and Recall in one
number. This is particularly useful when the class distribution is imbalanced.

F1 = 2× Precision× Recall
Precision + Recall

(13)

Together, these metrics offer a comprehensive view of the model’s classification per-
formance, ensuring that we consider both the identification of positive instances and the
avoidance of false alarms.
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We also use two additional measures, including the number of parameters (# Params.)
and computational complexity (FLOPs), to assess the proposed model’s computational
effectiveness. Greater memory intensity results from having more parameters, whereas
greater computational complexity requires more processing power.

4.4. Results and Analysis
4.4.1. Sentiment Accuracy

The accuracy is the key metric that evaluated the effectiveness for a given sentiment
analysis model. In this section, we compare the accuracy of various models in sentiment
analysis tasks. These benchmarked models include CNNs Deriu and Cieliebak (2016),
LSTM De Mattei et al. (2018), and Multilingual BERT Magnini et al. (2020). To ensure that
the comparison is fair, we benchmarked different methods and models in Table 4 based on
the same dataset used in this work. The comparison is presented in Table 4. It is evident that
our proposed system outperforms the other state-of-the-art models in terms of sentiment
accuracy. This superior performance can be attributed to the innovative techniques and
methodologies we employed during the model’s development. As compared with conven-
tional deep learning models like CNN Deriu and Cieliebak (2016) and LSTM De Mattei et al.
(2018), the transformer-based methods show better modeling capabilities for the sequence
data. The high accuracy achieved by our system underscores its robustness and reliability
in handling sentiment analysis tasks, making it a preferred choice for applications that
demand high precision and consistency.

Table 4. Comparison with state-of-the-art algorithms for stock sentiment analysis.

System F1 Pos F1 Neg F1

CNN Deriu and Cieliebak (2016) 0.634 0.706 0.670
LSTM De Mattei et al. (2018) 0.669 0.729 0.699
Multilingual BERT Magnini et al. (2020) 0.723 0.744 0.733
Proposed Design 0.740 0.765 0.752

4.4.2. Case Study

To study the performance difference between different models, we conducted a case
study on Tweet data that contain the ticker $BABA for the Alibaba group. In Table 5, we
pick up two representative examples, where our proposed model makes correct predictions,
while the rest of three comparing models (CNN Deriu and Cieliebak (2016), LSTM De Mat-
tei et al. (2018), and Multilingual BERT Magnini et al. (2020) in Table 4) make incorrect
predictions. For the first example, the correct sentiment label is neutral, but the comparing
models incorrectly predict it as positive. This is mainly due to the “lol” keyword in the
Tweet, which may cause misinformation to the models. For the second example, we show
a more complicated Tweet with multiple tickers. Other models regard it as a negative
Tweet because of the “25% down on btc” sentence. However, the actual sentiment for this
example is positive. These two examples demonstrate that our proposed model, based on a
sparse attention mechanism, has better capabilities to identify the hidden sentiment for the
given Tweet because the long-range attention is more helpful to capture the dependency
between contents.
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Table 5. Two examples to show the potential effects of long-range attention.

Tweet Content Proposed Prediction Others’ Prediction

Here is my entry $Baba $123.63, lol. Neutral Positive

update for today:
— what a day! what a week!
— 25% down on #btc
— traded $bp, $sq, $tecs
— added $aapl, $amzn, $baba

Positive Negative

4.4.3. Computational Complexity and Efficiency

We also studied the performance differences of three variants of the BERT model,
including BERT-Tiny, BERT-Base, and Bert-Large. This was to analyze the impact of model
size on classification precision and then help us select the most cost-effective model. The
experiment results are summarized in Table 6. We first calculated the required number
of model parameters and computational complexity for three BERT models. BERT-Large
has the most model 197 M parameters and a 120 G computational complexity. Meanwhile,
BERT-Large also generates the highest precision. It delivers a 0.0794 higher F1 score over
the BERT-Tiny model at the expense of more memory and computation consumptions.
Here, we regard the BERT-Base model as the most cost-effective model since it balances
between complexity and precision well.

Table 6. Performance comparison for different BERT model variants.

Model Name # Params. Complexity (FLOPs) F1 Score

BERT-Tiny 50 M 15 G 0.6731

BERT-Base 110 M 55 G 0.7098

BERT-Large 340 M 120 G 0.7525

Interestingly, despite its intricate architecture, BERT-Large only slightly lags behind
BERT-Base in terms of latency, clocking in at 15.8 ms compared with 12.5 ms. This suggests
that advanced optimization techniques might have been employed to mitigate the expected
latency surge. As computational complexity rises, we observe a corresponding uptick in
performance. However, this enhancement comes with the caveat of increased computa-
tional demands and potential latency. Such insights underscore the importance of judicious
model selection, ensuring a balance between resource constraints and desired performance,
especially in real-world applications.

We also study the runtime and computation efficiency for various stock sentiment
models in Table 7. The compared baselines include CNN Deriu and Cieliebak (2016),
LSTM De Mattei et al. (2018), and the BERT-Large model. We record and calculate the
models’ parameters that indicate the memory consumption while running the algorithm.
The average latency and complexity are also measured to validate runtime and compu-
tation efficiency. LSTM has the shortest latency since it requires much less computation
complexity as compared with other counterparts. The CNN model with the medium pa-
rameter complexity and latency has higher complexity when compared with our proposed
algorithm. This is due to the usage of expensive convolution operations. Our proposed
model with sparse attention patterns, which has 197M parameters, achieves an average
latency of 10.3 ms and a computational complexity of 3.2 GFLOPS. The adopted sparse
attention mechanism saves the redundant computation as well as data movement. As a
result, our design yields even higher memory and runtime efficiency as compared with the
BERT-Large model.
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Table 7. Runtime and computation efficiency comparison for various stock sentiment models.

Method # Params. Avg. Latency (ms) Avg. Complexity (GFLOPS)

LSTM - 2.4 0.3

CNN 28 M 8.2 3.6

BERT-Large 340 M 15.8 4.8

This Work 197 M 10.3 3.2

5. Conclusions
5.1. Summary and Contribution of This Work

The stock market is a crucial component of a nation’s economy, and its success or
failure has a direct impact on economic growth. There is uncertainty regarding investment
outcomes. Social media sentiment has been found to be consistently linked to the stock
market, making the analysis of stock sentiment valuable for practical and research purposes.
In recent times, there has been a focus on analyzing investor sentiment through social
media, particularly among young and inexperienced investors. Numerous studies have
explored the use of Twitter sentiment to forecast stock market trends. However, efficient
stock sentiment analysis suffers from two challenges: Firstly, there is a mismatch between
conventional sentiment analysis and stock sentiment analysis. While traditional sentiment
analysis focuses on emotional states, stock sentiment is tied to market dynamics and
reflects expectations of stock price movements. This can lead to disparities between the
two sentiments. Secondly, deep learning models, such as transformers, have shown great
performance improvements but suffer from high computational complexity. This poses
challenges for real-time processing and deployment in resource-constrained environments.

To address these challenges, this paper proposes the use of sparse transformers,
which reduce computational overhead while maintaining model efficacy, enabling more
sustainable and scalable deep learning applications. The use of BERT for financial sentiment
analysis has been found to be very effective, with results that are often better than those of
other existing methods. In addition, BERT’s ability to understand contextual relationships
between words makes it well-suited to accurately analyze the sentiment of financial texts.
According to our evaluation results, our proposed model with sparse attention patterns,
which has 197 M parameters, achieves an average latency of 10.3 ms and a computational
complexity of 3.2 GFLOPS. When compared with other models like CNN, LSTM, and
BERT, our model demonstrates a competitive latency, being faster than BERT’s 12.5 ms while
maintaining a higher computational complexity. This indicates that our model efficiently
utilizes its parameters to deliver faster results without compromising on computational
demands. The improvements are particularly evident when comparing the latency and
complexity metrics, showcasing the efficiency and effectiveness of our proposed sparse
attention mechanism. As technology continues to evolve and improve, the potential of BERT
for financial sentiment analysis will increase. Using BERT to analyze financial texts can
provide valuable information and help inform better decision making in the financial sector.

5.2. Limitations and Future Work

While this study primarily centers on leveraging sentiment analysis through BERT and
sparse transformer models for stock market predictions, we acknowledge the influence of
additional variables such as the behavior of large investors and the role of specialized media.
Large investors, such as funds and financial institutions, exert a substantial impact on stock
prices that may not be captured on social media platforms. Similarly, specialized financial
news outlets and analyst reports can shape public opinion and investor behavior. Looking
forward, our research aims to account for these variables by integrating multi-source data,
including trading data from large investors and professional news reports, to enhance
the model’s predictive accuracy. Additionally, we consider incorporating time-series data
featuring key milestones or inflection points to offer a more holistic forecasting model.
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