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1. Introduction

A standard option gives its owner the right to buy (or sell) some underlying asset
in the future for a fixed price. Call options confer the right to buy the asset, while put
options confer the right to sell the asset. Path-dependent options represent extensions
of this concept. For example, a lookback call option confers the right to buy an asset at
its minimum price over some time period. A barrier option resembles a standard option
except that the payoff also depends on whether or not the asset price crosses a certain
barrier level during the option’s life. Lookback and barrier options are two of the most
popular types of path-dependent options

Following the lead set by Black and Scholes (1973) and assuming that the underlying
asset price follows a geometric Brownian motion with constant volatility, Merton (1973)
derived a closed-form pricing formula for down-and-out call options. Reiner and Rubin-
stein (1991) extended Merton’s results to other types of barrier options. Goldman et al.
(1979) and Conze and Vishwanathan (1991) provided closed-form pricing formulas for
lookback options. For a good summary for research on path-dependent options under the
Black–Scholes framework, refer to Clewlow et al. (1994). As we know, the assumption that
an asset price process follows a geometric Brownian motion with constant volatility does
not capture the empirical observations, due to the volatility smile effect. So, it is desirable
to overcome this drawback. There are different ways of extending the Black–Scholes model
to incorporate the “smile" feature: one way is to consider “local volatility", and the other is
to consider “stochastic volatility".

One popular local volatility model is the constant elasticity of variance (CEV) model
introduced by Cox (1975, 1996), where a closed-form pricing formula for European call
options was presented. Davydov and Linetsky (2001) derived solutions for barrier and
lookback option prices under the CEV process in closed form and demonstrated that
barrier and lookback option prices and hedge ratios under the CEV process can deviate
dramatically from the lognormal values. In Boyle and Tian (1999), the pricing of certain
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path-dependent options was re-examined when the underlying asset follows the CEV
diffusion process, by approximating the CEV process using a trinomial method.

Heston (1993) assumes that volatility reverts to a long-term mean at a specified rate.
Bates (1996) builds upon the Heston model by introducing a jump component for asset
prices, which is represented as a compound Poisson process with normally distributed
jumps. In a further refinement of the Heston model, the jumps are characterized by infinite
activity jumps generated by a tempered stable process, as demonstrated in Zaevski et al.
(2014). Despite these advancements, the pricing challenges associated with path-dependent
options in the context of stochastic volatility persist, as no analytical solutions are available
for these models.

Chiarella et al. (2012) considered the problem of numerically evaluating barrier option
prices when the underlying dynamics are driven by the Heston stochastic volatility model
and developed a method of lines approach to evaluate the price as well as the delta and
gamma of the option. Park and Kim (2013) investigated a semi-analytic pricing method for
lookback options in a general stochastic volatility framework. The resultant formula is well
connected to the Black–Scholes price that is the first term of a series expansion, which makes
computing the option prices relatively efficient. Furthermore, a convergence condition
for the expansion was provided with an error bound. Leung (2013) and Wirtu et al. (2017)
derived an analytic pricing formula for floating strike lookback options under the Heston
model by means of the homotopy analysis method. The price is given by an infinite series
whose value can be determined once an initial term is given well.

In addition, Kato et al. (2013) derived a new semi-closed-form approximation formula
for pricing an up-and-out barrier option under a certain type of stochastic volatility model,
including an SABR model. In a more recent paper by Funahashi and Higuchi (2018),
a unified approximation scheme was proposed for a single-barrier option under local
volatility models, stochastic volatility models, and their combinations. The basic idea of
their approximation is to mimic a target underlying an asset process using a polynomial of
the Wiener process. They then translated the problem of solving the first hit probability of
the asset price into the problem of solving that of a Wiener process whose distribution of the
passage time is known. Finally, utilizing Girsanov’s theorem and the reflection principle,
they showed that single-barrier option prices can be approximated in a closed form.

The main contribution of this paper is to derive new closed-form approximation
formulas for pricing down-and-out put barrier options and floating strike lookback put
options under a certain type of stochastic volatility model, which is similar to the one
in Cao et al. (2023); Kato et al. (2013); Kim et al. (2023). To achieve our goal, we apply
the asymptotic approach discussed in Fouque et al. (2011) and Mellin transform. Mellin
transform techniques were used by Panini and Srivastav (2004) to derive integral equation
representations for the price of European and American basket put options. Similarly,
Yoon (2014) applied Mellin transform to derive a closed-form solution of the option price
with respect to a European call option and a European put option with the Hull–White
stochastic interest rate. Moreover, Kim and Yoon (2018) derived a closed-form formula of
a second-order approximation for a European corrected option price under a stochastic
elasticity of variance (SEV) model.

The rest of the paper is organized as follows. Section 2 discusses the model framework
and the features of down-and-out and floating strike lookback put options. In Section 3,
we provide detailed discussions on an asymptotic approach, which is used to derive
approximations to the risk-netural values of these types of options. In Section 4, we apply
Mellin transform to derive a closed-form formula of the first-order approximation for down-
and-out barrier put options. In Section 5, we apply Mellin transform to derive a closed-form
formula of the first-order approximation for floating strike lookback put options. Section 6
presents a sensitivity and comparison analysis and demonstrates that the results given by
these closed-form formulas match well with those generated by Monte-Carlo simulation.
Section 7 gives a brief summary. Details on Mellin transform and the derivation of the
closed-form formulas in Sections 4 and 5 are provided in Appendices A and B, respectively.



J. Risk Financial Manag. 2023, 16, 456 3 of 17

2. Basic Model Set-Up and Path-Dependent Options
2.1. Stochastic Volatility Model

Let {St : t ≥ 0} denote the price process of a risky asset on some filtered probabil-
ity space (Ω, F , (Ft)t≥0,P), where P is the physical probability measure In this paper,
we assume that {St : t ≥ 0} evolves according to the following system of stochastic
differential equations:

dSt = µStdt + f (Yt)StdWs
t ,

dYt = α(m−Yt)dt + β

(
ρdWs

t +
√

1− ρ2dWy
t

)
, (1)

where µ, α > 0, β > 0, and m are constants and f is a function having positive values and
specifying the dependence on the hidden process {Yt : t ≥ 0}. The processes {Ws

t : t ≥ 0}
and

{
Wy

t : t ≥ 0
}

are independent standard Brownian motions. The constant correlation
coefficient ρ with −1 < ρ < 1 captures the leverage effect. Here, µ is the drift rate. The
mean-reversion process {Yt : t ≥ 0} given in Equation (1) is characterized by its typical time
to return back to the mean level m of its long-run distribution. The parameter α determines
the speed of mean-reversion, and β controls the volatility of {Yt : t ≥ 0}. In the sequel, we
shall refer to the above system as the stochastic volatility (SV) model. In Sections 2 and 3,
we will not specify the concrete form of f , but assume that f is bounded and smooth
enough, e.g., f ∈ C2

0(R). Furthermore, f has to satisfy a sufficient growth condition in
order to avoid bad behavior such as the non-existence of moments of {St : t ≥ 0}. For
numerical results in Section 6, we choose f to take a special form, as used in Fouque et al.
(2000, 2011) and Cao et al. (2021).

We apply the well-known Girsanov theorem to change the physical measure P to a
risk-neutral martingale measure Q by letting

dWs∗
t =

µ− r
f (Yt)

dt + dWs
t y and dWy∗

t = ξ(Yt)dt + dWy
t ,

where ξ(Yt) represents the premium of volatility risk. Then, the model equations under the
measure Q can be written as

dSt = rStdt + f (Yt)StdWs∗
t ,

dYt =

[
α(m−Yt)− β

(
ρ

µ− r
f (Yt)

+ ξ(Yt)
√

1− ρ2
)]

dt (2)

+β

(
ρdWs∗

t +
√

1− ρ2dWy∗
t

)
.

Note that {Ws∗
t : t ≥ 0} and

{
Wy∗

t : t ≥ 0
}

are independent standard Brownian mo-
tions under Q. As an Ornstein–Uhlenbeck (OU) process, {Yt : t ≥ 0} in Equation (1) has an
invariant distribution, which is normal with mean m and variance β2/2α. Thus, we can
expect that if mean reversion is very fast, i.e., α goes to infinity, the process {St : t ≥ 0}
should be close to a geometric Brownian motion. This means that if mean reversion is
extremely fast, then the model of Black and Scholes would become a good approximation.
In reality, however, it may not be the case. For fast but not extremely fast mean-reversion,
the Black–Scholes model needs to be corrected to account for the random characteristics
of the volatility of a risky asset. For this purpose, we introduce another small parameter
ε defined by ε = 1/α, as performed by Fouque et al. (2000). For notational convenience,
we put ν = β/

√
2α. With the help of these notations, the model equations under Q are

re-written as
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dSt = rStdt + f (Yt)StdWs∗
t ,

dYt =

[
1
ε
(m−Yt)−

√
2ν√
ε

Λ(Yt)

]
dt +

√
2ν√
ε

(
ρdWs∗

t +
√

1− ρ2dWy∗
t

)
,

where Λ(·), defined by

Λ(y) := ρ
µ− r
f (y)

+ ξ(y)
√

1− ρ2,

is the combined market price of risk.

2.2. Path-Dependent Options

Let V(T) denote the payoff of a put option on the risky asset at its expiration T. Then,
its risk-neutral price at time t ∈ [0, T] under our SV model is given by

P(t, s, y) = EQ
(

e−r(T−t)V(T)| St = s, Yt = y
)

.

Note that V(T) depends on the type of options. In this paper, we consider two types
of path-dependent options: down-and-out put options and floating strike lookback put
options. For notational convenience, we put Ut := min0≤u≤t Su and Zt := max0≤u≤t Su.
The payoff of a down-and-out put option is given by

DOP(T) := max{K− ST , 0} × 1UT>B,

where K is the strike price, B is the barrier level satisfying 0 < B < K, and 1UT>B is the
indicator function. For a floating strike lookback put option, its payoff has the form of
LPf loat(T) := ZT − ST . Applying Itô’s lemma, we can obtain a partial differential equation
(PDE) for P(t, s, y) as follows:

0 =
∂P
∂t

+
1
2

s2 f 2(y)
∂2P
∂s2 + r

(
s

∂P
∂s
− P

)
+

√
2ρνs√

ε
f (y)

∂2P
∂s∂y

+
ν2

ε

∂2P
∂y2 +

(
1
ε
(m− y)−

√
2ν√
ε

Λ(y)

)
∂P
∂y

. (3)

The boundary conditions for Equation (3) vary depending on the type of options. For
example, the boundary conditions for Equation (3) when V(T) = DOP(T) are{

P(T, s, y) = max{K− s, 0}, s > B,

P(t, B, y) = 0, 0 ≤ t ≤ T.

When V(T) = LPf loat(T), the boundary conditions become the following:
∂P
∂z

(t, z, y, z) = 0, 0 ≤ t ≤ T, z > 0,

P(T, s, y, z) = z− s, 0 ≤ s ≤ z.

Note that in this case, P is a function of t, s, y, and z (here, Zt = z).
Remark: Since the Mellin transform of the payoff function of a call option is not

defined, this paper primarily concentrates on evaluating put options. However, as outlined
in Buchen (2001), the pricing of call options can be directly derived from put options
through the put–call parity relationship.

3. Asymptotic Expansions

In this section, we apply an asymptotic expansion approach to establish partial differ-
ential equations, which will be used to derive an approximate solution to Equation (3) and
thus find an approximated value of a put option.

We begin with re-organizing Equation (3) in terms of the orders of ε as follows:
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1
ε
L0P +

1√
ε
L1P + L2P = 0, (4)

where the operators L0, L1 and L2 are defined by

L0 := (m− y)
∂

∂y
+ ν2 ∂2

∂y2 ,

L1 :=
√

2ρνs f (y)
∂2

∂s∂y
−
√

2νΛ(y)
∂

∂y
, and

L2 :=
∂

∂t
+

1
2

s2 f 2(y)
∂2

∂s2 + r
(

s
∂

∂s
− ·
)

.

In order to obtain an efficient approximate solution to P, as that in Fouque et al. (2011),
we apply the following asymptotic expansion of P:

P = P0 +
√

εP1 + εP2 + ε
√

εP3 + . . . , (5)

where P0, P1, . . . are functions corresponding to varying orders of ε. Substituting P in
Equation (5) into Equation (4) and re-organizing the terms, we obtain

0 =
1
ε
L0P0 +

1√
ε
(L1P0 + L0P1) + (L0P2 + L1P1 + L2P0)

+
√

ε(L0P3 + L1P2 + L2P1) + . . . . (6)

Our aim is to find P0 and P1.
Firstly, from the O(1/ε)-order term in Equation (6), we obtain L0P0 = 0. If we assume

that P0 does not grow as fast as ey2/2, as was assumed in Choi et al. (2013), we can show that
P0 is independent of y. Secondly, from the O(1/

√
ε)-order term in Equation (6), we obtain

L1P0 + L0P1 = 0. Since P0 is independent of y, then L1P0 = 0. It follows that L0P1 = 0.
Again, if we assume that P1 does not grow as fast as ey2/2, then we can deduce that P1 is
also independent of y.

Next, from the O(1)-order term in Equation (6), we obtain

L0P2 + L1P1 + L2P0 = 0.

Since P1 is independent of y, we have L1P1 = 0, which implies that

L0P2 + L2P0 = 0. (7)

Seeing Equation (7) as a Poisson equation for P2 in y, in order for it to have a solution,
it is required to satisfy the centering condition

〈L2P0〉 = 〈L2〉P0 = 0, (8)

which is equivalent to

∂P0

∂t
+ rs

∂P0

∂s
+

1
2

s2〈 f 2〉∂
2P0

∂s2 − rP0 = 0. (9)

This is an equation for us to determine the P0 term. Here, 〈·〉 denotes the expectation
with respect to the invariant distribution of the process {Yt : t ≥ 0}, i.e.,

〈h〉 =
∫ +∞

−∞
h(y)Φ(y)dy, where Φ(y) =

1√
2πν2

e−
(y−m)2

2ν2 .

Note that a small ε value corresponds to fast-mean reverting. In this case, Yt ap-
proaches a constant and 〈 f 2〉 can be regarded as constant variance, and then Equation (9)
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is the Black–Scholes PDE. Thus, for small ε, P0 represents the put option price under the
Black–Scholes model.

Following Equation (8), we have

L2P0 = L2P0 − 〈L2〉P0 =
1
2

(
f 2 − 〈 f 2〉

)
s2 ∂2P0

∂s2 ,

which, together with Equation (7), implies

L0P2 = −1
2

(
f 2 − 〈 f 2〉

)
s2 ∂2P0

∂s2 . (10)

The solution to Equation (10) can be expressed as

P2 = −1
2
(φ + c)s2 ∂2P0

∂s2 , (11)

where φ is a function of y which only satisfies the equation L0φ = f 2 − 〈 f 2〉, and c is a
function of other variables except y.

To derive an equation for P1, we consider the O(
√

ε)-term in Equation (6) and obtain

L0P3 + L1P2 + L2P1 = 0.

This equation can be regarded as a Poisson equation for P3 in y, and in order for it to
have a solution, the following centering condition must be satisfied:

〈L1P2 + L2P1〉 = 0. (12)

After we substitute P2 in Equation (11) into Equation (12) and make simplifications,
we obtain

∂P1

∂t
+

1
2
〈 f 2〉s2 ∂2P1

∂s2 + rs
∂P1

∂s
− rP1 = c1s3 ∂3P0

∂s3 + c2s2 ∂2P0

∂s2 , (13)

where

c1 :=

√
2

2
〈 f φ′〉ρν and c2 :=

√
2

2
(
2ρ〈 f φ′〉 − 〈Λφ′〉

)
ν. (14)

This is an equation for us to determine the first correction term P1.
We summarize the previous formal analysis as the following theorem.

Theorem 1. Under the SV model governed by Equation (1), an approximation of the risk-neutral
value P of a path-dependent put option is given by

P = P0 +
√

εP1 + o(
√

ε), (15)

for small ε, where P0 and P1 are determined by Equations (9) and (13) with corresponding boundary
conditions, respectively, such that P0 is the put option price under the Black–Scholes model with
constant effective volatility

√
〈 f 2〉 and P1 is the first-order correction term.

Finally, as mentioned in Section 2, boundary conditions for Equations (8) and (13)
depend on the types of options that we consider. We describe the corresponding boundary
conditions and solve these equations in the next two sections.

4. Determining P0 and P1 for Down-and-Out Put Options

In this section, we use Mellin transform to derive analytical expressions of the P0 and
P1 terms for down-and-out put options



J. Risk Financial Manag. 2023, 16, 456 7 of 17

4.1. P0 Term for Down-and-Out Put Options

In order to use Mellin transform to calculate the P0 term for down-and-out put options,
noting that P0 is independent of y under our assumption, we first follow the method in
Buchen (2001) and use the boundary condition,

P(T, s, y) = max{K− s, 0}, for s > B,

to set up the boundary condition of P0 for s ≥ 0 as follows:

P0(T, s) := (K− s)1B<s<K −
(

B
s

)k1−1(
K− B2

s

)
1 B2

K <s<B
, (16)

where k1 = 2r/〈 f 2〉. Now, we apply Mellin transform to Equation (9) to convert this PDE
into the following ODE:

dP̂0

dt
+

(
1
2
〈 f 2〉(w2 + w)− rw− r

)
P̂0 = 0. (17)

The solution to Equation (17) is given by

P̂0(t, w) = θ̂(w)e
1
2 〈 f

2〉(w2+(1−k1)w−k1)(T−t), (18)

where θ̂ is a function of w, determined by the boundary condition (16).
Next, we take inverse Mellin transform of Equation (18) and obtain

P0(t, s) = P0(T, s) ∗M−1eλ(w+η)2+δ,

where
λ =

1
2
〈 f 2〉(T − t), η =

1− k1

2
, δ = −λη2 − r(T − t)

and the operation ∗ means the convolution. Applying Table A1 in Appendix A and the
boundary condition given in Equation (16), we have

P0(t, s) = P0(T, s) ∗
(

eδsη

2
√

λπ
e−

1
4λ (ln s)2

)
=

∫ K

B
(K− u)eδ

( s
u

)η
(

1
2
√

λπ
e−

1
4λ (ln( s

u ))
2
)

du
u
− (19)

∫ B

B2
K

(
B
u

)k1−1(
K− B2

u

)
eδ
( s

u

)η
(

1
2
√

λπ
e−

1
4λ (ln( s

u ))
2
)

du
u

.

After some careful calculation, for down-and-out put options, we derive a closed-form
expression of the P0 term as follows:

P0(t, s) = Ke−r(T−t)
(

Φ
(
−∆−

( s
K

))
−Φ

(
−∆−

( s
B

)))
−

s
(

Φ
(
−∆+

( s
K

))
−Φ

(
−∆+

( s
B

)))
−

Ke−r(T−t)
(

B
s

)k1−1[
Φ
(

∆−

(
B
s

))
−Φ

(
∆−

(
B2

sK

))]
+

B
(

B
s

)k1
[

Φ
(

∆+

(
B
s

))
−Φ

(
∆+

(
B2

sK

))]
, (20)

where Φ(·) is the CDF of the standard normal distribution and

∆±(x) =
1√

〈 f 2〉(T − t)

[
ln(x) +

(
r± 1

2
〈 f 2〉

)
(T − t)

]
.
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Note that P0 given in Equation (20) is precisely the same as the price of a down-and-out
put option given in the literature, e.g., Hull (2015, chp. 26, p. 606) or Haug (2006, chp. 4),
if we let σ2 = 〈 f 2〉. For details of the derivation of formula (20), we refer the reader to
Appendix B.

4.2. P1 Term for Down-and-Out Put Options

For down-and-out put options, the boundary conditions for P1 are{
P1(T, s) = 0, f or s ≥ B,

P1(t, B) = 0, f or 0 < t < T.

We again follow the method in Buchen (2001) and extend the boundary conditions
P1(T, s) = 0, for s ≥ B as P1(T, s) = 0 for all s ≥ 0.

Next, we apply Mellin transform to Equation (13) to obtain

dP̂1

dt
+

(
1
2
〈 f 2〉

(
w2 + w

)
− rw− r

)
P̂1 = (−c1w(w + 1)(w + 2) + c2w(w + 1))P̂0.

Solving this equation, we obtain

P̂1(t, w) =
[
c1(T − t)w3 − (c2 − 3c1)(T − t)w2 − (c2 − 2c1)(T − t)w

]
P̂0(t, w).

Finally, applying inverse Mellin transform, we obtain an explicit closed-form expres-
sion of P1 as follows:

P1(t, s) = M−1(P̂1(t, w)
)

= c1(T − t)
(
−s

d
ds

P0(t, s)− 3s2 d2

ds2 P0(t, s)− s3 d3

ds3 P0(t, s)
)

−(c2 − 3c1)(T − t)
(

s
d
ds

P0(t, s) + s2 d2

ds2 P0(t, s)
)

(21)

−(c2 − 2c1)(T − t)
(
−s

d
ds

P0(t, s)
)

,

where P0 is given in the previous section and c1 and c2 are given in Equation (14).
We summarize the above analysis and calculation on down-and-out put options in the

following theorem.

Theorem 2. Under the SV model governed by Equation (1), an approximation of the risk-neutral
value P of a down-and-out barrier put option is given by

P = P0 +
√

εP1 + o(
√

ε), (22)

where P0 and P1 are given by Equations (20) and (21), respectively.

5. Determining P0 and P1 for Lookback Put Options

In this section, we use Mellin transform to derive analytical expressions of the P0 and
P1 terms for floating strike lookback put options

5.1. P0 Term for Lookback Put Options

For lookback floating strike put options, the boundary conditions of P0 are
∂P0

∂z
(t, z, z) = 0,

∂P0

∂z
(T, s, z) = 1, f or 0 < s < z.

Similar to the case of down-and-out put options, we extend the second boundary
condition to 0 < s < ∞ as follows:
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∂P0

∂z
(T, s, z) := 1s<z −

( z
s

)k1−1
· 1z<s, for 0 < s < ∞.

Then, by integrating each side of the last equation, we can obtain

P0(T, s, z) =
∫ z

s
−
(

ξ

s

)k1−1
dξ = − 1

k1

( z
s

)k1
s +

1
k1

s (23)

for s > z. For convenience, we let u = s/z and Q0 = P0/z. With these notations,
Equation (9) becomes

∂Q0

∂t
+

1
2

u2〈 f 2〉∂
2Q0

∂u2 + ru
∂Q0

∂u
− rQ0 = 0, (24)

with boundary conditions

Q0(T, u) = − 1
k1

u1−k1 +
1
k1

u, for u > 1, (25)

and Q0(T, u) = 1, for 0 < u < 1.
Note that except the boundary conditions, Equation (24) is identical to Equation (9).

Applying Mellin transform in the same way as that for the case of down-and-out put
options, we can derive the solution to Equation (24) as follows:

Q0(t, u) = θ̂(w) ∗M−1eλ(w+η)2+δ.

Again, applying Table A1 and P0 given in Equation (16), we have

Q0(t, u) = Q0(T, u) ∗ eδzη

(
1

2
√

π
λ−

1
2 e−

1
4λ (ln z)2

)

=
∫ 1

0
(1− ξ)eδ

(
u
ξ

)η
(

1
2
√

π
λ−

1
2 e−

1
4λ

(
ln
(

u
ξ

))2
)

dξ

ξ
+ (26)

∫ ∞

1

(
−1
k1

ξ1−k1 +
ξ

k1

)
eδ

(
u
ξ

)η
(

1
2
√

π
λ−

1
2 e−

1
4λ

(
ln
(

u
ξ

))2
)

dξ

ξ
.

After calculating integrals, for floating strike lookback put options, we derive a closed-
form expression of the P0 term as follows:

P0(t, s, z) = ze−r(T−t)Φ
(
−∆−

( s
z

))
− sΦ

(
−∆+

( s
z

))
(27)

− z
k1

( s
z

)1−k1
e−r(T−t)Φ

(
−∆−

( z
s

))
+

s
k1

Φ
(

∆+

( s
z

))
,

where Φ(·) is the CDF of the standard normal distribution. Note that P0 given in Equation (27)
is precisely the same as the price of a floating strike put option given in the literature, e.g., Hull
(2015, chp. 26, p. 608) or Haug (2006, chp. 4), if we let σ2 := 〈 f 2〉. Details of the derivation of
this formula can be found in Appendix B.

5.2. P1 Term for Lookback Put Options

For floating strike lookback put options, the boundary conditions for P1 are
P1(T, s, z) = 0, f or 0 < s < z,

∂P1

∂z
(t, z, z) = 0, f or 0 < t < T and z > 0.

Just like that for the P0-term for floating strike lookback put options, we let u = s/z
and Q1 = P1/z. With these notation changes, Equation (13) is converted to the following:
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∂Q1

∂t
+

1
2
〈 f 2〉u2 ∂2Q1

∂u2 + ru
∂Q1

∂u
− rQ1 = c1u3 ∂3Q0

∂u3 + c2u2 ∂2Q0

∂u2 (28)

with Q1(T, u) = 0 for 0 < u < 1.
Note that Equation (28) is essentially the same as Equation (13), except the notational

difference. So, we have

Q1(t, u) = c1(T − t)
(
−u

d
du

Q0(t, u)− 3u2 d2

du2 Q0(t, u)− u3 d3

du3 Q0(t, u)
)

−(c2 − 3c1)(T − t)
(

u
d

du
Q0(t, u) + u2 d2

dz2 Q0(t, u)
)

(29)

−(c2 − 2c1)(T − t)
(
−u

d
du

Q0(t, u)
)

,

where Q0 is given previously. Consequently, we have

P1(t, s, z) = c1(T − t)
(
−s

d
ds

P0(t, s, z)− 3s2 d2

ds2 P0(t, s, z)− s3 d3

ds3 P0(t, s, z)
)

−(c2 − 3c1)(T − t)
(

s
d
ds

P0(t, s, z) + s2 d2

ds2 P0(t, s, z)
)

(30)

−(c2 − 2c1)(T − t)
(
−s

d
ds

P0(t, s, z)
)

,

where c1 and c2 are the same as those defined previously.
We summarize the above analysis and calculation on floating strike lookback put

options in the following theorem.

Theorem 3. Under the SV model governed by Equation (1), an approximation of the risk-neutral
value P of a floating strike lookback put option is given by

P = P0 +
√

εP1 + o(
√

ε), (31)

where P0 and P1 are given by Equations (27) and (30), respectively.

6. Numerical Results and Sensitivity Analysis

In this section, we conduct a numerical study to investigate the sensitivity of the
first-order correction term P1 and our approximation results P0 +

√
εP1 with respect to the

initial value of underlying asset. This means that we set t = 0 throughout this section. We
also compare the results given by our closed form formulas with those generated by the
Monte-Carlo simulation.

First of all, as conducted by Fouque et al. (2000, 2011) and Cao et al. (2021), we choose
f to take the following form:

f (y) = 0.35
(

tan−1(y) +
π

2

)
/π + 0.05.

Secondly, the values of other parameters used in this section are given in Table 1
whenever they are required to be fixed.

Table 1. The role and numerical value of parameters.

Parameter Role Value

r risk-free interest rate 0.035
B barrier level 1500
K put option strike price 2700
T maturity time 1
c1 as defined in Section 3 −0.004
c2 as defined in Section 3 −0.018



J. Risk Financial Manag. 2023, 16, 456 11 of 17

Here, we do not choose precise values of β and ρ, and particular forms of ξ(y) (in
Section 2) and φ(y) (in Section 3) to calculate the above values of c1 and c2. Instead, c1
and c2 are calibrated from the term structure of the implied volatility surface as described
in the book of Fouque et al. (2000). Specifically, the implied volatility Iε of a European
vallina call option with fast mean-reverting stochastic process can be approximated by the
following formula:

Iε = a
ln(K

s )

T − t
+ b + o(

√
ε)

with

a = − c1

〈 f 2〉3/2 and b =
√
〈 f 2〉+ c1

〈 f 2〉3/2

(
r +

3
2
〈 f 2〉

)
− c2√

〈 f 2〉
.

The parameters a and b are estimated as the slope and intercept of the regression fit
of the observed implied volatilities as a linear function of logmoneyness-to-maturity-ratio
ln(K/s)/(T − t). From the calibrated values a and b on the observed implied volatility
surface, the parameters c1 and c2 are obtained as

c1 = −aσ〈 f 2〉3/2
and c2 =

√
〈 f 2〉((

√
〈 f 2〉 − b)− a(r +

3
2
〈 f 2〉)).

Thirdly, note that when t = 0, s = z. Hence, in this case, the formula for P0 given by
Equation (27) is simplified.

Figure 1a shows how the
√

εP1-term for a down-and-out barrier put option changes
with respect to a variation in ε values As we can see, for fixed ε, when s increases, P1
decreases first, and then increases after it hits its trough. When ε becomes smaller (equiv-
alently, the mean-reverting speed becomes larger),

√
εP1 approaches to a zero. Figure 1b

shows how the value of P0 +
√

εP1 for a down-and-out put option varies with respect to
the change in ε values. As we can see, when the value of ε changes from 0.01 to 0.0001, the
value of P0 +

√
εP1 does not vary much. In fact, the values of P0 +

√
εP1 match well with

the result of Monte-Carlo simulation in all cases. Furthermore, in all cases, the value of
P0 +

√
εP1 declines as s increases.
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Monte Carlo

(a) (b)

Figure 1. Plots of
√

εP1 and P0 +
√

εP1 with different values of ε against the initial value of the
underlying asset, for the down-and-out put option.

Figure 2a shows how the
√

εP1-term for a floating strike lookback put changes with
respect to a variation in ε values. In a similar pattern, for a fixed ε-value, when s increases,
P1 decreases first and then increases after it hits its trough. Similar to the case of down-and-
out put options, when ε becomes smaller (equivalently, the mean-reverting speed becomes
larger),

√
εP1 approaches to zero. Figure 2b shows how the value of P0 +

√
εP1 for a floating

strike put varies with respect to the change in ε values. When the value of ε changes from
0.01 to 0.001, the value of P0 +

√
εP1 varies. But when the value of ε changes from 0.001 to

0.0001, the value of P0 +
√

εP1 does not vary much. The values of P0 +
√

εP1 match well
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with the result of Monte-Carlo simulation when ε = 0.001 or 0.0001. Furthermore, in all
cases, the value of P0 +

√
εP1 increases as s increases.
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Figure 2. Plots of
√

εP1 and P0 +
√

εP1 with different values of ε, against the initial value of the
underlying asset, for floating strike put options.

Figure 3a illustrates the variation in the value of P0 +
√

εP1 for a down-and-out put
option in response to changes in ρ values. As ρ shifts from −0.6 to −0.4, there is a slight
decrease in the value of P0 +

√
εP1. Additionally, in all scenarios, the value of P0 +

√
εP1

shows an upward trend as s increases.
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Figure 3. Plots P0 +
√

εP1 with different values of ρ, against the initial value of the underlying asset,
for down-and-out put option and floating strike put option.

Figure 3b depicts the change in the value of P0 +
√

εP1 for a floating strike put con-
cerning variations in ρ values. Similar to the previous case, a shift in ρ from −0.6 to −0.4
results in a minor decline in the value of P0 +

√
εP1. Moreover, across all instances, an

increase in s is associated with a rise in the value of P0 +
√

εP1.

7. Concluding Remarks

This article establishes explicit closed-form solutions for first order approximations
of down-and-out barrier and floating strike lookback put option prices under a stochastic
volatility model by means of Mellin transform. The zero-order terms in the solutions for
the prices of both types of put options coincide with those in Hull (2015) or Haug (2006)
under the classical Back–Scholes model. Our numerical analysis shows that the results
given by those explicit closed-form solutions match well with those generated by the
Monte-Carlo simulation. This confirms the accuracy of the approximation. Furthermore,
we also discussed the sensitivity of the first-order error terms and the approximation with
respect to the underlying asset price and the mean-reverting speed of the OU-process which
governs the volatility.
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This model formula can be employed by financial professionals for the swift and
precise pricing of barrier and lookback options. This is demonstrated by the efficiency of
our formula in comparison to the conventional Monte-Carlo method. Our pricing formula
offers an effective means of assessing barrier and lookback options. Looking ahead, we
may extend our methodology to evaluate other path-dependent options in future works,
including, but not limited to, Asian options, Russian options, and more.
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Appendix A. Mellin Transform

The Mellin transform is an integral transform that may be regarded as the multiplica-
tive version of the two-sided Laplace transform. It is often used in the theory of asymptotic
expansions. For a locally Lebesgue integrable function h : R+ → R, the Mellin transform
denoted byMh or ĥ is given by

ĥ(w) = (Mh)(w) :=
∫ +∞

0
sw−1h(s) ds, w ∈ C,

and if a < Re(w) < b and c such that a < c < b exists, the inverse of the Mellin transform
is expressed by

h(s) =
(
M−1ĥ

)
(s) =

1
2πi

∫ c+i∞

c−i∞
s−w ĥ(w) dw.

In this paper, we use the following properties of Mellin transform.

Table A1. List of properties of Mellin transform used in this paper.

Function Mellin Tansform

h ĥ
sh′ −wĥ

s2h′′ w(w + 1)ĥ
s3h(3) −w(w + 1)(w + 2)ĥ

eδsη

2
√

λπ
e−

1
4λ (ln s)2

eλ(w+η)2+δ

sh′ + s2h′′ w2ĥ
−sh′ − 3s2h′′ − s3h(3) w3ĥ

Here, λ, η, and δ are not related to w or s, and h′, h′′, and h(3) are the first-order,
second-order, and third-order derivatives of h, respectively.

Appendix B. Derivation of Formulas (20) and (27)

In this appendix, we give detailed derivation of the Formulas (20) and (27).
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Appendix B.1. Derivation of Formula (20)

From Equation (19), we know that

P0(t, s) =
∫ K

B
(K− u)eδ

( s
u

)η
(

1
2
√

λπ
e−

1
4λ (ln( s

u ))
2
)

du
u
−

∫ B

B2
K

(
B
u

)k1−1(
K− B2

u

)
eδ
( s

u

)η
(

1
2
√

λπ
e−

1
4λ (ln( s

u ))
2
)

du
u

.

By letting v = ln u, we convert the first integral to∫ ln K

ln B
(K− ev)sηeδe−ηv

(
1

2
√

λπ
e−

1
4λ (ln s−v)2

)
dv

=
sηeδ

2
√

λπ

(∫ ln K

ln B
Ke−

1
4λ (v

2−2v ln s+(ln s)2+4ληv)dv

−
∫ ln K

ln B
e−

1
4λ (v

2−2v ln s+(ln s)2+4λ(η−1)v)dv
)

=
sηeδ

2
√

λπ

(∫ ln K

ln B
Ke−

1
4λ (v−ln s+2λη)2+λη2−η ln sdv

−
∫ ln K

ln B
e−

1
4λ [v−ln s+2λ(η−1)]2+λ(η−1)2−(η−1) ln sdv

)
,

we further apply the following changes in variables:

x′ :=
v− ln s + 2λη√

2λ
and x′′ :=

v− ln s + 2λ(η − 1)√
2λ

to obtain ∫ ln K

ln B
(K− ev)sηeδe−ηv

(
1

2
√

λπ
e−

1
4λ (ln s−v)2

)
dv

=
eδ

√
2π

Keλη2
∫ ln( K

s )+2λη√
2λ

ln( B
s )+2λη√

2λ

e−
x′2
2 dx′ − seλ(η−1)2

∫ ln( K
s )+2λ(η−1)√

2λ

ln( B
s )+2λ(η−1)√

2λ

e−
x′′2

2 dx′′


= Keδ+λη2

[
Φ

(
ln(K

s ) + 2λη
√

2λ

)
−Φ

(
ln( B

s ) + 2λη
√

2λ

)]

−seδ+λ(η−1)2

[
Φ

(
ln(K

s ) + 2λ(η − 1)
√

2λ

)
−Φ

(
ln( B

s ) + 2λ(η − 1)
√

2λ

)]
.

Now, if we plug into δ, η, and λ into the above formula, we derive

∫ ln K

ln B
(K− ev)sηeδe−ηv

(
1

2
√

λπ
e−

1
4λ (ln s−v)2

)
dv

= Ke−r(T−t)
[
Φ
(
−∆−

( s
K

))
−Φ

(
−∆−

( s
B

))]
−s
[
Φ
(
−∆+

( s
K

))
−Φ

(
−∆+

( s
B

))]
.

Similarly, we can evaluate the second integral

∫ B

B2
K

(
B
u

)k1−1(
K− B2

u

)
eδ
( s

u

)η
(

1
2
√

λπ
e−

1
4λ (ln( s

u ))
2
)

du
u
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to obtain

Ke−r(T−t)
(

B
s

)k1−1[
Φ
(

∆−

(
B
s

))
−Φ

(
∆−

(
B2

sK

))]
−B
(

B
s

)k1
[

Φ
(

∆+

(
B
s

))
−Φ

(
∆+

(
B2

sK

))]
.

Putting these two integrals together yields Formula (20).

Appendix B.2. Derivation of Formulas (27)

From Equation (26), we have

Q0(t, u) =
∫ 1

0
(1− ξ)eδ

(
u
ξ

)η
(

1
2
√

λπ
e−

1
4λ

(
ln
(

u
ξ

))2
)

dξ

ξ
+

∫ ∞

1

(
− 1

k1
ξ1−k1 +

ξ

k1

)
eδ

(
u
ξ

)η
(

1
2
√

λπ
e−

1
4λ

(
ln
(

u
ξ

))2
)

dξ

ξ
.

We let v = ln ξ. For the first integral, we have∫ 1

0
(1− ξ)eδ

(
u
ξ

)η
(

1
2
√

λπ
e−

1
4λ

(
ln
(

u
ξ

))2
)

du
u

=
∫ 0

−∞
uη(1− ev)eδ−vη

(
1

2
√

λπ
e−

1
4λ (ln u−v)2

)
dv

=
uηeδ

2
√

λπ

(∫ 0

−∞
e−

1
4λ (v2−2v ln u+(ln u)2+4ληv)dv

−
∫ 0

−∞
e−

1
4λ (v2−2v ln u+(ln u)2+4λ(η−1)v)dv

)
=

uηeδ

2
√

λπ

(∫ 0

−∞
e−

1
4λ (v−ln u+2λη)2+λη2−η ln udv

−
∫ 0

−∞
e−

1
4λ (v−ln u+2λ(η−1))2+λ(η−1)2−(η−1) ln udv

)
.

Next, we let

v′ :=
v− ln u + 2λη√

2λ
and v′′ :=

v− ln u + 2λ(η − 1)√
2λ

.

Then, we have

∫ 1

0
(1− ξ)eδ

(
u
ξ

)η
(

1
2
√

λπ
e−

1
4λ

(
ln
(

u
ξ

))2
)

du
u

=
eδ

√
2π

(∫ − ln u+2λη√
2λ

−∞
e−

v′2
2 +λη2

dv′ − u
∫ − ln u+2λ(η−1)√

2λ

−∞
e−

v′′2
2 +λ(η−1)2

dv′′
)

= eδ+λη2
Φ
(
− ln u + 2λη√

2λ

)
− ueδ+λ(η−1)2

Φ
(
− ln u + 2λ(η − 1)√

2λ

)
= e−r(T−t)Φ

(
−∆−

( s
z

))
−
( s

z

)
Φ
(
−∆+

( s
z

))
.

For the second integral, we have
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∫ ∞

1

(
− 1

k1
ξ1−k1 +

ξ

k1

)
eδ

(
u
ξ

)η
(

1
2
√

λπ
e−

1
4λ

(
ln
(

u
ξ

))2
)

dξ

ξ

=
∫ ∞

0

(
− 1

k1
e(1−k1)v +

1
k1

ev
)

eδuηe−vη

(
1

2
√

λπ
e−

1
4λ (ln u−v)2

)
dv

=
eδuη

2k1
√

λπ

∫ ∞

0

(
−eηv− 1

4λ (ln u−v)2
+ ev(1−η)− 1

4λ (ln u−v)2)
dv

=
eδuη

2k1
√

λπ

(∫ ∞

0
−e−

1
4λ (v−ln u−2λη)2+λη2+η ln udv

+
∫ ∞

0
e−

1
4λ (v−ln u−2λ(1−η))2+λ(1−η)2+(1−η) ln udv

)
,

where we use the fact that k1 − 1 + η = −η. Furthermore, we introduce a new variable

v′′′ :=
v− ln u− 2λη√

2λ
.

Then, we have∫ ∞

1

(
− 1

k1
ξ1−k1 +

ξ

k1

)
eδ

(
u
ξ

)η
(

1
2
√

λπ
e−

1
4λ

(
ln
(

u
ξ

))2
)

dξ

ξ

=
eδuη

k1
√

2π

(∫ ∞

− ln u−2λη√
2λ

−e−
v′′′2

2 eλη2+η ln udv′′′

+
∫ ∞

− ln u+2λ(η−1)√
2λ

e−
v′′2

2 eλ(η−1)2+(1−η) ln udv′′
)

= − 1
k1

eδ+λη2
u1−k1 Φ

(
ln u + 2λη√

2λ

)
+

1
k1

ueδ+λ(η−1)2
Φ
(

ln u + 2λ(1− η)√
2λ

)
= − 1

k1

( s
z

)1−k1
e−r(T−t)Φ

(
−∆−

( z
s

))
+

1
k1

( s
z

)
Φ
(

∆+

( s
z

))
.

Putting these two integrals together and using the fact that P0 = zQ0, we can obtain
our Formula (27).
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