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Abstract: Mathematics plays an important role in many fields of finance. In particular, it presents
theories and tools widely used in all areas of finance. Moreover, fractional Brownian motion (fBm)
and related stochastic systems have been used to model stock prices and other phenomena in finance
due to the long memory property of such systems. This manuscript provides the exponential stability
of fractional-order Large-Scale neutral stochastic delay systems with fBm. Based on fractional calculus
(FC), R" stochastic space and Banach fixed point theory, sufficiently useful conditions are derived for
the existence of solution and exponential stability results. In this study, we tackle the nonlinear terms
of the considered systems by applying local assumptions. Finally, to verify the theoretical results, a
numerical simulation is provided.

Keywords: dynamic risk in asset pricing; exponential stability; finance modeling and derivatives;
fractional calculus; fractional Brownian motion; large dimensional problems; simulation and compu-
tation in long short-term memory; time delay

1. Introduction

Knowledge of mathematics, probability, statistics, and other analytical approaches
is essential to develop methods and theories in finance and to test their validity through
analysis of empirical real-world data. For example, mathematics, probability, and statistics
help develop pricing models for financial assets such as stocks, bonds, currencies, and
derivative securities and propose financially optimal strategies to decision makers based
on their preferences. Brownian motion is a mathematical process used to describe random
fluctuations in the stock market. It assumes that stock prices move randomly and follow
a random walk. It is a type of stochastic process which can often be seen to model the
movement of particles in a fluid or gas. However, Brownian motion is widely used in
finance to model the random walk of stock prices over time. To apply Brownian motion
in stock market modeling, the randomness of the price movement is used, as there is no
particular trend and direction. This randomness is then modeled as a series of random
steps, where each step represents a small change in the stock price. The size of each step is
determined by the stock volatility, which is a measure of how much the stock price tends
to oscillate over time. One important feature of Brownian motion is that it is a continuous
process, meaning that the stock price can take on any value within a certain range. This
makes it useful for modeling the behavior of stock prices over time, as it allows us to capture
the full range of possible outcomes. However, while Brownian motion can be a useful tool
for understanding the behavior of stock prices, it is not a perfect model. Stock prices can
be influenced by a wide range of factors, including news events, company performance,
and economic conditions. These factors can cause stock prices to move in ways that are not
easily captured by a simple model such as Brownian motion.
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The Hurst index has recently been introduced as a useful tool for assessing the memory
effect, frequently measured by the autocorrelation function Hurst (1951). H(0 < H < 1) is
a common way to represent the Hurst index.

(1) When 0 < H < 0.5, the time series exhibits a negative correlation and antipersistent
behaviour, or short-dependence memory.

(2) When H = 0.5, the time series is independent.

(3) When 0.5 < H < 1, the time series exhibits persistent behaviour, or long-dependence
memory.

The concept of fractional derivatives is not new, and FC has a long history of up
to three centuries. The number of FC-related publications increased significantly in the
later decades and mid-20th century. One of explanations for the high level of curiosity in
fractional differential equations (FDEs) is that they can be used to define a diverse range
of physical Hilfer (2000), chemical Oldham (2010), and biological Magin (2010) processes.
Fractional derivative plays an important role in memory and hereditary processes. Several
studies have been conducted to examine the long memory in the financial markets, since
memory effect is a significant feature in financial systems. FC can be found in a variety of
applications as a new branch of applied mathematics. Leibnitz, Caputo, Liouville, Riemann,
Euler, and others are credited with a significant amount of foundational mathematical
theory relevant to FC analysis. Nonetheless, throughout the last few decades, increasingly
compelling representations have been discovered in numerous engineering and science
disciplines (see Ortigueira (2011)). It should be highlighted that the existence hypothesis
of FDEs is committed to a considerable part of the recent studies (see Balachandran et al.
(2012); Nieto and Samet (2017); Singh et al. (2017); Tian and Nieto (2017)).

Recently, Bhaskar and Biswajit (2023) examined the effects of the steep surge in crude
oil price shock on the stock price returns and currency exchange rates of G7 countries,
namely Canada, France, Germany, Italy, Japan, the United Kingdom and the United States,
in the context of the Russia—Ukraine conflict. Regime switches in the empirical relation
between return dynamics and implied volatility in energy markets have been discussed
in Okawa (2023). Optimal combination of proportional and Stop-Loss reinsurance with
dependent claim and stochastic insurance premium have been studied in Sari et al. (2023).
Herding trend in working capital management practices: evidence from the non-financial
sector of Pakistan is analyzed in Farooq et al. (2023). Growth of venture firms under state
capitalism with Chinese characteristics: qualitative comparative analysis of fuzzy set is
discussed in Yun et al. (2023). In Li et al. (2014), the authors established a fractional-order
stochastic differential equation model to describe the effect of trend memory in financial
pricing.

While analyzing, there must be considerations for functional structures, ambient
noise, and temporal delays, which can be quite valuable when constructing further sen-
sible scientific models Mao (1997). The solution process for a stochastic fractional partial
differential equation driven by space-time white noise has been studied in Wu (2011).
The controllability of fractional and Hilfer fractional dynamical systems has been stud-
ied in Kumar et al. (2022a, 2022b, 2023). The relations between a singular system of
differential equations and a system with delays, and stability of fractional-order quasi-
linear impulsive integro-differential systems with multiple delays have been studied in
Dassios (2022); Kalidass et al. (2022).

Another type of noise exposure is continuous. This can be modeled using Levy
methods. In particular, methods based on Poisson random measures, as a common non-
Gaussian stochastic method, have already received a lot of attention in a variety of fields
and have been used to predict when demand for supply chain systems will increase Song
(2009). Mathematical modeling of one-sever m-form random queuing in a network system
is modeled in the stochastic environment problems Seo and Lee (2011), distribution patterns
of phone users in the service area of wireless links Taheri et al. (2010), as well as other
naturally occurring anomalies in a variety of areas Applebaum (2009). In Rockner and
Zhang (2007) the existence, uniqueness and huge deviation principle solutions to jump
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type stochastic evolution equations were investigated. Many researchers have recently
turned to FDEs as a useful tool for describing a variety of steady physical processes.
However, research into nonlinear FDE stability theory is still in its early phases, and
much more work in this field is possible. Recently, the theoretical notion of FDEs was thor-
oughly investigated, yielding several fundamental discoveries, including the stability theory.
In mathematical terms, stability theory is concerned with the convergence of differential
equation solutions under minor changes in the original data. The topic of stability is critical
in the study of FDEs, and many writers have addressed it (see Ahmed et al. (2007); Gao
and Yu (2005); Odibat (2010); Wang et al. (2012)). In any event, nonlinear FDEs are more
difficult to analyze for stability than conventional integer-order differential equations. Many
authors have been drawn to the study of nonlinear FDE stability theory during the last few
decades, and as a result, numerous approaches have been created. However, it is important
to emphasize that just a few steps have been carried out to study the durability of FDEs
using fixed point theorems. Burton and Zhang (2012) began a thorough investigation of
the stability properties of differential equations using fixed point theorems. Following that,
several authors used the fixed point method to establish sufficient conditions for the stability
of the differential systems (see Ren et al. (2017); Shen et al. (2020)). Based on the above
discussions, the exponential stability of FDEs with order & € (3, 1) is considered through a
fixed point approach. It is envisaged that FDEs with fBM will be important for modeling
the chaotic behavior of stock prices and financial instruments. The exponential stability of
FDEs is an important property in analysis and application in financial systems.
This paper’s main contributions are as follows:
(i) A nonlinear fractional Large-Scale neutral stochastic delay system (NFSDS) is consid-
ered in R" stochastic settings.
(ii) To determine the existence and uniqueness of a solution, the fixed point theorem and
local assumptions on the nonlinear portion are utilized.
(iii) The stability and exponential stability of a certain NFSDS are established by the use of
Holder inequality and Gronwall’s inequality.
The following assertions outline the paper’s innovations and challenges and future
direction:
(i) Stability and exponential stability results for NFSDS are new in R" stochastic settings.
(ii) Study of the exponential stability of the proposed system is not easy, taking the norm
estimation on nonlinear stochastic and Large-Scale neutral as the terms used in this
paper.
(iii) It is more difficult to validate the system’s weaker assumptions (1).
The following is an outline of the study: In Section 2, the model description and prelims
are given. Our major findings are proved in Sections 3 and 4. Finally, Section 5 presents an
illustration of the theory and Section 6 draws a conclusion.

2. System Description and Preliminaries

Consider the following NFSDS given by
CD* (1) — (1 (8), (6 = ()| =Apa(t) + it (), x1(t = R(©))
t ~
+ [ ails (), x(s = B(s))du(s)
t ~
+ [ s x(s) (s = Rs))dof,
x(t) =¢(t), te[-h0], 1)
wheret € [0,T], 1 <& < 1,x(t) e R" (I =1toN), >N, n = nand Ay is np x
continuous matrix valued functions. Define C" = C([—h,0],R"™), a Banach space of

continuous functions mapping from [—h, 0] — R". Define [0, T] := ], Further, g : ] x C" x
CM 5 R, f 2 [ CM X M —s R™, Gy 2 ] x C s C —s R g7« s C™ x CM —
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R™>™ are continuous functions which will be specified in the future. Moreover, wé) isa

fBm with H € (%, 1) which is defined by its stochastic representation

wzz):—r@ig(/l[<f—s>“—<—> o)+ [0 La)

here I' denotes the Gamma function I'(« fo “lexp(—y)dyand 0 < H < 1is called
the Hurst parameter (one can see the Connectlon w1th the Hurst parameter for self-similar pro-
cesses).

Let us consider a probability space (), F, P) with a probability measure P and w(t) =
(w1 (t),wy(t),..., w,(t))7 be an n—dimensional Wiener process defined on (Q), F, P). Let

{Ft/t € J} be the filtration generated by {w(s),wg) :0<s< t} defined on (Q), F, P). Let
Ly(Q), Ft,R™) denote the Hilbert space of all Fi-measurable square integrable random
variables with values in R™. Let L] (J,R™) be the Hilbert space of all square integrable and
Fi-measurable processes with values of R™. Let B = {x|(t) :x(t) € C(J, Lo(Q, ]:t,R”I))}

be a Banach space of all continuous square integrable and Fi-adapted processes with
norm ||x||? = sup E||x(t)||?> and ||¢||*> = max{E||¢(t)||> : t € [~h,0]} for any t > 0, any
te]

given ¢ € C([—h,0],R™) denotes the Banach space of continuous functions mapping from
[—h,0] to R™. For more details on fractional calculus definitions, stochastic theory and
fBm, one can read our published paper Balasubramaniam et al. (2020); Sathiyaraj and
Balasubramaniam (2018); Sathiyaraj et al. (2019).

Definition 1. The Riemann—Liouville fractional operators (left sided) for i —1 < & < i for
f1:[0,00) — R are as follows:

X

(. 5)6) = / (5~ O i)t

(DG f) (%) D"(F'“ﬁ)()

Definition 2. Podlubny (1998): The Caputo derivative for i —1 < & < f for f; : [0,00) — R is
as follows:

CDEfi() = — /) 1S e,
0
and its Laplace transform is
L{EDIfi(B)}(s) =" fils) Zﬁm“ll

Definition 3. Podlubny (1998): The two-parameter family of Mittag—Leffler function is given by

,
T(la+B)

Ma

Eap(2) for&, g > 0.

The general Mittag—Leffler function satisfies the below identity

i i 1
_t,8-1 N
/0 e P p(t72)dt = 1 for|z| < 1.
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The Laplace transform of two-parameter Mittag—Leffler function & g(z) is described using the
following integral

e —st /5718 + & d sai‘B
/0 et a,p(Eat’)dt = CED)
, _ i ip
That is, L{tP1Ex g(Fat®)}(s) = CED)

Lemma 1. Kreyszig (1978): Suppose that the bounded linear operator A; : R™ — R™ is de-
termined on a Banach space. Take that ||A;|| < 1. Then (I — A;)~V is linear and bounded,
(I— A~ = X0 Aj Then, [|(I- A~ < A=A

Lemma 2. Mao (1997): Let g € M?(J;R4™) 5

IEJ/OT 16/(s)|Pds < co. Then, E'/OT ¢(s)dB(s)

where p > 2.

Lemma 3. Applebaum (2009): For any p > 2, there exists j[k > 0, such that

</0t /::O ||§k(s,z)||2K(dz)ds> 5]
+E|:/Ot/—::o|g~k(S’Z)|pK(dZ)dS:|}'

Definition 4. A normalized fBm w* = {w% 0<t<oo}with0 <H <1lon(Q,F,P)is
uniquely characterized by the following properties:

E sup
s€(0,t]

/OS /j: g (v,2)N(dv, dz)

P
SAk{E

. w?‘t[) has stationary increments;
. w?‘é) =0, and Ew?'f) =0fort>0;
. wz't’f) has a Gaussian distribution for t > 0.

From the above three properties, it follows that the covariance function is given by
1
Ry (s, t) = E(wg)wﬁ)) = E{t”{ +s2H |t —s|27{}f01’0 <s<t
Definition 5. Seemab and Rehman (2018): The solution x(t) = ¢(t) of (1) is called stable, if
foreverye > 0andty > 0,36 = 6(tg,€) > 03 |x(t, %19, t0) — @(t)| < €for [xjg— @(to)] <
0(tg, €) and all t > 1.
Definition 6. Equation (1) is said to be exponentially stable if 3 y is positive, 1 < M* 5t > 0,

Elx(1)]|* < Mre™H.
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The solution of Equation (1) can be explained as follows

x(t) =€ (At*) [9(0) +&(0,9(0)) | + &i(tx(6)x(t = h(t))

+ [ =9 ea( e = 9" (5,1(9), (s — Rs)))ds

0
+/(t—s)5‘*15&,&(,2_(,(t—s)5‘) {/ (%, % (%), x (% — ﬁ(f)))dw(f)] ds
0 0

+ [ (=9 Teaal it =) Aigi(s,x(5), (s = h(s)))ds

0

+ =9 it -9)") [ [ @@ - ﬁ(f)))dwz*f)} ds.
0 0

3. Existence and Uniqueness of Solutions

In this section, we show the existence and uniqueness of solutions and stability results.
As a result, we establish the below hypothesis:

(Hy)For f, 7, g 3 q > 1 (constant) and Vi (1), Vg (1) and Vg () € L1(J,R™) 5

@ E[fitta(t),x(t—h(t)) = filty(t),yi(t = h(t)[]* < V(1) Ellx(t) —wi(t)]
(i) Bl x(t),x(t—h(t)) =t yi(t)yi(t —h(©)I* < Ve (1) Elx(t) —yi(0)]?
(iif) E||g~|t(t/><|(t)/ x(t—h(t))) - g|(t y|( )A’l(t* h(t)))[1? < Vg (t) Ellx(t) —w(1)]%
(iv) IE||f’71 ,%(T),x (% — h(%) f’?l yiI(8), (T = h(7)))dwl, |12

< ZHtZH LIS Vi (OE|x (t )—y|( )||2 ds

(Hy) The b?low properties are true, fort > 0, Nj, N, >1
() € (At < Ne .
(1) [€aa(Ai(t—s))]| < Npe @t=s),
(H3)3 \7f~| , le (constants), and \7g~, E)
(i) Elfi(tx(t),x(t—h()]?* < ‘Zf, (1+E[x(0)[?)
(i) Ella(tx(t),x(t— ﬁ(t)))\l2 < Vo (1+Elx(t)]?)
(i) B[ (t,x(t),x(t —h(t)]I> < V4 (1+Elx(1)]?).
t
(iv) E||Of’71(f,><|(f), x (T —h(%)))dwlt || < 2H?H- Lo Vi (S)E1+x(s)|2,ds.

In addition, we set

1
N 1 — ¢~ 2pwT T28—-1
Q1 =5V + 1ON2< ¢ >

TZEL
T |\Vf,||m ]R+)+?”V0~1HLW(LR+)

2pw

TZﬁcfl _ 231 TZE(
+ ﬁAIHVgﬁ Lo+ +2Ht &THVﬁ; Lo+

TZ
2H—-1
s s TRi+ ZzRa+ 52— Alel + 2t

_e—Z(UT TZ&—l TZD'L TZ:X 1 _
&2 R’fl :

- 1
o)) =5Vg + 10N, <
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Here, we take Ry = supIE||f~|(t,O,0)||2,R(71 = suIIDIEHUNI(t,O,O)HZ, Rg =
te

sup E[|g(t,0,0)|> and Ry, = supEllm(t 0,0)[1%.
te]

Theorem 1. Consider hypothesis (Hy) and (Hy) are true; then (1) has at least one solution
provided that

1 — e—2pwT T28-1 T2&
My :=4Vg + 4N, 2w T HVﬁHLq (JR+) T ﬁHVﬁZHM(LRﬂ

T25471 _ 21 TZ&
+ mAlHVgﬁHM(LRﬂ‘FZHt ﬁHVmHm(],ﬂv) <1, 2)

where X +1 =1, p,g > 1and x| = 0 (the trivial solution) of Equation (1) are stable in B.
r T g p.q q

Proof. For each r > 0, define B, = {x(t) : xi(t) € B;E|x(t)||> < r} and then for each r,
B; is a bounded, closed and convex subset of B. Define the operator ® : B, — B,

(Dx) (1) =Ex (Ait") | 9(0) +&(0,9(0))| + &i(t (1), (e~ h(t))

t

[t =9 i~ )5, x1(5), (s — R(s)))ds

S

0
- / (t— )" L& (At - 5)%) [ [tz - ﬁ(f)))dw<f>] ds

0

+ $) 1 (At — ) Aigi(s,x1(s), x1(s — R(s)))ds

+ $)* & a(Al(t—9)%) [ (T (1), x(T - ﬁ(fmduﬁ)] "

t
fo-
0

t
fo-

0

Step I: To prove that 37 > 0 5 ®(B,) C B,. Based on (H1), (H) and Holder inequality,
we get

E

[ =9 Tenal it = 51)i(sx(s), (s — h(s)))ds
0

TZEc—l
<
—2a—1

t
N, / e 2 IE|fi (s,x(s),x1(s — R(s))) = fi(s,0,0) +fi(s,0,0) | *ds
0
T25¢—1

t
<22&_1N{ [ IV B () s + / <9 f(5,0,0)] ds}

0
Tth 1 p 1 /
([ et / vi(s)is "ehol? + Ry [ et
) 0
T21x 1 1_ p-2pwT 1—e 20T
{( ) Vi Lo re)r + Ry, <2w '
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Similarly,

E

[ =91 Eaal (e —9)%) Aigilsx(5), (s — B(s)))ds
0

1
TZ&—I _ 1— e—ZPwT p 1— 6_2wT
25‘_1N2Al{< 2pw Ve llagr+)r + Rg Thw

<2

and

T2 1 _ e 2pwT\ ? 1 20T
2H~-1
e Nz{( 2pe ) Wiz +Ri| =55

Now,

E[l(@x)(t)]* < 5{E||5a(f(zt5‘)[¢(0) +81(0,9(0))]II* +Elg (t,x(t),x(t — h(t))) I

2

FE[ [t -9 ExalAilt — 9))fi(s,x(5), (s — A(s))ds

+E

(t =) 1 ( Ayt —9)7) [ [aEa@) (- ﬁ(f)))dw(f)] ds

+E| [ (=) EnalAi(t = )" Aigi(s,x1(s),xi(s — A(s)) )ds

+E

O, O, O O

(t _ S)ﬁt—lg&,a(j(l(t _ 5)56) |: ﬁl(frxl(%)le(f - ﬁ(f)))dwé)] ds
0

< 5{N1€2“’TE||(P(0) +8(0,9(0))|7 + Vg (1 +E[x(t)[*)
1
TZchl 1— e*ZPwT p TZﬁcfl 1— e*ZwT
+22&—1N2K 2pw =1 TR T

1
TZEc 1— 672pr p 1— 672wT
+2ﬁN2[<2mu> ||thl||L‘7(],R+)r+R¢fl ( 2w
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1
TZEc—l _ 1— e—2pr p 1— e—ZwT
+22&_1N2Al [(2;%0 Ve llLare)r + Rg Tow

1
T25¢ 1— e—2pr 4 1— e—ZaJT
2H-1
+4Ht &ZNZ{ (2]960 ||V17~1HL”7(],R+)7/+R11"1 T
1

—2wT . 2, =0 1—e 2ol
<5Nie " Ellg(0) + &0, 9(0)) ]| +5Vg + 10N2q | ————

2pw
TZ!X 1 TZ" TZIX 1 _
X [le HVf,HM r)t 27 Ve lla ¢y m) t5 Al||Vg|||M (JR+)
2H ZH—1LZ& Vi
+ 27t 2 Vi Iz rey + r
N l_efZOJT TZ&*] TZ& TZ&*] 23 1T2
+5Vg —|—10N2< 5 ) 5 1R T rRa+ 57 ,Z(,Rgl +2HEPT Ry,

<5N1e 2 TE[|9(0) + £(0, 9(0)) > + Q2 + Qur = .

wT
For, r = Shye * E|\¢(01Q1§0,¢(0))||2+Q2/ Q1 < 1. Hence, we obtain ®(B,) C B, for such
anr.

Step II. To prove that @ is a contraction.

Assume x|, y| € B,. Using, (H;), (Hz) and Holder inequality, for every t € |, we get
E[[(®x1)(t) — (Py) (1)

ZE{ Ex(At)[9(0) + & (0, 9(0))] + & (s,x(s), x1(s — A(s)))

t

[ =9t Tnal At = 9))ils x(s),x(s — R(s)))ds

0

n /(t — o) lg (At — 9)F) [/ G1(%, % (F), % (T — ﬁ(f)))dw(f)] ds

0

+ [ (= 9)" " Eaal( At —5)) Aigils, x(s),xi(s — R(s)))ds

+ [ (t— S)&_lg&/& (A (t — s [

=
p]
l<
f-ll
\_/
l<
—
r~h
0
—
(]
SN—
SN—
N—
m
Ei
| |
[
wn

(At")[9(0) +&1(0, 9(0))] — & (s, v1(s), yi(s — h(s)))
(t— )" aa (i (t — 5)")fi(s, yi(s), vi(s — A(s)))ds

S

(6= 9" e (At~ 9)) { [aEn@mE- h(fmdw(f)] s

0

(t =) Eaa(Ai(t — ") Aigi(s,11(s), vi(s — R(s)))ds

I
o
o\” o\ﬁ o\” gq >r—f o\ﬁ o
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t

- /(t — )" s (A (t—s)Y) /ﬁl(iw(f)/yl(f - ﬁ(f)))dw,(’-é)] ds
0

0

§4{El|g”'|(s,X(S),X(S —h(s))) = & (s, v1(s), yi(s = h(s) |

+E| [ (6= " Eaa(Ai(t = 9)%) [fils,xi(s),x1(s = h(s))) = (s, (), yi(s — h(s))) ] ds*

+E

1 — e 2pwT P T28-1 T2&
<A4||VgllLagr+) +4Na 2pw 25(71\|Vﬁ||Lt7(],1R+)ﬂLﬁ||thz||m(],R+)

TZEc -1 _ T25¢

+ o—AilVa I re) + 2HE T — Vil o g e

S = Ell(t) — y(0)[2

which reveals that
E[(®x)(t) — (®y) (1)[1* <ME[x — yi|*.

Using (2), we conclude that M, < 1, which implies ® is a contraction mapping with a
unique fixed point x|(t) € B,, which is a solution of (1). Now, we prove the stability
conditions of (1)

For any givene > 0,3 A = Q-0 5 l9(0) + & (0, 9(0))||*> < A, which implies

5Nle—2wT



J. Risk Financial Manag. 2023, 16, 278 11 of 15

1
) CowT ~ ) 1 — e 2pwT \ 7| T28—-1
Eq 1) < 5Nie 2 TE|p(0) + (0, p(0)) | + 10N} { = || =g Vi lurgr

TZEL T25¢*1 _ H-1 TZE(
+ &THV@”M(I,R*) + ﬁAIHVgW [ra(rr+) + 2Ht ﬁHVﬁle(},Rﬂ r

1— e—ZwT TZE(—l
2w 26 —1

T2& T28-1 T28
Rﬂ + &TRiI + o Alel + 2HPHT

+ 10N, ( R

5‘2
< 5Nje 2“TA + Qir + Qs

r(1—Qq) <5N1e 2TA+Q,
r<e.

Thus, the proof is over. O
4. Exponential Stability

Theorem 2. If hypotheses (Hy) — (Hg) are true, then (1) is exponentially stable, provided that

28—1 20

T o . A7 [ 1T s
w>p=N, ﬁ(Vf~|4m2(lvg~|)(14rr)+ Vo (L4 1) + 2HEH 1 — Uy (1 41) . 3)

Proof.

B ~ B TZﬁtfl . o
Emmﬁs&2“mew+g@¢®nhﬂweMﬂm_ﬁrwﬂw+A%J

t
/ eZws ds
0
2a—1

71 (1+7r) [Vﬂ + jl‘?g]}

t
/ ¢S s.
0

T25‘ T?%
+—7 Vo (147) +2HeH 1“ Vi (1+7)

E[x(1)[%e** < SNiEl|¢(0) + & (0, ¢(0)) | + 5N2

T25‘ T?&
+ =7 Vo, (1+7) + 2Ht2H 1“ Vi (1+7)

We get the result by using the Gronwall’s inequality

E[x (1) < SNIE[p(0) + £ (0, ¢(0))

20

T T?%
X exp <5N2 (Vﬂ+,2(lvgl)(1+r) - — Vo (1 +7) +2H?H 3 — V5 (1+7)

)

Therefore,

E|pq(t)[> <ME[|p(0) + & (0, ¢(0))* exp((—ot)).

where v = 2w — 58, M = 5N;. Thus, according to (3), (1) is exponentially stable in 5. Thus,
the proof is over. []

Remark 1. Existence, uniqueness, and stability of mild solutions for second-order neutral stochastic
evolution equations with infinite delay and Poisson jumps by the authors in Ren and Sakthivel
(2012) using successive approximation techniques. The uniqueness and existence of solutions, in
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addition to their controllability (relative), have been demonstrated using the fixed point approach
in Sathiyaraj and Balasubramaniam (2016). In Wang et al. (2017), the authors investigate the
controllability of a differential delay semilinear system with linear sections determined by matrices
(permutable). We proposed a new real concept of stability results in finite dimensional space in this
study by using weaker conditions for nonlinear terms.

5. Numerical Simulations
Consider the system of NFSDS described by

CB08 g () — (—t 4+ 2)etxy (6)] = (0.1 (1) — (3 — t)xlll_(t) - o1y ()11 4By + / “ 35, () dB @)
- X3 t t
CDOxp(t) — (2= thxip(t)e ™) = —(0.1)xp(t) — (3 —1t) 1|2_(t,2 —/0 SXlz(S)Uldez+/() Bsx12(s) 124 By ()

fort € J; =[0,1] and 0.5 < & < 1. Let us take

A = (061 _8‘1>, filt,x (), x(t = R(t)) = ((3t) }gi)),

e (0 (= () = (PN e (o) -he) = (ZG - P0e),

x5 (t)012d By

H
71(t,x(t),x(t —h(t)) = <3txllggzgggé{> where, h = 0.01, 0;; = 0.3, 0 = 0.5 and

5tX|2
& =0.6.

Furthermore, it is easy to verify that for any x(t), y;(t) € R

(i) BlIf (& (£), (e = h(t))) =it yi(t), vt = R[> < =B = E[xi(t) = (1)
(id). E[|67 (t, x1(t), 1 (t = h(t)) = G1(t, vi(t), yi(t = h(t))[> < 05t Elpq(t) — (1)
(iif). Bl (t,x (1), xi(t = h(t)) = &t ni(t), yi(t = A1) < =2 = E[pq(t) —n(v)[?
(i0). B[l (t, (), x(t = h(t)) = 71(t, vi(t), yi(t = h(t))|* < 4E[pq(t) —wn(t)|>

Thus, f|, 6 and g satisfies the assumption (Hj ), where we set Ve (), Vi (1), Vg (+) € L1(J1, RT).
Hence, all the conditions of Theorem 1 are satisfied. Hence, the fractional systems are
stable for [;. The Figures 1 and 2 show the related stability results for various values of ‘&’

Fractional order o =0.6

0.3 T
x, (0
X,
0.25—
Delay response x1072 Stochastic nature
0.3 2
0.2 F 02 . —
0.1 o]
= 0.15[ -
o o N —— =
3
= -0.1 -2
i 0.1 0o 0.5 1 1.5 2 25 3 49 49.2 49.4 49.6 49.8 50 —
0.05— -
o [~
0.05 I I I I I I I I I
10 20 30 40 50 60 70 80 90 100

tsec

Figure 1. The systems (4)—(5) are stable at & = 0.6.
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Fractional Order a=0.9
03 T

—_— 0

%50

D. Delay response x107 Stochastic nature

0.2

= 015 ' B
& 01 -05

-1
0.1f o 0.2 0.4 0.6 0.8 1 49 492 49.4 496 49.8 50 —

0.05— \\ -

s

—-0.05

X, (t) &x

L L L L L L L L L
o 10 20 30 40 50 60 70 80 90 100
tsec

Figure 2. The systems (4)—(5) are stable at & = 0.9.

Here, the delay response for the systems (4)—(5) is calculated for various values
& = 0.6,0.9 and the delay occurred at t = 2. Further, the nonlinear functions f|, §; and g are
continuous and satisfy the assumption (Hj), and then using Theorem 1, the systems (4)—(5),
they are stable on [0,100].

6. Conclusions and Future Research

In this paper, some useful and general conditions for exponential stability of NFSDS
with fBm has been derived. The existence and uniqueness of fixed points, as well as the
stability analysis of NFSDS, have been demonstrated. Finally, a numerical simulation was
provided to demonstrate the theoretical findings. Based on the application of fractional-
order stochastic financial modeling, the authors are interested in establishing the proposed
model by considering the exponential stability of fractional stochastic delay systems with
finance and stock price models and optimal control of stochastic insurance premium model
in the near future.
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