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Abstract: The purpose of this paper is to study the generalized method of moments (GMM) estimation
procedures of the realized stochastic volatility model; we give the moment conditions for this model
and then obtain the estimation of parameters. Then, we apply these moment conditions to the
realized stochastic volatility model to improve the volatility prediction effect. This paper selects
the Shanghai Composite Index (SSE) as the original data of model research and completes the
volatility prediction under a realized stochastic volatility model. Markov chain Monte Carlo (MCMC)
estimation and quasi-maximum likelihood (QML) estimation are applied to the parameter estimation
of the realized stochastic volatility model to compare with the GMM method. And the volatility
prediction accuracy of these three different methods is compared. The results of empirical research
show that the effect of model prediction using the parameters obtained by the GMM method is close
to that of the MCMC method, and the effect is obviously better than that of the quasi-maximum
likelihood estimation method.

Keywords: realized stochastic volatility model; generalized method of moments (GMM); Markov
chain Monte Carlo (MCMC); quasi-maximum likelihood (QML); high-frequency data

1. Introduction

Stock markets are not only one of the most important economic and financial markets
in each country today, but their immaturity and institutional weaknesses can lead to
serious divergences between their development and macroeconomic developments, mainly
referring to the high volatility of stock prices, which makes asset pricing and effective
portfolios subject to a lot of uncertainty. Therefore, the study of stock market volatility and
more accurate estimation and prediction of stock market fluctuations play an important
role and significance in reducing stock market risks, maintaining the safe and stable
development of the stock market and ensuring the healthy and stable operation of the
macro economy; refer to Brooks and Persand (2003); Giot and Laurent (2004). With the
rapid advancement of computer technology, accessing high-frequency financial data has
become easier. Using high-frequency data, we can estimate realized volatility; refer to
Andersen et al. (2003); Barndorff-Nielsen and Shephard (2003a, 2003b); Jacod et al. (2009),
etc. By incorporating high-frequency financial data, it provides a more accurate measure of
market volatility compared to traditional methods.

The original stochastic volatility (SV) model was proposed by Taylor (1986) and others.
Taylor (1986) proposed a discrete-time SV model, White (1984) proposed a continuous-
time SV model, and Harvey and Shephard (1996) discussed an asymmetric SV model
with leverage effects between the return process and the stochastic volatility process
in the SV model using the quasi-maximum likelihood estimation method. Han et al.
(2016) described an asymmetric stochastic volatility model using Gaussian regression with
parameter estimation using the sequential Monte Carlo method.
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The inclusion of unobservable potential random variables in the SV model makes
the implementation of parameter estimation methods for the SV model very complicated.
Commonly used parameter estimation methods include the generalized method of mo-
ments (Taylor (1986); Andersen and Sørensen (1996)), quasi-maximum likelihood method
(Harvey et al. (1994); Harvey and Shephard (1996)), Markov chain Monte Carlo method
(Kim et al. (1998); Yu (2005); Takahashi et al. (2021)), Bayesian method (Jacquier et al. (2002,
2004); Liu (2021); Bormetti et al. (2020)), and efficient method of moments (Andersen et al.
(1999); Bansal et al. (1995); Gallant and Tauchen (1996)).

Financial return volatility is defined as the standard deviation of returns and plays a
central role in modern finance. Realized volatility is the sum of the squares of intra-day
returns over an interval and is used by modern financial economists and econometricians as
a measure of true volatility. Andersen and Bollerslev (1997) thought the realized volatility
proposed would provide a stable estimate of the potential volatility under the assumption
of an ideal market. However, in real markets, measuring daily realized volatility based
on high-frequency return data raises problems related to the presence of microstructure
noise of the trading market. There are many noise-robust approaches of realized volatility
(see Zhang et al. (2005); Barndorff-Nielsen et al. (2008); Xiu (2010); Jacod et al. (2009) and
references therein). We apply the pre-averaging method (Jacod et al. (2009)) to estimate the
realized volatility using high-frequency data.

Realized volatility reveals some important information of volatility; combining real-
ized volatility into a traditional volatility model can improve the forecasting effect. Hansen
et al. (2012, 2014) incorporated realized volatility with a generalized autoregressive con-
ditional heteroscedasticity model. Takahashi et al. (2009) explores a stochastic volatility
model with realized volatility, selecting the new sampling method and using the Markov
chain Monte Carlo method for parameter estimation. Chaussé and Xu (2018) used four
generalized methods of moments for the generalized asymmetric stochastic volatility with
a realized volatility model (GASV-RV) and concluded that the efficiency of the GMM was
improved by automatic moment selection through the principal component GMM and
regularized GMM procedures.

This paper uses realized volatility constructed from high-frequency data and adds it
to the stochastic volatility model to improve the prediction of volatility; the new model is
called the realized stochastic volatility model. We employ the GMM method to estimate the
parameters of the realized stochastic volatility model. The paper presents the theoretical
moment conditions of the realized stochastic volatility model; the research contribution
is providing the moment conditions for realized volatility. Furthermore, we explore the
accuracy of GMM by comparing it with other two methods, MCMC and QML, which are
utilized for parameter estimation in the realized stochastic volatility model.

We introduce the realized stochastic volatility model in Section 2. Estimation of
realized volatility is given in Section 3. Three parameter estimation methods are introduced
in Section 4. Section 5 provides an empirical illustration and demonstrates the effectiveness
of three different parameter estimation methods. Section 6 contains the conclusion.

2. Realized Stochastic Volatility Model

Considering the realized volatility measure in the traditional SV model, the realized
stochastic volatility (RSV) model is constructed by Takahashi et al. (2009). Compared with
the traditional SV model, the RSV model contains more intra-day information, which is
helpful to improve the prediction performance of the model inside and outside the sample.
The specific RSV model is expressed as follows:

yt = exp(ht/2)εt , εt ∼ N(0, 1) , (1)

zt = ξ + ht + ut , ut ∼ N(0, σ2
u) , (2)
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ht+1 = µ + φ(ht − µ) + ηt , ηt ∼ N(0, σ2
η) , (3)

h1 = µ + ε0 , ε0 ∼ N(0,
σ2

η

1− φ2 ) . (4)

In the yield equation yt, the volatility σt = exp(ht/2) plays the role of a constant scale
factor, and ht is the unobserved potential volatility. To ensure the strict stationarity and
iterative nature of the stochastic process, the persistence parameter |φ| < 1 is assumed in the
logarithmic volatility equation ht and set h1. εt and ηt are random error terms. Theoretically,
when the error term ηt obeys the standard normal distribution, ht is a stationary process
of AR(1), following the normal distribution with the mean value of µ and the variance of
σ2

η /(1− φ2). The RSV model is composed by adding a metric Equation (2) to the rate of
return equation and the state equation of the SV model. Where zt is the realized volatility at
time t, the pre-averaging method can be chosen for the estimation of realized volatility, σ2

u is
the variance of the new interest ut, the smaller the σ2

u , the better the fit of the model, ξ is the
bias correction term of the realized volatility measure. We use the pre-averaging method to
estimate the realized volatility, because this method can handle the microstructure noise
problem when using high-frequency data.

3. Realized Volatility

The term volatility comes from mathematical statistics, and it is an indicator used to
measure the level of price volatility and reflects the extent to which prices deviate from
their average value. Realized volatility is an estimation of integrated volatility. When using
high-frequency data, the traditional realized volatility estimator will be dominated by noise
and will not have convergence to the integrated volatility. In this work, the pre-averaging
method is used to calculate the realized volatility, which is proposed by Jacod et al. (2009).
This method can reduce the effect of microstructure noise, and the estimator is a consistent
estimator for the integrated volatility. Precisely, the latent price is Xn

i = Xi∆n , ∆n = 1/n, the
noise price is εn

i = εi∆n , and the observed contaminated data are represented by Zn
i = Zi∆n ,

Zn
i = Xn

i + εn
i . (5)

We choose a sequence kn and a number θ that satisfies kn
√

∆n = θ + o(∆1/4
n ). g(x) be

a function defined in [0, 1] which satisfies g is continuous, piecewise C1 with a piecewise
Lipschitz derivative g′. Denote gn

j := g( j
kn
) for j = 0, 1, · · · , kn, then we define the pre-

averaged increments: Z̄n
i =

kn−1
∑

j=1
gn

j ∆n
i+jZ, ∆n

i Z = Zn
i − Zn

i−1, i = 0, 1, · · · , n− kn + 1.

The pre-averaged estimator is

Ĉn
t =

√
∆n

θψ2

[t/∆n ]−kn+1

∑
i=0

(Z̄n
i )

2 − ψ1∆n

2θ2ψ2

[t/∆n ]

∑
i=1

(∆n
i Z)2. (6)

In this case, we choose

g(x) = x ∧ (1− x), ψ1 = 1, ψ2 =
1

12
, θ =

1
3

. (7)

When using Equation (2), we employ the value of Ĉn
t to replace zt, which represents

the realized volatility.
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4. Parameter Estimation Methods
4.1. GMM Method Based on RSV Model

The GMM method was first proposed by Hansen (1982). It is a generic method for
estimation parameters in semiparametric models. The method requires a certain number of
moment conditions that are specified for the model. In this work, we refer to the method
used in Jacquier et al. (2002) to construct moment conditions for the rate of return and have
the following theorem.

Theorem 1. Given the RSV model given in Equations (1)–(3), for 0 ≤ j ≤ 10, the first four order
moments and the cross-moment expressions for yt and yt+j are

E|yt| =
√

2/πE(ht) , (8)

E(y2
t ) = E(h2

t ) , (9)

E|y3
t | = 2

√
2/πE(h3

t ) , (10)

E(y4
t ) = 3E(h4

t ) , (11)

E|ytyt+j| = (2/π)E(htht+j) , j = 1, 2, . . . , 10 , (12)

E(y2
t y2

t+j) = E(h2
t h2

t+j) , j = 1, 2, . . . , 10 , (13)

where, E(hr
t) = exp( rµ

2 + r2σ2

8 ), E(hr
t hs

t+j) = E(hr
t)E(hs

t)exp( rsφjσ2

4 ), σ2 =
ση

1−φ2 .

Referring to the proof of the moment condition in Chaussé and Xu (2018), this paper
gives the moment condition that the RSV model has the realized volatility term, which is
proved as follows.

Proposition 1. Given the RSV model specified in Equations (1)–(3), the first two order moments
and the cross-moment expressions for zt and zt+j (0 ≤ j ≤ 10) are

E(zt) = ξ +
µ

1− φ
, (14)

E(zt
2) = ξ2 +

µ2

(1− φ)2 +
σ2

η

1− φ2 + σ2
u + 2

ξµ

1− φ
, (15)

E(ztzt+j) = ξ2 + 2
ξµ

1− φ
+

µ2

1− φ

j

∑
i=1

φi−1 + φj(
σ2

η

1− φ2 +
µ2

(1− φ)2 ) ,

j = 1, 2, . . . , 10 .

(16)

Proof of Proposition 1. Given zt and ht specified in (2),

E(zt) = ξ + E(ht) = ξ +
µ

1− φ
, (17)

E(zt
2) = ξ2 + E(ht

2) + E(ut
2) + 2

ξµ

1− φ
+ 2E(htut)

= ξ2 +
µ2

(1− φ)2 +
σ2

η

1− φ2 + σ2
u + 2

ξµ

1− φ
,

(18)



J. Risk Financial Manag. 2023, 16, 377 5 of 12

E(ztzt+j) = ξ2 + 2
ξµ

1− φ
+ E[ht(µ

j

∑
i=1

φj−1 + φjht +
j

∑
i=1

φj−iηt+i−1)]

= ξ2 + 2
ξµ

1− φ
+

µ2

1− φ

j

∑
i=1

φi−1 + φj(
σ2

η

1− φ2 +
µ2

(1− φ)2 ) ,

j = 1, 2, . . . , 10 .

(19)

Let ψt be a q × 1 vector with typical element (yn
t ym

t+j), (z
n
t zm

t+j) for some m, j, and
n ∈ (0, 1, 2, 3, . . .), and let ψ(θ0) = E(ψt(θ0)) be the theoretical moments of the RSV model.
Let gt(θ) = [ψt − ψ(θ)]; then, the GMM estimator θ̂ of the true vector of coefficients θ0 is
based on the following moment conditions:

E[gt(θ0)] = 0 , (20)

and is the solution to:
argmin

θ∈Θ
g(θ)′Ω̂−1g(θ) . (21)

where Θ is the admissible parameter space implied by the model, g(θ) = [∑T
t=1

ψt
T − ψ(θ)]

and Ω̂ is a consistent estimate of the auto-correlation matrix of
√

ng(θ0).
Therefore, the estimator defined by Equation (21) is a one-step GMM with the estimate

of the auto-correlation consistent (HAC) matrix given by:

Ω̂ =
T−1

∑
i=−T+1

ωh(i)Γ̂i , (22)

where ωh(i) is a kernel, and h is the bandwidth, which can be chosen using the procedures
proposed by Newey and West (1986) and Andrews (1991),

Γ̂i =
1
T ∑

t
(ψt − ψ̄)(ψt+i − ψ̄)′ . (23)

In order to improve the properties of the two-step GMM, Hansen (1982) suggested
two other methods. The first one is the iterative version of the two-step GMM and can be
computed as follows:

1. Compute θ(0) = argminθ ḡ(θ)′ ḡ(θ);
2. Compute the HAC matix Ω̂(θ(0));
3. Compute the θ(1) = argminθ ḡ(θ)′[Ω̂(θ(0))](−1) ĝ(θ);
4. If||θ(0) − θ(1)|| < tol stops, else θ(0) = θ(1) and go to step 2;
5. Define the two-step GMM estimator θ̂ as θ(1);

where tol can be set as small as we want to increase the precision.

4.2. MCMC Method Based on RSV Model

In this paper, the MCMC method is used to estimate the parameters of the RSV
model as a comparison with the GMM method. In the estimation, the prior distribution
of the parameters is estimated and the conditional distribution of the combined sample
information is given first, and then, the posterior distribution of the parameters to be
estimated is calculated and the parameters of the models can be estimated for specific
problems using the WinBUGS 1.4.3 software package.
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Consider the RSV model described in (1)–(4). When given h = (h1, . . . , hT), referring
to Takahashi et al. (2009), we can compute the conditional likelihood of the RSV model as:

f (y1, z1, . . . , yT , zT |θ̄, h) =
T

∏
t=1

1√
2πexp(ht/2)

exp{− y2
t

2exp(ht)
}

× 1√
2πσu

exp{− (zt − ξ − ht)2

2σ2
u

},
(24)

where θ̄ = (ξ, σ2
u , µ, φ, σ2

η) denotes the parameters. Therefore, we use a Bayesian approach
to estimate the posterior distribution of the parameters of the RSV model, considering h as
an additional latent variable. In this setup, the most important thing is how to sample h
efficiently. Therefore, we first describe the sampling algorithm for h.

When selecting the parameter’s prior distributions, we refer to the setting in Yu (2005),
and we set priors as: ξ ∼ N(0, 27), σ2

u ∼ IG(2.5, 0.027), µ ∼ N(0, 25), 1+φ
2 ∼ Beta(20, 1.5),

σ2
u ∼ IG(2.5, 0.025). Then, denoting Y = (y1, . . . , yT) and Z = (z1, . . . , zT), the posterior

density for θ̄ = (ξ, σ2
u , µ, φ, σ2

η) and h becomes

f (θ̄, h|Y, Z) ∝ exp[−1
2

T

∑
t=1

y2
t exp(−ht)](σ

2
u)
−T/2exp{− 1

σ2
u

T

∑
t=1

(zt − ξ − ht)
2}

×
√

1− φ2(σ2
u)
−T/2exp{− 1

2σ2
η
(1− φ2)(h1 − µ)2

− 1
2σ2

η

T−1

∑
t=1

(ht+1 − (1− φ)µ− φht)
2}

× exp{− (ξ)2

54
}(σ2

u)
−3.5exp(−0.027

σ2
u

)exp{− (µ)2

50
}

× (
1 + φ

2
)19(

1− φ

2
)0.5(σ2

η)
−3.5exp(−0.025

σ2
η

).

(25)

To implement the Markov chain Monte Carlo simulation, we sample from the posterior
distribution as follows:

• Simulate h from f (h|µ, φ, σ2
η , Z, Y).

• Simulate ξ from f (ξ|h, σ2
u , Z).

• Simulate σ2
u from f (σ2

u |h, ξ, Z).
• Simulate µ from f (µ|h, φ, σ2

η).
• Simulate σ2

η from f (σ2
η |h, µ, φ).

• Simulate φ from f (φ|h, µ, σ2
η).

4.3. QML Method Based on RSV Model

In this work, QML estimation is also performed for the RSV model. Due to the
nonlinear relationship between the daily returns and the log of latent volatility in the
Equations (1)–(3), we cannot compute the likelihood of these models by the Kalman filter.
But given the parameter vector of the RSV model is θ̄ = (µ, φ, ση

2, ξ, σu
2), the log latent

volatility is h = (h1, . . . , hT), and by referencing Takahashi et al. (2009), we can compute
the conditional likelihood of the RSV model as:

f (y1, z1, . . . , yT , zT |θ̄, h) =
T

∏
t=1

1√
2πexp(ht/2)

exp{− y2
t

2exp(ht)
}

× 1√
2πσu

exp{− (zt − ξ − ht)2

2σ2
u

} .

(26)
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Then, the RSV model log-likelihood function can be written as:

logL̂(θ̄) = log f (y1, z1, . . . , yT , zT |θ̄, h) =
T

∑
t=1

log f (yt, zt|θ̄, h) . (27)

The log-likelihood estimation obtained from the above equation is a continuous func-
tion of the RSV model parameter θ̄. Then, the parameter θ̄ of this model can be estimated
by virtue of the classical proposed maximum likelihood estimation method obtained as
follows.

θ̂ = argmax
Θ

logL̂(θ̄) , (28)

where Θ is the admissible parameter space implied by the model.

5. Empirical Research

In this part, an empirical study will be conducted using the data of the Shanghai Stock
Exchange (SSE) Composite Index from 4 January 2005 to 15 December 2022. The GMM
method is used for estimating the parameters in the RSV model. The QML method and
MCMC methods are also used in the RSV model for a comparative study.

5.1. Loss Functions

To measure different methods’ estimation and prediction performance, loss functions,
also known as objective functions, are needed for measuring the errors between the actual
volatility and predicted volatility. For regression data, the mean square error (MSE), root
mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error
(MAPE) are often used. The mean square error refers to the expected value of the square of
the difference between the estimated value and the true value. The root mean square error
is the arithmetic square root of the mean square error, which can directly observe the direct
difference between the predicted value and the real value. The mean absolute error can
better reflect the actual error between the predicted value and the actual value. The mean
absolute percentage error is a measure of relative error, which uses the absolute value to
avoid the positive error and negative error canceling each other. The relative error can be
used to compare the prediction accuracy of various time-series models. The loss functions
mentioned above are defined as follows:

MSE =
1
T

T

∑
t=1

(ĥt − RVt)
2, (29)

RMSE =

√√√√ 1
T

T

∑
t=1

(ĥt − RVt)2, (30)

MAE =
1
T

T

∑
t=1
|ĥt − RVt|, (31)

MAPE =
1
T

T

∑
t=1
| ĥt − RVt

RVt
|, (32)

where ĥt is the predicted volatility at time t, T is the count number of the model forecast,
and RVt is the realized volatility estimated by the pre-averaged estimator.

5.2. Data Selection and Processing

We used high-frequency data for the SSE Composite Index for the period from 4
January 2005 to 15 December 2022. The sample length is 4363, where the first 3963 trading
days of data are selected for in-sample fitting and the last 400 trading days of data are
selected for out-of-sample prediction. The frequency of our observed stock data is every
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five minutes. For a normal trading day, there are 48 observations. The data used in the
empirical analysis are sourced from the Oxford-Man Institute of Quantitative Finance
Realized Library and the Wind database. Prior to conducting the empirical analysis, certain
processing steps are required for the return variable, rt.

1. The logarithm of the stock index closing price data for each stock market trading day
is log(pt), t = 1, . . . , T, forming a logarithmic price series (log(p1), . . . , log(pT));

2. The logarithmic price series are differenced to obtain the return rt = log(pt) −
log(pt−1), t = 1, . . . , T for the t-th trading day and then constitute the return se-
quence (r1, r2, . . . , rT).

Figure 1 below is the index returns of SSE. We can see the irregular and aggregation of the
SSE stock index return volatility. In the three phases 2007–2009, 2015–2016 and 2018–2020,
the SSE composite index return volatility is large, and extreme values are more prominent.
As we know, there are relatively large stock price fluctuations during these three periods
since the financial crisis and economic market downturn.

Figure 1. Index returns.

5.3. Model Parameter Estimation

We use the daily return series of the SSE Composite Index to represent yt in Equation (1).
In addition, we use the five-minute high-frequency return series of the SSE Composite Index
to estimate the pre-averaged realized volatility in (6), and we use it as zt in Equation (2). The
GMM method and QML method are used to estimate the parameters of the RSV model by R
4.1.3 language software. The MCMC method is used to estimate the parameters of the RSV
model using WinBUGS software. WinBUGS’ basic principle is to sample from the complete
conditional probability distribution through Gibbs sampling and the Metropolis algorithm,
so as to generate a Markov chain, and finally estimate the model parameters through
iteration. The obtained parameter estimation results are shown in Table 1. The advantage
of introducing Gibbs sampling and MCMC is self-evident: that is, to avoid calculating
a complete joint posterior probability publication with high-dimensional integral form
and instead calculate the univariate conditional probability distribution of each estimated
parameter.

Observing the persistence parameter φ, the parameter φ’s value of the RSV model of
the SSE index is close to 1, indicating that the estimation results show that the time series
of the SSE index has high persistent volatility characteristics. Next, observing the bias
correction term ξ, the parameter ξ of the RSV model is positive, indicating that the effect of
market microstructure noise still persists.
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Table 1. Parameter estimation results for RSV model using different methods.

Method µ φ ση ξ σu

RSV-GMM −0.2630743 0.9585373 0.1408710 1.1870245 0.9432676
(0.14369) (0.02479) (0.08535) (0.09746) (0.00936)

RSV-MCMC −0.1254 0.9473 0.2261 1.135 0.1211
(0.15841) (0.02923) (0.05545) (0.11521) (0.00724)

RSV-QML −0.22454762 0.9776021 0.1461197 0.7612748 0.9253961
(0.149782) (0.02637) (0.01725) (0.09839) (0.00893)

Note: The number in parenthesis is the standard error.

The results of the parameters of the GMM method do not differ much from those of
the QML method. The φ values are still close to 1 and the persistence of volatility is still
high.

From Figures 2–4, it is evident that the GMM method exhibits a notable ability to iden-
tify significant changes in volatility, particularly when volatility levels are high. The GMM
method outperforms the MCMC, QML method in accurately predicting large volatility.
The MCMC method performs well in forecasting, as it closely aligns the predicted volatility
with the actual volatility. The predictive performance of the QML method in volatility
estimation is satisfactory, yet it is not on par with the superior performance demonstrated
by the GMM and MCMC approaches. The four loss functions are used to test the accuracy
of the forecasting results.

The efficiency of three parameter estimation methods was investigated, and the results
presented in Table 2 demonstrate that, under the RSV model, using parameters obtained
from the MCMC method yields the most effective predictions of volatility, followed by the
GMM method, while the QML method performs relatively weaker. When the RSV model
is used for volatility prediction, the error of predicting volatility using the parameters
estimated by the GMM method is almost the same as that predicted by the MCMC method.
It is worth mentioning that the MCMC method requires more computation time compared
to the GMM method, yet the predictive performance remains comparable. This finding
substantiates the effectiveness and utility of the GMM method of RSV model proposed in
this study.

Figure 2. Volatility prediction obtained from GMM method applied to RSV model.
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Figure 3. Volatility prediction obtained from MCMC method applied to RSV model.

Figure 4. Volatility prediction obtained from QML method applied to RSV model.

Table 2. Prediction errors of volatility forecasting using different methods for RSV model parameter
estimation.

Model MSE RMSE MAE MAPE

RSV-GMM 0.02319271 0.1522915 0.04333079 0.0610987
RSV-MCMC 0.02319251 0.1522909 0.04308118 0.0610579
RSV-QML 0.03319375 0.1821915 0.05093191 0.0637402

6. Conclusions

With the development of science and technology, people’s research in the field of
stochastic volatility-type models parameter estimation is becoming more and more in-
depth, and new parameter estimation methods are bound to appear. In this paper, GMM,
MCMC and QML methods are used for realized stochastic volatility model parameter
estimation, and we use these parameters and the realized stochastic volatility model to
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predict volatility. Empirical data are analyzed in this paper. We use the five-minute high-
frequency return series of the SSE Composite Index, and we apply the pre-averaging
method to estimate the realized volatility. The prediction results illustrate that the GMM
method is very effective and the calculation speed is faster, while the MCMC method is
also effective, and the QML method is less accurate.

Although the realized volatility is introduced on the basis of the random volatility
model, this paper still assumes that the disturbance term obeys normal distribution. Ac-
cording to the research in recent years, it is shown that the model disturbance term obeys
the generalized hyperbolic distribution, which may improve the prediction effect of the
model. For the improved model, we can consider using the efficient generalized method of
moments to estimate the unknown parameters.
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