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Abstract: This study investigates the properties of risk measure, value at risk (VaR) and conditional
VaR (CVaR), using high-frequency Bitcoin data. These data allow us to conduct a high statistical
analysis. Our findings reveal a disparity in VaR and CVaR values between the left and right tails of
the return probability distributions. We refer to this disparity as “long–short asymmetry”. In the
high-frequency domain, the tail distribution can be accurately described by a power-law function.
Moreover, the ratio of CVaR to VaR is expected to be determined solely by the power-law exponent.
Through empirical analysis, we confirm that this ratio property holds true for high confidence levels.
Furthermore, we investigate the relationship between risk measures (VaR and CVaR) and realized
volatility. We observe that they trace a trajectory in a two-dimensional plane. This trajectory changes
gradually, indicating periods of both high and low risk.

Keywords: risk measure; value at risk; conditional value at risk; expected shortfall; power-law
function; realized volatility; Bitcoin; Rachev ratio

1. Introduction

Risk management plays a central role in various financial sectors. Its purpose is to
prevent unexpected substantial losses in trading and operations by closely monitoring these
risks. Although there are various sources of financial risk, such as credit and liquidity risks,
we will focus specifically on market risk, which refers to the risk associated with market
price changes. The widely accepted risk measure is known as the value at risk (VaR). VaR
provides a single numerical value that summarizes the overall risk of a portfolio (see, for
example, Abad et al. (2014); Duffie and Pan (1997); Gourieroux and Jasiak (2010); Linsmeier
and Pearson (2000)). For our analysis, we will consider a simple portfolio consisting of
a single asset, such as a stock. In this context, changes in asset prices are described as
returns r, and historical return data form a return probability distribution P(r). VaR is
defined as the maximum loss at a given confidence level, denoted as X%, over a given
time horizon, denoted as T. Figure 1 shows a schematic drawing for the VaR approach.
“VaR(X)L” stands for the VaR for the long position at the confidence level of X% and is
defined so that the probability of the left tail (−∞ < r ≤ VaR(X)L) becomes (100-X)%.
Similarly, “VaR(X)S” for the short position at the confidence level of X% is defined as the
right tail (VaR(X)S ≤ r < ∞) of the return probability distribution.

One drawback of VaR is its inability to provide information on potential losses beyond
the VaR threshold. This limitation becomes particularly significant when dealing with the
tail of the probability distribution. In scenarios where the tail is heavier than that of a
normal distribution, the potential loss can exceed what would be expected under normal
distribution assumptions. Empirical evidence shows that asset return distributions often
exhibit fat tails, which are recognized as stylized facts (Cont 2001). To address this issue
and incorporate tail information, an improved risk measure known as conditional VaR
(CVaR), or expected shortfall with coherent properties, has been introduced (Acerbi and
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Tasche 2002; Artzner et al. 1999). CVaR is defined as the average value of VaR that exceeds
the VaR at a given confidence level, denoted as X%.
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Figure 1. Schematic drawing of the VaR approach.

Usually, VaR and CVaR calculations in risk management focus on the left tail of
the return probability distribution. This region corresponds to potential losses in a long
position. Conversely, the right tail represents losses in a short position. When assuming a
symmetrical return probability distribution, there would be no distinction between VaR
and CVaR values in the left and right tails. However, it cannot be guaranteed that empirical
distributions will exhibit symmetry. We refer to the difference between VaR and CVaR
associated with asymmetric distributions as “long–short asymmetry”. One of our objectives
was to empirically investigate the presence of such long–short asymmetry. Measuring
long–short asymmetry poses various challenges, primarily due to the limited availability of
accurate probability distributions. This limitation becomes more pronounced when using
one-day or longer time returns, as the shorter sampling period results in fewer statistics. For
instance, if we collect daily returns for one year, we would have only 365 (or approximately
250) working days’ worth of data. For risk measures in the cryptocurrency market, based
on daily returns, see, e.g., Almeida et al. (2022).

To address this issue, we analyze the data in the high-frequency domain, which
involves collecting a large amount of statistical data. In this study, we specifically utilize
1 min Bitcoin data. In cryptocurrency markets, Bitcoin is traded continuously for 24 h,
allowing us to gather 52,560 1 min return data points over a 1-year period. This extensive
dataset enables us to conduct a thorough statistical analysis.

Long–short asymmetry is closely associated with the reward–risk ratios that are
defined as ratios between a reward measure and a risk measure (Cheridito and Kromer
2013). We calculate one of the reward–risk ratios, the Rachev ratio (Biglova et al. 2004),
which is given by a ratio of the CVaR for the short position to the CVaR for the long position.
Since the Rachev ratio deviates from one for asymmetrical distribution, it also quantifies
the long–short asymmetry.

Our second objective is to explore the relationship between the tail exponent and risk
measures. In the high-frequency domain, the tails of the return probability distributions
are fat-tailed and exhibit power-law behavior (Gabaix 2009; Gopikrishnan et al. 1998,
1999; Pan and Sinha 2007; Plerou et al. 1999). Let α be the power-law exponent of the
cumulative return distribution. As we will explain later, under the assumption of a power-
law probability distribution, the ratio of CVaR to VaR is α/(α− 1); we empirically verify
the presence of this α/(α− 1) relationship at high confidence levels.

We also investigate the relationship between realized volatility (RV) (Andersen and
Bollerslev 1998; Andersen et al. 2003; McAleer and Medeiros 2008) and the risk measures.
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Our findings reveal that these variables form a trajectory that exhibits periods of both high
and low risk.

The remainder of this paper is organized as follows: Section 2 describes the methodol-
ogy and data used in this study. Section 3 presents the empirical results. Finally, we discuss
and conclude our findings in Section 4.

2. Methodology and Data

First, we calculate the VaR and CVaR for the return probability distribution P(r). Here,
for simplicity, we assume that the mean of the returns is zero. The VaR at a confidence level
X% is denoted as VaR(X)L and is defined for the long position (left tail) as

pX =
∫ VaR(X)L

−∞
P(r)dr, (1)

where pX = 1− X/100. Similarly, the VaR for the short position, VaR(X)S, is defined in
the right tail as

pX =
∫ ∞

VaR(X)S

P(r)dr. (2)

CVaR is defined as the average VaR that exceeds the VaR at confidence level X%. The
CVaR for the long position at confidence level X% is given by

CVaR(X)L =
∫ VaR(X)L

−∞
rP(r)dr/pX . (3)

Similarly, the CVaR for the short position is given by

CVaR(X)S =
∫ ∞

VaR(X)S

rP(r)dr/pX . (4)

Next, we calculate the VaR and CVaR for specific forms of P(r). Note that although
we calculate VaR and CVaR for the long position, we obtain the same expression for both
of the short positions, except with regard to the sign. First, we assume that P(r) is a
normal distribution with a standard deviation σ, that is, P(r) = exp(− r2

2σ2 )/
√

2πσ2. Then,
Equation (1) is as follows (Hull 2018):

VaR(X)L = −σN−1(X), (5)

where N−1(X) denotes the inverse cumulative normal function. Similarly, we obtain
Equation (3).

CVaR(X)L = −σ
exp(−K2/2)√

2πpX
, (6)

where K ≡ N−1(X). Using Equations (5) and (6), the ratio of CVaR to VaR, denoted by
Rnorm, is

Rnorm =
exp(−K2/2)√

2πKpX
. (7)

Second, we assume that the total probability distribution P(r)t, defined as P(r)t =
P(r)tail + Po(r), consists of two parts: the tail P(r)tail and the other Po(r). P(r)tail is de-
scribed by a power-law function as

P(r)tail = c|r|−(α+1), (8)
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where the constant c is the normalization factor determined such that
∫ ∞
−∞ P(r)t = 1. The

actual value of c is not significant. At the tail, we assume that only P(r)tail contributes to
the calculations of VaR and CVaR. Using Equation (8), Equation (1) is calculated to be1

pX =
c
α
|VaR(X)L|−α. (9)

Similarly, Equation (3) leads to the following:

CVaR(X)L =
c

pX(α− 1)
|VaR(X)L|−(α−1). (10)

Using Equations (9) and (10), the ratio of CVaR(X)L to VaR(X)L becomes:

Rpower =
α

α− 1
. (11)

Interestingly, at any confidence level for the tail distributions described by a power-law
function, Rpower is determined by α only.

To quantify the differences in VaR and CVaR between the left and right tails, we compute

DVaR(X) = VaRS(X)− |VaRL(X)|, (12)

and
DCVaR(X) = CVaRS(X)− |CVaRL(X)|, (13)

at a given confidence level X%. DVaR(X) and DCVaR(X) take zero values for symmetrical
distributions. We also calculate the Rachev ratio (R-ratio) (Biglova et al. 2004) defined as

R-ratio =
CVaRS(X)

|CVaRL(X)| . (14)

Similarly, we can also define a ratio by VaR (V-ratio) as

V-ratio =
VaRS(X)

|VaRL(X)| . (15)

Both the R-ratio and V-ratio will take the value of 1 for symmetric distributions. The
R-ratio and V-ratio are related to DVaR and DCVaR as follows:

R-ratio− 1 = DCVaR/|CVaRL|, (16)

and
V-ratio− 1 = DVaR/|VaRL|. (17)

For the tail distributions described by a power-law function, the ratio of R-ratio to
V-ratio, denoted as RRV , is given by

RRV ≡
R-ratio
V-ratio

=
αS

αS − 1
αL − 1

αL
, (18)

where αS (αL) is the power-law exponent at the right (left) tail of the return
probability distribution.

In this study, we used Bitcoin data traded on Bitstamp exchanges2 from 1 January 2015
to 21 May 2022. In the early stages of the Bitcoin market, characterized by low liquidity, we
observed market properties that differed from those of liquid markets, such as developed-
country stock markets (Di Matteo et al. 2005). For example, the Hurst exponent of the return
time series in the early stages of the Bitcoin market was found to be less than 0.5, indicating
the anti-persistence of the series (Urquhart 2016). It is argued that the anti-persistence seen
in the cryptocurrency market can be attributed to the low liquidity of the market (Wei 2018).
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The power-law exponents α of the tail return distributions were significantly lower than
the expected values of 3 based on return distributions in developed countries (Begušić et al.
2018; Drożdż et al. 2018; Easwaran et al. 2015; Takaishi 2021a). Due to the low liquidity on
the Bitstamp exchange before 2013 (Takaishi and Adachi 2020), we selected a period after
2015 when liquidity was sufficiently high.

From the 1 min price data pt, we construct 1 min return data using rt = ln pt −
ln pt−1. Table 1 describes the descriptive statistics of the whole 1 min return data. The
kurtosis was found to be about 98, which is considerably high, implying that the return
distribution is fat-tailed. It is known that as the time scale of returns increases, the return
distributions approach the Gaussian distribution. On the Bitcoin market, the kurtosis
reaches the value of 3 (the kurtosis of the Gaussian distribution) at the time scale of two
weeks (Takaishi 2018 2021b).

Table 1. Descriptive statistics for the whole sample of 1 min returns. The values in parentheses
indicate one-sigma errors estimated by the Jackknife method.

Mean Standard Deviation Kurtosis Skewness Nobs

1.2(8)× 10−6 0.00135(8) 98(44) −0.3(2) 3.87M

We analyze the data within a 1-year window containing 52,560 return data points.
The window is then shifted by one day to capture time-varying properties and enable
further investigation. To calculate VaR and CVaR, we first sort the 52,560 return data
points in ascending (descending) order for long (short) positions. Then, VaR(X) at the
confidence level X is obtained from the 52,560 × (X/100)th value in the sorted data3.
Similarly, CVaR(X) is obtained from the average of the sorted data from the first to the
52,560× (X/100)th data point.

3. Empirical Results

Figures 2 and 3 show the time evolution of VaR and CVaR, respectively. In the
figures, positive (negative) values correspond to the VaR and CVaR regarding the short
(long) position or the right (left) tail of the return probability distribution. The magnitude
of the VaR and CVaR is found to be relatively small, i.e., an order of about 0.005∼0.01
since the variation in 1 min returns that we use here is also small. As described in Table 1,
the standard deviation of 1 min returns is small, ∼0.00135. Here, note that the standard
deviation of 1-day returns is calculated to be ∼4.63 (Takaishi 2021b), which is bigger than
that of 1 min returns.

2015 2016 2017 2018 2019 2020 2021 2022

Year

-0.005

0

0.005

0.01

V
a
R

99.5% (short)
99%    (short)
95%    (short)
90%    (short)
90%    (long)
95%    (long)
99%    (long)
99.5% (long)

Figure 2. Time evolution of VaR at confidence levels X = 99.5%, 99%, 95%, and 90%.
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Figure 3. Time evolution of CVaR at confidence levels X = 99.5%, 99%, 95%, and 90%.

It is evident from the figure that VaR and CVaR are not constant and vary over time on
the Bitcoin market. The VaR and CVaR show similar time variation patterns. Namely, we
observed that the magnitude of VaR and CVaR increases around 2015 and 2018, implying
that the market risk was higher around 2015 and 2018 compared to other periods. This
high and low risk pattern will be more clear when we analyze both risk measures (VaR and
CVaR) and the RV simultaneously (we will return to this point later).

Figures 4 and 5 display the time evolutions of DVaR and DCVaR, respectively. DVaR and
DCVaR quantify long–short asymmetry in VaR and CVaR. It is evident from the figures that
DVaR and DCVaR predominantly take non-zero values, indicating the presence of long–short
asymmetry in VaR and CVaR.

This asymmetry is more pronounced at high confidence levels, highlighting that risks
can differ between the left and right tails at the same confidence level. At high confidence
levels, DVaR and DCVaR take mostly negative values except for in some periods, which
means that in the period we studied here, the long position is riskier than the short position.

The significance of long–short asymmetry should be compared to the magnitude of
VaR or CVaR. For example, at the confidence level X = 99.5%, the absolute value of CVaR
(DCVaR) around 2016 is about 0.01 (0.0005), which results in |DCVaR/CVaR| ' 0.05. Thus,
in this case, the significance of long–short asymmetry is about 5%. The significance of
long–short asymmetry is also measured by directly comparing long and short positions.
Such measurements are the V-ratio and R-ratio.

2015 2016 2017 2018 2019 2020 2021 2022

Year

-0.0004

-0.0002

0

0.0002

0.0004

D
V
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R

99.5%

99%

95%

90%

Figure 4. Time evolution of DVaR at confidence levels of X = 99.5%, 99%, 95%, and 90%.
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Figure 5. Time evolution of DCVaR at confidence levels of X = 99.5%, 99%, 95%, and 90%.

Figures 6 and 7 show the time evolutions of the V-ratio and R-ratio, respectively. These
ratios exhibit similar time variations with DVaR and DCVaR, and predominantly deviate
from 1, indicating the presence of long–short asymmetry. Moreover, since the V-ratio and
R-ratio are defined by Equations (14) and (15), they could represent the significance of
long–short asymmetry. For example, at the confidence level X = 99.5%, the V-ratio from
2016 to 2018 is about 0.95, implying that there is about a 5% difference in the VaR between
long and short positions. Although the magnitude of DVaR is small at the confidence level
X = 90%, the V-ratio from 2016 to 2018 is around 1.03 (3% difference in VaR), which means
that the long–short asymmetry could be significant at lower confidence levels.

“DVaR, DCVaR” and “V-ratio, R-ratio” can also identify the period in which the return
probability distributions are approximately symmetrical. For symmetrical distributions,
DVaR and DCVaR take values of zero at any confidence level. Similarly, the V-ratio and
R-ratio take one at any confidence level. Therefore, the criterion that DVaR and DCVaR are
zero and that the V-ratio and R-ratio are one at any confidence level can help to provide
information on symmetrical distributions. For example, from Figures 4–7 we recognize that
the middle of 2021 matches the criterion approximately, and thus, the return probability
distribution is expected to be symmetrical approximately in the middle of 2021.

2015 2016 2017 2018 2019 2020 2021 2022

Year

0.95

1

1.05

V
-r

a
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o

99.5%

99%

95%

90%

Figure 6. Time evolution of V-ratio at confidence levels of X = 99.5%, 99%, 95%, and 90%.
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Figure 7. Time evolution of R-ratio at confidence levels of X = 99.5%, 99%, 95%, and 90%.

To examine the significance of the power-law distribution with regard to the VaR and
CVaR, we determine the power-law exponent α by fitting the tail data to ∼|r|α+1 using the
Hill estimator (Hill 1975). The Hill estimator estimates the power-law exponent α with
the equation

1
α + 1

=
1
k

k

∑
i=1

(ln r(i) − ln r(k)), (19)

where r(1) ≥ r(2) ≥ · · · ≥ r(k) is the order statistics for the tail data.
Figure 8 shows the time evolution of α obtained from the left and right tails of the

return probability distribution. The power-law exponent α varies considerably over time
around α = 3. The values of α are higher than the value of α = 2 observed in the early
stage of the Bitcoin market (Easwaran et al. 2015). The low value of α could be related to
the liquidity in the early stage of the Bitcoin market. The liquidity is also considered to
be the origin of the low Hurst exponents observed in the cryptocurrency markets (Wei
2018). In the period we studied here, the liquidity of the Bitcoin market is expected to be
high (Takaishi and Adachi 2020) and the power-law exponent α comes close to the value of
α = 3 observed in the stock market (Gopikrishnan et al. 1998, 1999).

2015 2016 2017 2018 2019 2020 2021 2022

1

2

3

4

5

6

α

left tail

rigth tail

Figure 8. Time evolution of the power-law exponent α.

As suggested by Equation (11), the ratio CVaR/VaR can be expressed as α/(α− 1)
for the power-law tail. In Figures 9 and 10, we show the time evolution of the ratio
alongside the corresponding values of α/(α− 1). The dashed straight lines in the figures
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represent the theoretical results under a normal distribution assumption obtained with
Equation (7). The empirical ratios consistently exceed those derived from the normal
assumption, suggesting that the empirical return distributions exhibit fatter tails compared
to the normal distribution. The results at high confidence levels (99.5% and 99%) closely
align with the α/(α − 1) law. This indicates that the probability distributions are well
described by the power-law function in the region corresponding to high confidence
levels. As the confidence level decreases, the results deviate from α/(α− 1), which implies
that in the region with lower confidence levels, the probability distributions are not well
approximated by the power-law function.

2015 2016 2017 2018 2019 2020 2021 2022
1

1.5

2

2.5

C
V

a
R

 /
 V

a
R

90%
95%
99%
99.5%
α/(α−1)

90% (normal)

99.5% (normal)

Figure 9. Time evolution of CVaR/VaR for the long position at confidence levels of X = 99.5%,
99%, 95%, and 90%. The dashed lines show the theoretical values under the normal distributional
assumption, obtained with Equation (7).

2015 2016 2017 2018 2019 2020 2021 2022
1

1.5

2

2.5

C
V

a
R

 /
 V

a
R

90%
95%
99%
99.5%
α/(α−1)

90% (normal)

99.5% (normal)

Figure 10. Time evolution of CVaR/VaR for the short position at confidence levels of X = 99.5%,
99%, 95%, and 90%. The dashed lines show the theoretical values under the normal distributional
assumption, obtained with Equation (7).

To visualize the α/(α− 1) law more clearly, we plot CVaR/VaR as a function of α in
Figures 11 and 12. At high confidence levels (X = 99.5% and 99%), the ratio aligns well
with the line α/(α− 1), indicating that the return probability distribution at these high
confidence levels is consistent with the power-law distribution. For lower confidence levels,
the ratio deviates from the α/(α − 1) law and moves above the curve of the α/(α − 1)
law. The deviation from the curve of the α/(α− 1) law implies that the return probability
distribution departs from the power-law distribution. Thus, it is concluded that the tail
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distributions corresponding to lower confidence levels are not well described by the power-
law function.

In the absence of a specific distributional assumption, such as the normal distribution,
the variance alone does not provide accurate values for VaR and CVaR. However, the
magnitudes of VaR and CVaR are correlated with the variance. To investigate the correlation
between risk measures and variance, we use RV as a proxy for variance. The daily RV is
constructed as a sum of squared intraday returns,

RV =
n

∑
i=1

r2
i,∆, (20)

where ri,∆ is the number of returns sampled at a ∆-minute sampling frequency and n is
the number of returns sampled in a day. We calculate the daily RV from the 5 min returns
(Liu et al. 2015). Since we consider the VaR and CVaR calculated over a 1-year window, we
use an RV averaged over the same 1-year window.

1 2 3 4 5 6
α

1

1.5

2

2.5

3

C
V

a
R

 /
 V

a
R

90%

95%

99%

99.5%  

α/(α−1)

Figure 11. Time evolution of CVaR/VaR for long position at confidence levels of X = 99.5%, 99%, 95%,
and 90% as a function of α.
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2.5
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C
V

a
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 /
 V

a
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90%

95&

99%

99.5%

α/(α−1)

Figure 12. Time evolution of CVaR/VaR for short position at confidence levels of X = 99.5%,
99%, 95%, and 90% as a function of α.

Figure 13 shows the RV averaged over a 1-year window of data. The RV also varies
over time and its time variation pattern is very similar to those of the VaR and CVaR,
which indicates that the RV is correlated with the VaR and CVaR. Using the RV, we make
two-dimensional plots of the risk measures and RV at confidence levels of X = 99.5% and
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90%, as shown in Figures 14 and 15. These plots reveal a strong correlation between the VaR
(CVaR) and RV. In our analysis of the 1-year window, we observed that the magnitude of the
risk appears to change, resulting in trajectories representing changes in the VaR(CVaR)–RV
plane. The trajectories found in the VaR–RV and CVaR–RV planes are very similar, and
we also observed the similar trajectories for the short position (not shown here). These
trajectories enable us to identify periods of high or low risk. The periods around 2015 and
2018 are classified as high risk, while the periods around 2017 and 2019 correspond to
low-risk periods.

2015 2016 2017 2018 2019 2000 2021 2022

Year

0

0.002

0.004

0.006

R
V

Figure 13. Time evolution of the daily RV averaged over a one-year window.
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Figure 14. VaR for the long position versus RV at confidence levels of X = 99.5% and 95%.
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Figure 15. CVaR for the long position versus RV at confidence levels of X = 99.5% and 95%.
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4. Discussion and Conclusions

Using high-frequency Bitcoin data, we conducted an investigation into the properties
of the risk measures VaR and CVaR. By analyzing the risk measures in the left and right
tails of the return probability distribution, we discovered “long–short asymmetry” for
VaR and CVaR. This finding implies that the risk differs between long and short positions,
particularly at high confidence levels. Such divergence in risks between long and short
trades can offer valuable insights for trading strategies, particularly in the realm of high-
frequency trading.

Furthermore, we observed that the ratios, CVaR/VaR, at high confidence levels align
well with the α/(α− 1) law derived from the power-law distributional assumption. The
presence of the α/(α− 1) law suggests that VaR and CVaR are no longer independent when
the power-law distribution assumption holds.

Moreover, we observed a strong correlation between the risk measures and the RV,
which resulted in the formation of trajectories in a two-dimensional plane. These trajectories
unveiled periods of high and low risk. It would be intriguing to explore whether the
high- and low-risk periods are associated with other measures, such as market efficiency
(the Hurst exponent) (Bariviera 2017; Urquhart 2016), multifractality (Takaishi 2018), and
inverted volatility asymmetry (Bouri et al. 2017; Katsiampa 2017; Stavroyiannis and Babalos
2017; Takaishi 2021b).

It is worth noting that our findings are based solely on Bitcoin data. Further in-
vestigations should be conducted using other assets to ascertain the universality of the
“long–short asymmetry” and the α/(α− 1) law. Since previous studies (Gopikrishnan et al.
1998 1999) have already revealed that stock price returns exhibit the power-law probability
distributions, we should expect the α/(α− 1) law for CVaR/VaR on the stock markets.

In this study, we employed a 1-year window to investigate the time-varying properties.
Consequently, the observed properties were averaged over the course of a year. To capture
more dynamic changes within a year, smaller windows would be necessary. Although
analyzing smaller windows poses some challenges due to reduced statistical data, it could
yield interesting insights into more dynamic fluctuations.
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Notes
1 In the context of the Pareto distribution, the similar expression can be found in Abad et al. (2014); Gourieroux and Jasiak (2010).
2 http://www.bitstamp.net, accessed on 22 May 2022.
3 When “52,560× (X/100)” is not a multiple of an integer, we interpolate two neighbor returns.
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