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Abstract: We estimate the risk spillover among European banks from equity log-return data via
Conditional Value at Risk (CoVaR). The joint dynamic of returns is modeled with a spatial DCC-
GARCH which allows the conditional variance of log-returns of each bank to depend on past volatility
shocks to other banks and their past squared returns in a parsimonious way. The backtesting of the
resulting risk measures provides evidence that (i) the multivariate GARCH model with Student’s t
distribution is more accurate than both the standard multivariate Gaussian model and the Filtered
Historical Simulation (FHS), and (ii) the introduction of a spatial component improves the assessment
of risk profiles and the market risk spillovers.
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1. Introduction

The interconnectedness of risk between banks is an increasingly hot topic. In the
last decades, several countries have simultaneously faced severe economic conditions
with spillover effects of risk across the EU. Due to the direct and indirect links among the
banks, the stand-alone measurement of a Value-at-Risk (VaR) of each bank cannot provide
a comprehensive representation of the risk (Adrian and Brunnermeier 2014; Billio et al.
2012; Rahman 2014).

Recently, multivariate GARCH models have been playing a crucial role in estimat-
ing risk interconnectedness. The constant conditional correlation GARCH model (CCC-
GARCH) proposed by Bollerslev (1990) is computationally less complex than other multi-
variate models (see, among others, Bollerslev et al. 1988; Diebold and Nerlove 1989; Engle
et al. 1990). However, it does not capture the dynamic interactions between the volatilities.
The BEKK model proposed by Engle and Kroner (1995) (the acronym stands for Baba, Engle,
Kraft, and Kroner) allows for the dependence of conditional variances and covariance of
one variable on the lagged values of another variable, so that spillovers in variances can
be modeled. However, it is highly computationally intensive due to the large number of
parameters. A more parsimonious model is the Dynamic Conditional Correlation GARCH
(DCC-GARCH), introduced by Engle (2002), that introduces an autoregressive process
for the conditional correlation matrix, allowing us to model its dynamics with only two
parameters in addition to the ones of the CCC-GARCH model.

An approach for modeling explicitly the volatility interactions is the introduction of a
spatial component that accounts for the effect of direct bilateral exposures, closeness, or
similarities between different financial institutions. Borovkova and Lopuhaa (2012) adopted
a spatial GARCH approach to handle the spillover effects where the spatial weights are
obtained from the GDP data and alternatively from the market capitalization of the US and
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European countries’ stock market and embedded in the Extended CCC-GARCH model
(E-CCC), see Jeantheau (1998). As a result, they better capture the high kurtosis of squared
returns. Keiler and Eder (2013) studied the systematic risk that integrates the interaction
between the micro and macro stress situations as spatial econometrics parameters. Analo-
gously, Chen (2017) showed that when the spatial weights are derived from credit rating
downgrades, the multivariate spatial BEKK model can capture the spillover effects among
the southern European stock index: Portugal, Italy, Ireland, Greece, and Spain (PIIGS).
Zhang et al. (2018) applied the multivariate GARCH with a dynamic panel of spatial weight
matrices based on the GDP. The work studies the countries’ interconnectedness of returns
and uses the estimated parameters to forecast the portfolio risk of six stock indices.

Our contribution is to introduce a dynamic conditional correlation GARCH (DCC-
GARCH) model with a spatial component based on the credit exposure similarity among
banks derived from the EU-wide stress test data. We add the spatial components into a
DCC-GARCH model to investigate whether we can better capture the spillover effects
thanks to this additional information and alternative distributional assumptions of the
DCC-GARCH model. We discuss and implement the estimation of the model using
both Gaussian and Student’s t distributional assumptions. In particular, we estimate the
individual risk via Value at Risk (VaR) and spillover risk via CoVaR. The results of the
different models are compared, both amongst themselves and with the one obtained thanks
to Filtered Historical Simulations (FHS). Finally, the results are backtested (Abad et al. 2014;
Caporin 2008; Christoffersen and Pelletier 2004; Kupiec 1995) to evaluate the accuracy of the
different VaR and CoVaR estimates, showing the superiority of the spatial DCC-GARCH
model compared to the other models.

Finally, we point out that the applications of spatial DCC-GARCH models not only
allow us to estimate CoVaR, but also permit investors to estimate more accurately the
distribution of future returns of a set of assets to develop optimal portfolio strategies.
The proposed framework has relevant applications for financial regulators interested in
accurately measuring risk spillovers and systemic risk in financial systems, but it also
caters to risk managers who want to measure the risk related to the interconnectedness
among institutions.

The remainder of this paper is organized as follows. In Section 2, the spatial DCC-
GARCH model and the estimation procedure are discussed, and the methodology for the
financial application is presented. Section 3 presents the data and the empirical results, and
in Section 4 we present our conclusions and discuss the results in relation to the literature.

2. Matherials and Methods
2.1. Modelling and Inference

A common feature of financial time series is the presence of volatility clustering
(see, e.g., Cont 2001).1 Common tools used to address such features are Generalized
Auto-Regressive Conditional Heteroscedasticity (GARCH) models (Bollerslev 1986), which
generalize the ARCH models introduced by Engle (1982). Let rt be the return discrete-
time process with zero mean. The standardized disturbances εt are independent and
identically distributed (i.i.d.) with zero mean, E(εt | εt−1, . . .) = 0, and unit variance,
Var(εt | εt−1, . . .) = 1. Then, the GARCH(p, q) process for return rt is defined as

rt =
√

htεt, t = 1, . . . , T (1)

and

ht = ω +
q

∑
k=1

αkr2
t−k +

p

∑
k=1

βkht−k, (2)

where ht is the conditional variance, ω > 0, αk ≥ 0 and βk ≥ 0 ∀k.
When studying spillover risk, it is natural to look for multivariate extensions of the

GARCH model to characterize the joint evolution of stock returns. Before presenting the
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multivariate model it is useful to define the following quantities of interest. Assuming a
market with N assets, then at time t = 1, . . . , T we have:

• rt is the vector of assets’ returns at time t,
• Ht is the conditional covariance matrix,
• ht = diag(Ht) is the vector of the univariate conditional variances,
• Dt is a squared matrix with the conditional standard deviations ht on the main

diagonal and zero otherwise.
• Rt is the positive definite conditional correlation matrix,
• Qt is the conditional covariance matrix of the standardized residuals,
• Q̄ is the unconditional covariance matrix of the standardized residuals,

Full generalizations of a univariate model, such as the VEC GARCH model (Bollerslev
et al. 1988; Ling and McAleer 2003) or the BEKK model, (Engle and Kroner 1995) have been
extensively discussed in the literature. Using matrix notation, it is possible to characterize
a multivariate GARCH as follows:

rt = H1/2
t εt, (3)

and

Ht = A0 +
q

∑
k=1

Akrt−kr′t−k +
p

∑
k=1

Bk Ht−k, (4)

where Ht, Ak, Bk are N × N matrices and εt is an RN valued i.i.d. sequence of random
variables with zero-mean and unit-variances (see Engle and Kroner (1995) for the restric-
tions required to ensure stationarity and positive semi-definiteness of the conditional
covariance matrix).

Multivariate GARCH models have the drawback of having a large number of parame-
ters, making the estimation complex and computationally challenging, hence these models
are suitable only if the dimensionality N is very small. A solution to the dimensionality
problem is to pose further restrictions on the multivariate process. A common restricted
specification is the Constant Conditional Correlation model (CCC) proposed by Bollerslev
(1990) that assumes that the conditional covariance matrix is constant over time, requiring
focusing solely on the estimation of conditional variances. According to the CCC-GARCH
model, Equation (1) is given by (3) and Equation (2) can be written as follows:

ht = ω +
q

∑
k=1

αk � r2
t−k +

p

∑
k=1

βk � ht−k, (5)

where ω is the N × 1 dimensional vector of unconditional variances with ω ∈ R+, αk and
βk are the N × 1 dimensional vector of ARCH and GARCH parameters of order q and p
with αk,i ∈ R+

0 , βk,i ∈ R+
0 , and � is the Hadamard product.

The CCC-GARCH model assumes that the conditional covariance matrix, Ht, can be
factorized as

Ht = DtRDt, (6)

where the correlation matrix is assumed to be constant throughout time (Rt = R, ∀t) and
the conditional standard deviation matrix Dt is a diagonal matrix given by

Dt = diag
(√

ht

)
. (7)

The generic element of conditional covariance matrix Ht is constructed as

[Ht]ij =
√

hitρij

√
hjt, i 6= j; i, j = 1, . . . , N, (8)

where ρij = [R]ij is the constant conditional correlation coefficient between the ith and
jth variables.
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The multivariate GARCH model with a dynamic conditional correlation structure
(DCC), introduced by Engle (2002), improves the dynamic relationship, assuming a time-
varying correlation matrix as follows

Ht = DtRtDt. (9)

The dynamic correlation model allows Rt to be time-varying, and its dynamics are
modeled assuming a GARCH(1,1) process for the covariance of the standardized residuals.
Hence Rt is decomposed into

Rt = diag(Q−1
t )Qtdiag(Q−1

t ), (10)

where
Qt = Q̄(1− γ− δ) + γ(εt−1ε′t−1) + δQt−1, (11)

where γ and δ are ARCH parameters and GARCH parameters of the DCC model, respec-
tively. By following the GARCH model from Equation (2), the generic element of the
time-varying conditional covariance matrix of the standardized residuals [Qt]ij = qij,t can
be expressed as

qij,t = q̄ij(1− γ− δ) + γ
(
εi,t−1εj,t−1

)
+ δqij,t−1, (12)

where q̄ij = [Q̄]ij. The process is mean-reverting as long as 0 < δ < 1 and γ + δ < 1. In the
particular case of γ + δ = 1, the process will follow the exponential smoother matrix of the
standard residuals, as described in Engle (2002). Finally, the generic conditional correlation

ρij,t =
qij,t

√qii,tqjj,t
, (13)

can be written into matrix form as in Equation (10). Substituting the conditional correlation
matrix into Equation (9), the DCC is given by

Ht = DtRtDt = Dtdiag(Q−1
t )Qtdiag(Q−1

t )Dt. (14)

Restricted GARCH models beyond CCC and DCC-GARCH have been discussed by
Caporin (2008) and Billio et al. (2021), who introduce spatial matrices within BEKK models
for measuring risk spillover. In these approaches, the interaction components of the model
are based on spatial weight matrices provided exogenously (for instance on the basis of
geographical distances among assets, or some similarity metrics). These models allow
easier and more accurate estimation by effectively imposing restrictions on the parameter
space. An alternative approach to improve the estimation of multivariate GARCH models
is to introduce sparsity in the parameter estimates by using an L1 penalization, as suggested
by Dhaene et al. (2022).

2.1.1. Spatial DCC-GARCH

In this work, we introduce a spatial extension of the DCC-GARCH model. The model
is based on the approach of Borovkova and Lopuhaa (2012). In particular, to enrich the
DCC-GARCH model with a spatial component we introduce a spatial matrix W into the
vector of the conditional variances ht. The resulting conditional variance is expressed as

ht = A0 +
q

∑
k=1

(A1,k + A2,kW)r2
t−k +

p

∑
k=1

(B1,k + B2,kW)ht−k, (15)

where A0 = (a0,1, . . . , a0,N)
′, A1,k, A2,k, B1,k, and B2,k are diagonal matrices. The term

W =
[
W ij

]
is the weight matrix (i, j = 1, . . . , N) with

N

∑
j=1

wij = 1 and wii = 0 ∀i, given by
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W =


0 w12 · · · w1N

w21 0 · · · w2N
...

...
. . .

...
wN1 wN2 · · · 0

.

The i-th element of ht becomes

ht,i = a0,i + a1,ir2
t−1,i + a2,iXt−1,i + b1,iht−1,i + b2,iYt−1,i, (16)

where Xt−1,i = ∑N
j=1 wijr2

t−1,j and Yt−1,i = ∑N
j=1 wijht−1,j. The introduction of the spatial

component results in two exogenous spatial variables in the conditional variance equation
and two additional parameters a2,i and b2,i, which measure the influence of the aggregated
lagged variances and squared returns of all the other assets. These two new variables
measure the aggregated spillover effects. To complete the Spatial DCC-GARCH model, we
then estimate the conditional correlation matrix following the two-step procedure described
in Engle and Sheppard (2001), see Section 2.1.2.

The condition for the weak stationarity of the spatial GARCH model follows from
the corresponding stationarity condition for E-CCC models, derived by Jeantheau (1998)
and Conrad and Karanasos (2010) for E-CCC models. The positivity conditions on all
GARCH coefficients are not necessary for the positivity of variance and in many empirical
cases, these may be too restrictive, ruling out possible negative volatility feedback. One
author Conrad and Karanasos (2010) studied the E-CCC models and stated necessary and
sufficient conditions (in terms of the process parameters) for the positivity of variance; these
conditions are summarized in Theorem 1 of their paper. It can be seen easily that our spatial
DCC-GARCH(1,1) model is equivalent to the E-DCC model of order one, with the particular
form of the parameter matrices A = A1 + A2W and B = B1 + B2W. So for the conditional
variances to be positive, the conditions (C1)–(C3) of Theorem 1 of Conrad and Karanasos
(2010) must apply. The proposed spatial DCC-GARCH(1,1) model is weakly stationary if
the modulus of the largest eigenvalue of the matrix A1 + B1 + (A2 + B2)W is less than 1.
In that case, the unconditional variances are given by A0(I − (A1 + B1)− (A2 + B2)W)−1.
More specifically the unconditional variance of the ith bank is given by

σ2
i =

a0,i + (a2,i + b2,i)∑n
j=1 wijσ

2
j

1− (a1,i + b1,i)
(17)

and it is positive for a0,i > 0, a2,i + b2,i > 0, (a1,i + b1,i) < 1.

2.1.2. Estimation of the Multivariate Spatial GARCH(1,1) Model

We follow a two-step procedure for the DCC-GARCH estimation, as described in Engle
and Sheppard (2001) and Engle (2002). The first step is devoted to the estimation of (16)
where the exogenous variable Yt,i is not observable since it is a function of the conditional
variance of the other assets. Hence, following Borovkova and Lopuhaa (2012), we start by
estimating the standard univariate GARCH(1,1) models without the external regressors
to obtain the initial parameters

(
a0

0,i, a0
1,i, b0

1,i

)
and the estimated variances

(
h0

1,i, . . . , h0
T,i

)
.

Then we use an iterative procedure in which we alternate the following two steps:

• Compute the exogenous variables (Yt−1,i) given the weights
(
wij
)

and the initially

estimated variances
(

h0
1,i, . . . , h0

T,i

)
;

• Estimate the complete set of parameters
(

a1
0,i, a1

1,i, b1
1,i, a1

2,i, b1
2,i

)
and the new estimated

variances
(

h1
1,i, . . . , h1

T,i

)
according to Equation (16).

We iterate this procedure until the percentage variation of the estimate is less than a
small threshold. For more details please refer to Borovkova and Lopuhaa (2012).
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In the second step, as in Engle (2002), we maximize the quasi log-likelihood that, when
the standardized error εt follows a multivariate Gaussian distribution is

log
(

L(θ2|θ̂1; r1, . . . , rT)
)

= − 1
2

T

∑
t=1

(
Nlog(2π) + 2log|Dt|+ log(|Rt|) + r′tD

−1
t R−1

t D−1
t rt

)

= − 1
2

T

∑
t=1

(
Nlog(2π) + 2log|Dt|+ log(|Rt|) + ε′tR

−1
t εt

)
,

(18)

where θ = (θ1, θ2) is the set of parameters of the multivariate distribution, with sub-
sets θ1 = (A0, A1, A2, B1, B2) being the spatial GARCH parameters estimated in the first
step, and θ2 = (γ, δ) the parameters of the time-varying conditional correlation that are
estimated in the second step.

Excluding Dt and other additive and multiplicative constants, we maximize the
following function:

−
T

∑
t=1

(
log(|Rt|) + ε′tR

−1
t εt

)
. (19)

The quasi-log-likelihood function under the Student’s t distribution is

log
(

L(θ2|θ̂1; r1, . . . , rT)
)

=
T

∑
t=1

(
log
(

Γ
(

ν+N
2

))
− log

(
Γ
(

ν
2
))
− N

2 log(π(ν− 2))
)
+

− 1
2 log(|DtRtDt|)− ν+N

2 log
(

1 + rT
t D−1

t R−1
t D−1

t rt
ν−2

)
,

(20)

where ν is the degrees of freedom, θ2 = (γ, δ, ν) is the set of parameters estimated in the
second step, and Γ(·) is the Gamma function. The estimation of the model is implemented
in R using the packages rugarch and rmgarch for the estimation of univariate GARCH
models in the first step, and the DCC-GARCH model in the second step, respectively.

Concerning the complexity of estimation, we see that the spatial models add two
parameters (ai,2,bi,2) for each asset. Hence the number of additional parameters scales
linearly with the size of the dataset considered. We also see that Student’s t model has
one extra parameter compared to the Gaussian model, and that in the limit for ν → ∞,
the former converges to the latter. Moreover, the spatial model nests the non-spatial
DCC-GARCH models, where the coefficients of the spatial components are restricted to
zero. The Spatial DCC-GARCH model can therefore be considered parsimonious in terms
of the number of parameters, especially compared to VEC GARCH or the BEKK model.
One drawback of the proposed model is that it requires the exogenous identification of a
spatial matrix.

2.1.3. Spatial Weight Matrix

To estimate the spatial DCC-GARCH described in Section 2.1.1, we need to specify
the weight matrix W which incorporates the spatial structure defined a priori. The most
intuitive way to compute the weights is to consider the geographical distance between
the issuers’ market cities. However, according to Borovkova and Lopuhaa (2012), the
obtained weights are not economically meaningful, and as an alternative, they consider
a different set of information and compute distance in terms of GDP and market capi-
talization. In our work, we investigate whether the banks’ similarity of the structure of
credit exposure provides some benefit in catching risk spillover effects. Hence we propose
to consider the cosine similarity between exogenous information relative to the credit
exposure of each bank derived from the EU-wide stress test under the European Banking
Authority (EBA). The higher the cosine similarity the stronger the closeness of banks’s
credit exposure. Suppose two attribute vectors of length L, Ui,L = (ui,1, ui,2, . . . , ui,L) and
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Uj,L =
(
uj,1, uj,2, . . . , uj,L

)
which describe the credit exposure information of bank i and j

with i, j = 1, . . . , N. We define the cosine similarity as follows:

Cij =

L

∑
l=1

ui,l · uj,l√√√√ L

∑
l=1

u2
i,l ·

L

∑
l=1

u2
j,l

, i, j = 1, . . . , N, i 6= j. (21)

We set Cii = 0 ∀i and we normalize the rows of C by dividing each element by the
sum of the row. Doing so, we obtain the matrix W that is the spatial weight matrix used in
Equation (15).

2.2. Financial Application: CoVaR

Financial institutions use VaR to measure the standalone risk. However, the mea-
surement of individual risk is not able to explain the linkages between other financial
institutions and the financial system. Systemic risk is the possibility that an event at the
institutional level could trigger severe instability or collapse of an entire industry or econ-
omy. The work Adrian and Brunnermeier (2014) introduces CoVaR to help regulators to
measure risk spillovers.

The Value at Risk (VaR) at level q ∈ (0, 1) of a random variable r with cumulative
distribution function Fr(.) is defined as

VaRq(r) = − inf
{

x ∈ R : Fr(x) ≥ q
}

,

where 100(1 − q)% denotes the confidence level of the VaR.2 Restricting our analysis
to continuous probability distribution functions, VaR can be implicitly defined as the
q-quantile of the probability distribution function

VaRq(r) = −F−1
r (q).

The Conditional Value-at-Risk (CoVaR) (see Adrian and Brunnermeier 2014), denoted
by CoVaRS|C(ri)

q , is implicitly defined by the q-quantile for a continuous probability distri-
bution function of the financial system S conditional on some event related to C(ri), where
ri is the return of institution i such that

Pr
(

rS ≤ −CoVaRS|C(ri)
q |C(ri)

)
= q.

The CoVaR can capture the contribution of systemic risk by conditioning the VaR to a
stressed situation. It captures the spillover of risk between a particular institution and the
financial system, and it is commonly used to assess the systemic risk of a bank in a financial
system. Inspired by this idea, we concentrate our attention on a CoVaR pairwise analysis
between institutions in order to quantify the spillover between couples of banks.3

The conditioning event C(ri) in the original paper by Adrian and Brunnermeier (2014)
is defined as the return of the conditioning asset i being equal to its negative VaR, that is
C(ri) := (ri|ri = −VaR(ri)). In this work, we follow the alternative approach of Girardi
and Ergün (2013) that considers as a conditioning event the return ri being smaller or equal
than the following quantity: C(ri) := (ri|ri ≤ −VaR(ri)). This formulation allows us to
consider more severe distress events and improves the consistency of the measure with
respect to the dependence parameter, allowing for backtesting. Following Girardi and
Ergün (2013), the redefined CoVaRj|i

q is obtained solving

Pr
(

rj ≤ −CoVaRj|i
q , ri ≤ −VaRi

q

)
= q2. (22)
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Let f
(
rj, ri

)
be the bivariate probability distribution function of future returns, esti-

mated using the DCC-GARCH model with either Gaussian or Student’s t innovations,
CoVaRj|i

q is implicitly defined as the quantity that solves

∫ CoVaRx|y
q

−∞

∫ VaRy
q

−∞
f (x, y)dydx = q2. (23)

We compute the integral (23) on a grid of 100 values for CoVaRj|i
q to find the approxi-

mated solution under the different distributional assumptions.4

2.2.1. CoVaR Based on Filtered Historical Simulations (FHS)

In order to compare our result with a model-free approach, we consider the Filtered
Historical Simulations (FHS).

FHS is a well-known tool for multivariate forecasting and simulation of time series
that avoids the need for distributional assumptions for the returns’ joint dynamic, relying
instead on past realizations. The main novelty of this approach compared to historical sim-
ulation is to rescale the innovation by the volatility that prevails on a specific day, allowing
therefore to reflect the current market conditions (Barone-Adesi et al. 2002; Giannopoulos
and Tunaru 2005; Gurrola-Perez and Murphy 2015). To provide a distribution-free bench-
mark model for the analysis, we compute the VaR and CoVaR via FHS. Consider a time
window of length T and let rt be the series of historical returns with t ∈ [1, T]. The volatility
weighted returns series can be computed as follows: zt = rt × σ̂T+1/σ̂t, where σ̂t is the
volatility estimated with an Exponentially Weighted Moving Average procedure (EWMA)
with decay factor λ = 0.9 at time t and σ̂T+1 is the one-day-ahead estimate of volatility at
the end of the estimation period. In practice, implementing FHS for the estimation of VaR
and CoVaR requires the following steps:

• compute the residual (or devol) time series, dividing the returns by EWMA estimated
volatility σ̂t. This allows us to sample from approximately serially independent and
identically distributed data;

• compute the estimated empirical distribution of r̂T+1 (revol), multiplying the devol
time series zt by the latest estimate of volatility σ̂T+1 and assigning to each of the
possible outcome a weight 1/T,

• estimate VaRi
q,T+1 and CoVaRj|i

q,T+1 by computing the empirical quantile of r̂i,T+1 and

r̂j,T+1|
(

r̂i,T+1 < −VaRi
q,T+1

)
, respectively.

The FHS approach has the advantage of being non-parametric, although it has the
drawback of requiring a large number of observations to accurately estimate risk, especially
for the CoVaR. For this reason, it is not suitable for small values of q. For instance, with
q = 0.01 the expected number of exceedances of the CoVaR for an estimation window of
10,000 daily observations (approx 40 years) is 1, while for q = 0.05 it is 25.

2.2.2. Backtesting VaR and CoVaR

In order to test the goodness of our VaR and CoVaR estimates we estimate a time
series of length τ of one-day-ahead estimates, each computed on an estimation window
of T = 1000 daily observations. We consider tests based on the number of violations
and specifically unconditional and conditional coverage tests (Christoffersen and Pelletier
2004; Kupiec 1995), as well as tests based on asymmetric loss functions for the VaR and
CoVaR (Caporin 2008). The model that provides estimates of VaR and CoVaR with the
correct number and distribution of exceedances and/or lower loss function values will be
considered the more accurate.
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2.2.3. Tests Based on the Number of Violations

In order to determine the accuracy of the proposed model, we consider two tests based
on the number of violations.

Denote by

• ri
t the ex-post realized returns of institution i with t = 1, . . . , τ;

• VaRi
q,t the ex-ante Value-at-Risk forecasts at t− 1 for time t, where q is the expected

coverage;
• Ii

t a sequence of violation for a given interval of the Value-at-Risk forecast:

Ii
t =

{
1, if ri

t ≤ −VaRi
q,t

0, if ri
t > −VaRi

q,t
. (24)

The first test is the Kupiec test or unconditional coverage (UC) test (Kupiec 1995). The
null hypothesis that the observed failure rate p is equal to the failure rate, suggested by the
confidence level of VaR, q, is tested. Thus, the null hypothesis assumes that the observed
violation rate is equal to the expected violation rate. If the null hypothesis is rejected, the
model is considered inaccurate at the 95% confidence level.

The conditional coverage (CC) test proposed by Christoffersen and Pelletier (2004)
indicates that the number of violations must be independently distributed along the testing
period where the dependence can be described as a first-order Markov sequence with a
transition probability matrix given by

Π =

[
1− π01 π01
1− π11 π11

]
,

where π01 is the probability that, conditional on today being a non-violation, the next
period is a violation, and π11 is the probability that, conditional on today being a violation,
the next period is a violation. The hypothesis to test for the conditional coverage property
is H0 : π01 = π11 which assesses the independence of failures on consecutive time periods.

Girardi and Ergün (2013) proposed the backtesting of CoVaRj|i
q,t via a straightforward

application of the standard Kupiec and Christoffersen tests considering the violations (i.e.,
rj

t ≤ −CoVaRj|i
q,t) for those time periods in which ri

t ≤ −VaRi
q,t. Having that in mind we

compute a second hit sequence, I j|i
t , on the sub-sample in which ri

t ≤ −VaRi
qt as follows:

I j|i
t =

1, if rj
t ≤ −CoVaRj|i

q,t

0, if rj
t > −CoVaRj|i

q,t

, (25)

where the number of observations of the second hit sequence is equal to the number of
violations of the first hit sequence. Hence for the tests on CoVaR, the sequence of violation
I j|i
t can be used instead of Ii

t .

2.2.4. Backtesting Based on Loss Functions

The backtesting based on the confidence level of VaR estimates shows the accuracy of
an individual model; however, the comparison between the different models can be limited.
To overcome the drawback, Lopez (1999) proposed backtesting based on a loss function.
The method focuses on the magnitude of the failure when the violation occurs. Thus, the
VaR estimates under the loss function can provide the model’s performance as a numerical
score. The value of the loss function at time t can be given as

li
t =

g
(

rt, VaRi
q,t

)
if rt ≤ −VaRi

q,t

h
(

rt, VaRi
q,t

)
if rt > −VaRi,t

q
,
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where g(·) and h(·) are the loss functions applied to exceedances and values within the
VaR, respectively. Finally Li = ∑T

t=1 li
t is defined as the total loss. The best model can be

identified by the lowest total loss. Other works by Abad et al. (2014), Caporin (2008), and
Cesarone and Colucci (2016) show several alternative specifications for the loss functions
g(·) and h(·), defined from the regulator and investor’s point of view. In the regulator’s
view, we consider the size of the loss only if the violation occurs:

h
(

rt, VaRi
q

)
= 0 if rt > −VaRi

q.

On the contrary, the investor is interested in both sides, as an overestimation of VaR
may trigger limitations from the risk management, or lead to higher capital requirements
imposed by the regulator. In particular we consider the functions

g(rt,i, VaRi
q,t) = |rt + VaRi

q,t|

and
h(rt,i, VaRi

q,t) =
q

1− q
g(rt,i, VaRi

q,t).

We underline that the resulting loss function li
t is strictly related to the Koenker loss

function used for the estimation of quantile regression, defined as

l(X, ξ, q) = (1− q)(X− ξ)+ + q(X− ξ)−

where (·)+ = min(X, 0) and (·)− = min(−X, 0). In case of independent and identically
distributed returns the minimization arg minξ l(X, ξ, α) is the value at risk. For further de-
tails we refer to Koenker and Bassett (1978), Rockafellar and Uryasev (2013), and Giacometti
et al. (2021).

We extend the backtesting procedure to the case of the CoVaR as before, estimating
the measure l j|i

t on a sub-sample in which ri
t ≤ −VaRi,t

q .

3. Results
3.1. Data

We consider ten years of weekly data from seven representative banks in Italy, France,
Germany, the United Kingdom, the Netherlands, Spain, and Belgium. The data span from
20 September 2010 to 18 September 2020, including 2566 daily equity log-returns. The data
are downloaded from Refinitiv Eikon. We perform a rolling analysis with an estimation
window of T = 1000 daily observations (approximately 4 years), forecasting one-day-ahead
VaR and CoVaR, for a total of τ = 1566 out-of-sample daily observations. We use the same
windows for both the DCC-GARCH models and the FHS estimation.

Table 1 reports the descriptive statistics and tests the output of the log returns for
the out-of-sample period. We see that all the banks in the sample with the exception of
KBC Group had negative average returns. The series have typically negative skewness
and excess kurtosis, as expected from equity time series. The results of the Engle ARCH
test (Engle 1982) indicate that the null hypothesis of homoscedastic returns is rejected,
suggesting the need for GARCH models. The autocorrelograms and partial autocorrelo-
grams of the returns, not reported for brevity, do not highlight relevant serial correlation
structure, while the autocorrelogram of squared residuals (also omitted for brevity) show
significant and persistent autocorrelations, confirming the heteroscedasticity of the data.
Next, we consider the correlation between the banks. Figure 1 shows that correlations are
positive and high. Figure 2 studies the evolution of correlations, computed using 6-month
rolling windows. The right panel represents the dynamics of the 21 pair-wise correlations
over time, while the left panel shows the Frobenius norm of the correlation matrices to
provide a synthetic representation. We see that the Frobenius norm changes over time,
suggesting that a CCC-GARCH model is not appropriate for the dataset. On the contrary,
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the time-varying correlation matrix is consistent with the assumptions of a DCC-GARCH,
and the high variability in the individual correlations leaves space for spatial models, which
could better characterize the multivariate stochastic process.

Table 1. Descriptive statistics of daily equity log-returns. The table reports statistics on the univariate
distributions (mean, standard deviation, skewness, and kurtosis), and the p-values of the Engle ARCH
test (null hypothesis: the process is homoscedastic). We use the following abbreviations for each
bank: Intesa Sanpaolo S.p.A.–Turin, Italy (ISP), Crédit Agricole Group–Montrouge, France (ACA),
Deutsche Bank AG–Frankfurt am Main, Germany (DB), Barclays Plc–London, United Kingdom (BCS),
ING Groep NV–Amsterdam, Netherlands (ING), Banco de Sabadell S.A.–Alicante, Spain (SAB), KBC
Group NV–Bruxelles, Belgium (KBC).

Bank Mean StDev Skewness Kurtosis ARCH Test
(p-Value)

ISP −1× 10−4 0.0256 −0.8101 11.6198 <2.2× 10−16

ACA −1× 10−4 0.0253 −0.3810 11.2140 <2.2× 10−16

DB −6× 10−4 0.0244 0.1203 8.1958 <2.2× 10−16

BCS −4× 10−4 0.0235 −0.6568 12.9321 <2.2× 10−16

ING −1× 10−4 0.0236 −0.4705 11.4810 <2.2× 10−16

SAB −8× 10−4 0.0248 −0.3435 10.9513 <2.2× 10−16

KBC −1× 10−4 0.0254 −0.3002 10.0297 <2.2× 10−16

Figure 1. Correlations, marginal distributions, and bivariate scatterplots with LOESS local regression
lines of equity daily log-returns.
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Figure 2. Frobenius norm of rolling correlation matrix (left panel), and 21 pair-wise rolling correla-
tions (right panel). Rolling correlations are computed using a 6-month window of daily observations.

Spatial Weight Data

For the construction of the spatial matrix, we analyze the data from the EU-wide stress
test under the European Banking Authority (EBA). The EBA stress test aims to evaluate
financial institutions’ resilience to adverse market conditions. It also provides the overall
assessment of systematic risk in the European banking system. In the EU-wide stress
test analysis report, we consider the base scenarios for each bank and the relative credit
exposure information: exposure values, risk exposure amounts, stock of provision, and
leverage ratio under the internal ratings-based (IRB) approach or Standardized approach
(STA) referred to credit exposure in specific asset classes,5 as presented on the EBA’s website
(EBA 2021). We compute for each bank the vector of percentage exposure in each class with
respect to the total exposure and the similarity between couples of vectors for the different
banks, as in Equation (21). This indicator provides a broad view of the similarity between
the banks’ credit structures and exposures.

We then rescale the values such that each row sums to 1, as shown in Table 2. The
spatial matrix is based on the EU-wide stress test of 2018 and is kept fixed for the entire
analysis. To ascertain the matrix weight’s consistency over time, we perform the inequality
test for couples of matrices by Jennrich (1970) on matrices computed in different years.
In particular, we compare the normalized cosine similarity matrix weight from the EU-
wide stress test of 2014 vs. 2016, 2016 vs. 2018, and 2018 vs. 2014. We do not reject the
null hypotheses at a 1% significance level, suggesting that the spatial components of the
EU-wide stress test do not change significantly over time.

Table 2. Normalized cosine similarity matrix.

Bank ISP ACA DB BCS ING SAB KBC

ISP 0 0.1482 0.1763 0.1221 0.1875 0.1873 0.1786
ACA 0.1453 0 0.1807 0.1745 0.1480 0.1562 0.1953
DB 0.1689 0.1766 0 0.1347 0.1306 0.2140 0.1753
BCS 0.1388 0.2025 0.1600 0 0.1668 0.1520 0.1799
ING 0.2130 0.1715 0.1549 0.1667 0 0.1596 0.1343
SAB 0.1834 0.1560 0.2188 0.1308 0.1375 0 0.1734
KBC 0.1761 0.1964 0.1804 0.1559 0.1165 0.1746 0

3.2. Empirical Results

We estimate the DCC-GARCH(1,1) models using the equity log returns, considering
four specifications that differ in terms of distribution and inclusion of the spatial component:
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Gaussian DCC (GaussDCC), spatial Gaussian DCC (GaussSpDCC), Student’s t DCC (tDCC),
and spatial Student’s t (tSpDCC).6 The procedure is numerically stable, and only for a small
percentage of the estimation window, do the DCC-GARCH models fail to converge. In
such cases, we carry over the result from the previous estimation window.

Table 3 reports the Akaike, Bayesian, Shibata, and Hannan-Quinn information criteria,
averaged across the 1566 estimation windows. Information criteria allow us to assess the
quality of the model in relation to the data, controlling for both the quality of the fit and
the number of parameters. Therefore, we use them to assess whether the inclusion of a
distribution with more parameters (Student’s t, compared to the Gaussian) and the use of
the spatial component actually improve the quality of the fit or, on the contrary, the added
complexity of the model affects negatively the estimation. We see that the models based on
the Student’s t distribution have lower information measures according to all the measures
considered (denoting a better model for the data), and that the introduction of the spatial
component improves the performance of the model.

Table 3. Akaike, Bayesian, Shibata, and Hannan-Quinn information criteria. The table reports the
average across estimation windows. The smallest value for each measure is highlighted in bold.

Akaike Bayes Shibata Hannan-Quinn

GaussDCC −39.18 −38.96 −39.18 −39.09
GaussSpDCC −39.34 −39.06 −39.35 −39.23

tDCC −39.96 −39.71 −39.98 −39.87
tSpDCC −40.04 −39.71 −40.04 −39.91

To further illustrate the characteristics of the model, Table 4 shows the average value of
the coefficients computed on the 1566 rolling windows (for brevity we report the averages
of the parameters related to each bank). We notice that a relatively large part of the spatial
parameters (a2,i,b2,i) are statistically significant at the 95% significance level, suggesting
that the spatial components have some explanatory power, motivating their introduction
in the model. We also see that the DCC parameters γ and δ are almost always statistically
significant (confirming the presence of time-varying correlations). The ν parameter is also
significant and has values close to 6, suggesting that the innovations have fat-tails and
that the Student’s t model is more suitable than the Gaussian one (that is the limit of the
Student’s t model with ν→ ∞) Table A1 in the Appendix A reports the coefficients of the
tSpDCC model for the first estimation window as an example.

Table 4. The table reports the average values of the coefficients of the different specifications across
the estimation windows of the multivariate GARCH. The percentages of estimation windows in
which the coefficients are significantly different from 0 at the 95% confidence level are reported in
italics. For brevity we report the values of a0,i, a1,i, a2,i, b1,i, b2,i averages across the seven banks
considered in the analysis.

a0 a1 b1 a2 b2 γ δ ν

GaussDCC 0 0.065 0.907 - - 0.016 0.885 -
19% 57% 97% - - 74% 97% -

GaussSpDCC 0 0.059 0.722 0.062 0.109 0.024 0.858 -
37% 29% 81% 31% 12% 93% 99% -

tDCC 0 0.066 0.893 - - 0.014 0.915 5.90
27% 69% 96% - - 95% 99% 100%

tSpDCC 0 0.048 0.720 0.051 0.115 0.015 0.924 6.15
27% 32% 74% 25% 11% 92% 100% 100%
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3.2.1. VaR and CoVaR

In this section, we use the spatial DCC-GARCH model to compute pair-wise CoVaRs
and study risk spillover in the European banking system. We report in Table 5 the estimates
of the average VaRi

5% (diagonal elements) and CoVaRj|i
5% (off-diagonal elements) for the

four DCC-GARCH models and for the Filtered Historical Simulations (FHS) estimates.
The one-day-ahead forecast of VaRi

5% is computed using the conditional variance estimate
and the parametric distribution of the model. The corresponding CoVaR5% is computed
numerically, according to (23) using the time-varying covariance matrices.

Table 5. Estimated VaRi
5% (diagonal elements) and CoVaRj|i

5% (off-diagonal elements) for the spatial
and non-spatial DCC GARCH models with Student’s t and Gaussian innovations, and for FHS.
The reported values are the average of the out-of-sample estimates computed across 1566 daily
rolling windows.

VaRi
5% and CoVaRj|i

5%—FHS

Bank ISP ACA DB BCS ING SAB KBC

ISP 0.034 0.065 0.076 0.060 0.064 0.083 0.068
ACA 0.064 0.033 0.081 0.057 0.064 0.078 0.064
DB 0.066 0.065 0.041 0.072 0.062 0.077 0.061
BCS 0.065 0.069 0.090 0.034 0.059 0.072 0.063
ING 0.065 0.071 0.076 0.061 0.032 0.078 0.066
SAB 0.067 0.066 0.077 0.058 0.065 0.042 0.063
KBC 0.065 0.067 0.076 0.061 0.066 0.079 0.028

VaRi
5% and CoVaRj|i

5%—GaussDCC

Bank ISP ACA DB BCS ING SAB KBC

ISP 0.035 0.055 0.063 0.050 0.052 0.063 0.048
ACA 0.056 0.034 0.062 0.050 0.051 0.062 0.048
DB 0.056 0.055 0.039 0.051 0.051 0.062 0.047
BCS 0.055 0.054 0.063 0.032 0.051 0.061 0.047
ING 0.057 0.056 0.064 0.051 0.031 0.063 0.050
SAB 0.055 0.054 0.061 0.049 0.050 0.040 0.047
KBC 0.056 0.055 0.062 0.050 0.052 0.062 0.030

VaRi
5% and CoVaRj|i

5%—GaussSpDCC

Bank ISP ACA DB BCS ING SAB KBC

ISP 0.035 0.057 0.064 0.050 0.052 0.063 0.048
ACA 0.056 0.035 0.064 0.050 0.052 0.062 0.048
DB 0.056 0.056 0.040 0.051 0.052 0.061 0.047
BCS 0.055 0.056 0.064 0.032 0.051 0.060 0.047
ING 0.058 0.058 0.065 0.051 0.032 0.063 0.050
SAB 0.056 0.056 0.062 0.049 0.051 0.039 0.047
KBC 0.057 0.057 0.063 0.050 0.053 0.061 0.030

VaRi
5% and CoVaRj|i

5%—tDCC

Bank ISP ACA DB BCS ING SAB KBC

ISP 0.033 0.088 0.100 0.078 0.083 0.104 0.078
ACA 0.087 0.033 0.099 0.079 0.083 0.102 0.077
DB 0.087 0.087 0.038 0.081 0.083 0.101 0.075
BCS 0.085 0.085 0.101 0.031 0.082 0.100 0.075
ING 0.089 0.089 0.102 0.082 0.031 0.105 0.078
SAB 0.087 0.085 0.097 0.077 0.082 0.040 0.075
KBC 0.088 0.088 0.099 0.079 0.083 0.102 0.029

VaRi
5% and CoVaRj|i

5%—tSpDCC

Bank ISP ACA DB BCS ING SAB KBC

ISP 0.033 0.087 0.098 0.075 0.081 0.100 0.075
ACA 0.085 0.034 0.097 0.076 0.081 0.098 0.075
DB 0.085 0.086 0.038 0.077 0.081 0.097 0.073
BCS 0.083 0.085 0.098 0.030 0.081 0.096 0.073
ING 0.087 0.088 0.100 0.078 0.031 0.100 0.076
SAB 0.085 0.084 0.095 0.074 0.080 0.039 0.073
KBC 0.086 0.087 0.097 0.076 0.081 0.098 0.029

We observe that, as expected, the CoVaR is always greater in absolute values than
the VaR figures on the diagonal. Furthermore, we see that the estimates of the Value at
Risk are similar across the five considered models. On the contrary, the estimates of CoVaR
are significantly larger for the DCC-GARCH models based on the Student’s t distribution,
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suggesting that the Gaussian model may potentially underestimate the risk of joint distress
and risk spillover, as expected by the stylized fact of fat tails and high tail correlations in
financial time series (see, e.g., Cont 2001). Finally, we see that the estimates of CoVaR of the
tSpDCC model are slightly smaller than the tDCC model. The FHS estimates yield similar
results to the other models in terms of VaR, and lie in the middle between the Gaussian
and Student’s t models in terms of CoVaR. Figure 3 shows the out-of-sample equity log
returns and the estimate of the Value at Risk. We see that the dynamics are similar for all the
models, and that the two models with a spatial component share some similar dynamics in
specific time periods.
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Figure 3. Out-of-sample equity log-returns of the seven banks considered in the study and VaR
estimates.

Figure 4 shows the VaRj
5% of each bank j together with the average CoVaRj|i

5% for i 6= j
(for brevity we report only the results estimated using the tSpDCC model). We see that for
all the banks, the CoVaR is always higher than the VaR. Focusing on the dynamics, we see
two main spikes in the series that affected all banks: one in mid-2016 (corresponding to the
Brexit Referendum), and one when the COVID-19 crisis started in March 2020. The former
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shock was short-lived, and risk measures returned to normal levels quickly, while the
Covid crisis had more long-lasting effects, with CoVaR decreasing slowly in the following
months (although with differences across banks, for instance, Intesa San Paolo risk levels
returned to a normal level quicker than ING Group). In other periods, the dynamics
of CoVaR are diversified across banks, with some institutions (in particular Intesa San
Paolo) characterized by several spikes (likely related to idiosyncratic or regional shocks)
while other institutions such as Credit Agricole or Barclays characterized by a more stable
risk profile.
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Figure 4. Out-of-sample equity log-returns, VaR estimated using the tSpDCC model (blue lines), and
the average of the CoVaRs for each bank (red lines). The last panel reports the average ratio between
the CoVaR and the VaR (moving average over 10 days), and the (rescaled) average log-return of the
seven banks for reference.

The last panel of Figure 4 shows the average ratio between CoVaRj|i
5% and VaRj

5%
for each couple of institutions, and the rescaled average log-returns of the seven banks
included as reference. We see that the shocks associated with Brexit and Covid had the
effect of increasing the ratio, thus increasing the risk spillover in the system. The effect
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is persistent, as the ratio remained higher for the periods after the shocks, despite the
levels of risks reduced more quickly after the event, suggesting the presence of long-lasting
spillover effects.

3.2.2. Backtesting Results

We now present two backtesting analyses in order to assess the quality of the esti-
mation of VaR and CoVaR based on different models. First, we report the results for the
backtesting of VaRi

0.05 with the Kupiec (unconditional) and Christoffersen (conditional)
coverage tests. Table 6 provides the p-value of the unconditional coverage (UC) and con-
ditional coverage (CC) tests. We see that, regarding the UC test, in most cases, the null
hypothesis of correct exceedances is not rejected at the 95% confidence level, meaning that
the models identify correctly the expected number of exceedances. The spatial component,
according to this statistic does not provide benefits, leading typically to lower p-values
and higher rejection rates. Concerning the CC test, the null hypothesis of correct and
independent exceedances is rejected in a higher number of cases, indicating the presence of
some residual clustering of the exceedances. Summing up, according to the CC tests, the
introduction of the spatial component improves the estimation of Value at Risk, leading to
higher p-values and lower rejection rates. The FHS estimation has good performance in
terms of the UC test, while it is the worst one considered in terms of the CC test (the null
hypothesis is rejected for all banks except for Banco de Sabadell).

Table 6. p-Values of the unconditional (Panel A) and conditional (Panel B) for VaRi
5%. The null

hypotheses are “Correct Exceedances” (unconditional test) and “correct & independent exceedances”
(conditional test). p-values lower than 5% are highlighted in bold.

Panel A: Unconditional Coverage Test for VaRi
5%, p-Value.

Bank FHS GaussDCC GaussSpDCC tDCC tSpDCC

ISP 0.700 0.113 0.067 0.459 0.113
ACA 0.756 0.143 0.004 0.534 0.037
DB 0.534 0.670 0.589 0.270 0.122
BCS 0.670 0.789 0.327 0.756 0.589
ING 0.513 0.534 0.390 0.880 0.789
SAB 0.379 0.935 0.589 0.844 0.756
KBC 0.224 0.180 0.272 0.615 0.700

Panel B: Conditional Coverage Test for VaRi
5%, p-Value.

Bank FHS GaussDCC GaussSpDCC tDCC tSpDCC

ISP 0.001 0.002 0.125 0.017 0.119
ACA 0.033 0.002 0.017 0.007 0.069
DB 0.022 0.013 0.042 0.008 0.009
BCS 0.038 0.255 0.366 0.200 0.413
ING 0.001 0.002 0.012 0.001 0.013
SAB 0.455 0.997 0.655 0.882 0.774
KBC 0.023 0.095 0.156 0.079 0.035

Table 7 reports a summary of the UC and CC tests for the CoVaR. Panels A and B
show the average number of exceedances, the average p-value across all the combinations
of assets, and the percentage of p-values that are smaller than 5% (i.e., the null hypothesis
is rejected at the 95% confidence level) for the UC test and CC test, respectively.7 We see
that for the GaussDCC and GaussSpDCC based on the Gaussian distribution, the null
hypotheses for both the UC and CC tests are rejected for all the bilateral CoVaRs. On the
contrary, for the Student’s t models the null hypotheses are never rejected for both the
UC and CC tests. Finally, we observe that the spatial model tSpDCC performances are
aligned with those of tDCC. The results of the FHS are slightly better than the Gaussian
DCC-GARCH models but are worse than the Student’s t DCC-GARCH models. The results,
although they do not highlight relevant differences between the spatial and non-spatial
models, do confirm that the models based on the Gaussian distribution are not suitable to
properly measure spillover risk, while Student’s t models have much better results when
compared to FHS estimation of CoVaR.
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Table 7. Average exceedances, p-values, and percentage of p-values smaller than 0.05 of the un-

conditional (Panel A) and conditional (Panel B) for CoVaRj|i
5%. The null hypotheses are “Correct

Exceedances” (unconditional test) and “correct & independent exceedances” (conditional test). Aver-
ages and percentages are computed across all the couples of assets. For q = 5% the expected number
of exceedances is 3.9.

Panel A: Unconditional Coverage Test for CoVaRj|i
5%.

FHS GaussDCC GaussSpDCC tDCC tSpDCC

Average exceedances 12.0 18.9 17.1 4.4 5.0
Average p-value 0.047 0.000 0.000 0.639 0.472

(% p-values < 0.05) (88.1%) (100%) (100%) (0%) (0%)

Panel B: Conditional Coverage Test for CoVaRj|i
5%.

FHS GaussDCC GaussSpDCC tDCC tSpDCC

Average p-value 0.061 0.000 0.000 0.446 0.508
(% p-values < 0.05) (81.0%) (100%) (100%) (0%) (0%)

Finally, we assess the quality of the estimation of VaR and CoVaR using the loss
function methodology described in Section 2.2.4. Table 8 reports the value of the loss
function for the investor and the regulator (lower values are better). We see that, consistently
with the results for CC and UC tests, the introduction of the spatial component has a positive
effect for both the models based on Gaussian and Student’s t distribution. Contrary to
expectations, the Student’s t models do not outperform the Gaussian models according
to this metric, showing similar or slightly worse performance. The similarity between
Gaussian and Student’s t distribution may be due to the fact that we are considering a
low confidence level (95% for q = 0.05): for a higher confidence level (e.g., 99%, q = 0.01)
the shape of the tails may matter more, and the Student’s t model may perform better. In
this analysis, we do not consider higher confidence levels as the backtesting of the CoVaR
would become impossible.

Table 8. Backtesting based on loss function for VaRi
5%. Panel A reports the investor’s point of view

and Panel B reports the regulator’s point of view (see Section 2.2.4). For each line the best value is
highlighted in bold.

Panel A: Backtesting Based on Loss Function. VaRi
5% (Investor’s Point of View).

Bank FHS GaussDCC GaussSpDCC tDCC tSpDCC

ISP 4.11 4.06 3.97 4.08 3.96
ACA 4.21 4.24 4.14 4.24 4.18
DB 4.70 4.74 4.76 4.71 4.77
BCS 3.95 3.87 3.75 3.91 3.80
ING 3.74 3.74 3.70 3.77 3.72
SAB 4.92 4.85 4.83 4.89 4.87
KBC 3.54 3.61 3.48 3.55 3.47

mean 4.17 4.16 4.09 4.16 4.11

Panel B: Backtesting Based on Loss Function. VaRi
5% (Regulator’s Point of View).

Bank FHS GaussDCC GaussSpDCC tDCC tSpDCC

ISP 1.24 1.15 1.05 1.29 1.16
ACA 1.44 1.35 1.17 1.44 1.33
DB 1.34 1.47 1.44 1.56 1.59
BCS 1.15 1.21 1.11 1.35 1.28
ING 1.06 1.11 1.05 1.19 1.12
SAB 1.45 1.58 1.60 1.63 1.64
KBC 1.14 1.09 0.97 1.10 1.02

mean 1.26 1.28 1.20 1.37 1.31

Looking at Table 9, we see the average value of the loss functions for the CoVaR
estimations. The results highlight once again a beneficial effect of the spatial component,
that leads to improvements regardless of the distribution and the loss function used. We
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also see that the average loss is clearly smaller for the Student’s t models, highlighting their
ability to better estimate the spillover risk compared to the Gaussian models. The results
for the FHS show that such a model is not as accurate as tSpDCC and tDCC, although it
performs better than Gaussian DCC-GARCH models.

Overall, the results suggest that the introduction of a spatial component improves the
performance of the DCC-GARCH model, both in terms of the information criteria, and
in terms of the out-of-sample estimation of CoVaR, as confirmed by the backtesting. The
results also confirm the better fit of the Student’s t models compared to the Gaussian models.

Table 9. Backtesting based on loss function for CoVaRj|i
5%. The null hypotheses are “Correct Ex-

ceedances” (unconditional test) and “correct & independent exceedances” (conditional test). Panel A
reports the investor’s point of view and Panel B reports the regulator’s point of view (see Section 2.2.4).
For each line, the best value is highlighted in bold.

Panel A: Backtesting Based on Loss Function. CoVaRj|i
5% (Investor’s Point of View).

FHS GaussDCC GaussSpDCC tDCC tSpDCC

average loss 0.392 0.465 0.414 0.393 0.371

Panel B: Backtesting Based on Loss Function. CoVaRj|i
5% (Regulator’s Point of View).

FHS GaussDCC GaussSpDCC tDCC tSpDCC

average loss 0.233 0.359 0.307 0.153 0.142

4. Discussion and Conclusions

As the spillover effects of risk become a problem in interconnected banking systems,
this study introduces a spatial DCC-GARCH(1,1) to provide a more accurate measurement
of joint tail risk in a parsimonious way. The model aims to improve the standard DCC-
GARCH model (Engle 2002), without introducing the estimation complexity typical of
VEC GARCH and BEKK model (Bollerslev et al. 1988; Engle and Kroner 1995; Ling and
McAleer 2003). After discussing the estimation of the model, we perform an empirical
analysis on the equity log returns of seven large European banks, using a matrix that reflects
the similarity in credit structure and exposures. We compare four multivariate GARCH
specifications (with and without spatial components, and with two alternative distributions
for the innovations). The comparison of information criteria suggests that the proposed
spatial model with Student’s t innovation provides a better fit compared to the alternatives.

A common approach to measuring the spillover risk is the usage of pairwise CoVaR
Adrian and Brunnermeier (2014), which measures the tail risk of an institution conditional
to the distress of another institution. We estimate pairwise CoVaRs using our spatial DCC-
GARCH(1,1) model. Compared to other GARCH-based estimation procedures for CoVaR
(see, e.g., Girardi and Ergün 2013), our framework allows us to consider a time-varying
correlation matrix thanks to the DCC component, and a network dimension thanks to the
spatial component. Indeed, as highlighted in the literature, the network component of risk
is more and more relevant (see, e.g., Billio et al. 2012; Diebold and Yılmaz 2014), and spatial
GARCH models allow us to include it while maintaining the estimation feasible.

To test the reliability of the VaR and pairwise CoVaR, we first examine their accuracy
via the UC and CC tests considering different GARCH specifications and a non-parametric
FHS approach. The results show that the Student’s t spatial DCC-GARCH(1,1) model
(tSpDCC) provides the lowest rejection rate for CoVaR5% compared to other models. Second,
we investigate the models via backtesting based on loss functions. The analysis confirms
that the Student’s t spatial DCC GARCH(1,1) model outperforms the other DCC-GARCH
specifications, as well as the filtered historical simulations model in terms of the estimation
of CoVaR5%. Overall, from a methodological perspective, we conclude that the multivariate
GARCH model with the Student’s t and the spatial component obtained thanks to the
proposed similarity matrix can improve the assessment of credit risk profiles and the credit
risk market’s spillover.
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Concerning the economic analysis and interpretation of the empirical results, the
spillover analysis shows that the dynamics of CoVaR were diversified across European
banks, and that in the out-of-sample period (2014–2020) there were two main shocks
common to all the institutions: the Brexit Referendum (mid-2016) and the COVID-19 Crisis
(started in the first half of 2020). Both periods were associated with spikes in VaR and
CoVaR, and persistent increases in the ratio of CoVaR over VaR (denoting therefore a
long-lasting increase in the interconnectedness and risk spillovers). The persistent increase
in CoVaRs after Brexit is consistent with Li (2020), which studies the behavior of European
stock markets in a multivariate time-varying setting, finding that market co-volatility
continues to be substantial and persists after Brexit despite the fact that the market adjusted
quickly to the shock. Similarly, the increase of CoVaR during the Covid Crisis confirms
results from the literature that show how spillover and interconnectedness increased in the
first part of the Covid period. In particular, Aslam et al. (2021) studied twelve European
markets using the methodology from Diebold and Yılmaz (2014) on high-frequency data
and found more stable spillovers in the Covid period compared to the previous, and Foglia
et al. (2022) show an increase of volatility connectedness during the Covid period across 30
major Eurozone banks.

Finally, we point out that the proposed framework not only has relevant applications
for financial regulators, but it is also relevant for the asset management industry. Indeed,
the proposed model allows us to estimate the joint distribution of future returns, providing
asset managers with reliable inputs for optimal portfolio strategies (Meucci 2005), and
risk managers with data useful to measure the risk of investment funds and to conduct
stress-testing analyses based on hypothetical scenarios (see, e.g., Alexander and Sheedy
2008; Koliai 2016).

Future works may further extend the current work by testing alternative spatial
matrices and applying the model to other markets and larger datasets.
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Appendix A

Table A1. Estimated parameters of Student’s t spatial DCC-GARCH(1,1) model (September 2010–September 2014).



h1,t
h2,t
h3,t
h4,t
h5,t
h6,t
h7,t


=



1.39× 10−5

(0.000)
8.31× 10−6

(0.000)
2.22× 10−16

(1.000)
4.37× 10−6

(0.460)
4.92× 10−6

(0.847)
3.49× 10−5

(0.523)
6.07× 10−6

(0.341)



+





0.033 0 0 0 0 0 0
(0.008) 0 0 0 0 0 0

0 0.019 0 0 0 0 0
0 (0.110) 0 0 0 0 0
0 0 0.032 0 0 0 0
0 0 (0.045) 0 0 0 0
0 0 0 0.015 0 0 0
0 0 0 (0.545) 0 0 0
0 0 0 0 0.039 0 0
0 0 0 0 (0.829) 0 0
0 0 0 0 0 0.078 0
0 0 0 0 0 (0.250) 0
0 0 0 0 0 0 0.056
0 0 0 0 0 0 (0.099)



+



0.067 0 0 0 0 0 0
(0.026) 0 0 0 0 0 0

0 0.087 0 0 0 0 0
0 (0.000) 0 0 0 0 0
0 0 0.009 0 0 0 0
0 0 (0.500) 0 0 0 0
0 0 0 0.061 0 0 0
0 0 0 (0.006) 0 0 0
0 0 0 0 0.041 0 0
0 0 0 0 (0.565) 0 0
0 0 0 0 0 −0.013 0
0 0 0 0 0 (0.534) 0
0 0 0 0 0 0 0.035
0 0 0 0 0 0 (0.241)



W





r2
1,t−1

r2
2,t−1

r2
3,t−1

r2
4,t−1

r2
5,t−1

r2
6,t−1

r2
7,t−1


+





0.936 0 0 0 0 0 0
(0.000) 0 0 0 0 0 0

0 0.951 0 0 0 0 0
0 (0.000) 0 0 0 0 0
0 0 0.927 0 0 0 0
0 0 (0.000) 0 0 0 0
0 0 0 0.945 0 0 0
0 0 0 (0.000) 0 0 0
0 0 0 0 0.927 0 0
0 0 0 0 (0.033) 0 0
0 0 0 0 0 0.871 0
0 0 0 0 0 (0.000) 0
0 0 0 0 0 0 0.918
0 0 0 0 0 0 (0.000)



+



−0.047 0 0 0 0 0 0
(0.015) 0 0 0 0 0 0

0 −0.061 0 0 0 0 0
0 (0.000) 0 0 0 0 0
0 0 0.016 0 0 0 0
0 0 (0.258) 0 0 0 0
0 0 0 −0.031 0 0 0
0 0 0 (0.326) 0 0 0
0 0 0 0 −0.016 0 0
0 0 0 0 (0.951) 0 0
0 0 0 0 0 0.017 0
0 0 0 0 0 (0.494) 0
0 0 0 0 0 0 −0.006
0 0 0 0 0 0 (0.924)



W





h1,t−1
h2,t−1
h3,t−1
h4,t−1
h5,t−1
h6,t−1
h7,t−1




Q1,1,t · · · Q1,7,t
Q2,1,t · · · Q2,7,t

...
. . .

...
Q7,1,t · · · Q7,7,t

 =

(
1 − 0.008

(0.000) −
0.976
(0.000)

)
Q̄+ 0.008

(0.000)



ε1,t−1
ε2,t−1
ε3,t−1
ε4,t−1
ε5,t−1
ε6,t−1
ε7,t−1





ε1,t−1
ε2,t−1
ε3,t−1
ε4,t−1
ε5,t−1
ε6,t−1
ε7,t−1



′

+
0.976
(0.000)


Q1,1,t−1 · · · Q1,7,t−1
Q2,1,t−1 · · · Q2,7,t−1

...
. . .

...
Q7,1,t−1 · · · Q7,7,t−1



ν = 7.181
(0.000)

Parameters of the Student-t Spatial DCC-GARCH(1,1) model estimated on the first rolling window (September 2010–September 2014). p-value in brackets, values significant at 95%
confidence level in bold.
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Notes
1 On the contrary the return are not typically serially correlated, consistently with the efficient market hypothesis Fama (1970).
2 We use the convention that a higher value of r is preferable to a lower value, as in the cases when r represents returns or wealth.

Other works consider a random variable x such that lower values of x are preferable, as in the case of losses (e.g., Artzner et al.
1999). The signs in the definitions then need to be changed accordingly.

3 The construction of a network of bilateral CoVaR is inspired by Adrian and Brunnermeier (2014). An alternative approach to
extend CoVaR to a network dimension is proposed by Torri et al. (2021) and uses penalized multivariate quantile regression.

4 Under both Student t and Gaussian distribution it can be shown that for positive correlation CoVaRx|y
q is always greater than

VaRx
q . Hence we consider a grid of values ranging from VaRx

q to infinity, such that the corresponding quantiles are equally spaced.
In case of null or negative correlations, we use 0 as the lower value of the grid.

5 Central governments Institutions, Corporates, Retail, Equity, Securitization, and Other non-credit obligation assets.
6 In preliminary analyses we tested different orders of GARCH and we also considered an ARMA component, finding no relevant

differences. We omit them for brevity.
7 We do not report the complete results for all the bivariate CoVaR estimations for brevity. The results are available upon request.
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