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Abstract: The standard formulas for calculating the value of a firm’s tax shield and its weighted
average cost of capital (WACC) use the assumption that the underlying cash flows are perpetuities.
Yet, most projects will have a finite useful life. Because the perpetuity approach will overstate the
value of a finite-life project’s tax shield, this factor will pressure the perpetuity-formula WACC to be
less than the finite-life WACC. However, a large portion of the value of a perpetual tax shield can be
attributed to interest payments during the next 5, 10, or 25 years, making it possible for the perpetuity-
formula WACC to be greater than the finite-life WACC. Using a series of numerical examples, this
paper shows that the finite-life WACC can be either higher or lower than the perpetuity-formula
WACC depending on the project’s useful life, the required return on the unlevered project, the firm’s
capital structure, the cost of debt, the marginal tax rate, and the debt repayment pattern (e.g., coupon
bonds or amortizing loans). The analysis in this article helps managers better understand the potential
biases introduced into the capital budgeting process when using the perpetuity-formula WACC to
evaluate projects with finite useful lives.
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1. Introduction

The standard textbook formulas for calculating the value of a firm’s tax shield and its
weighted average cost of capital (WACC) use the assumption that the underlying cash flows
are perpetuities, following Modigliani and Miller (1958, 1963). This assumption, however,
will not be satisfied by any prospective project in which a firm might consider investing.
As a result, a firm’s WACC—estimated using the perpetuity formula—is unlikely to be
equal to the appropriate discount rate for a project with a finite useful life (Arditti 1973;
Reilly and Wecker 1973; Myers 1974; Brick and Thompson 1978; Miles and Ezzell 1980;
Miller 2009; Pierru 2009; Brusov et al. 2011; Filatova et al. 2022). Yet, the perpetuity-formula
WACC continues to be widely used in practice (Bruner et al. 1998).

Prior studies reach differing conclusions about the direction and magnitude of the po-
tential difference between a firm’s perpetuity-formula WACC and the appropriate discount
rate for a project with a finite useful life (i.e., the finite-life WACC). Brick and Thompson
(1978) claim that the finite-life WACC can be less than the perpetuity-formula WACC and
that this difference can be large enough to distort a firm’s investment decision, potentially
leading to underinvestment. In contrast, Brusov et al. (2011) claim that the finite-life WACC
will exceed the perpetuity-formula WACC, potentially leading to overinvestment. The goal
of this article is to resolve this conflict and to help managers better understand the potential
biases introduced into the capital budgeting process when using the perpetuity-formula
WACC to calculate the net present value (NPV) of projects with finite useful lives.1

Because the perpetuity approach will overstate the value of a finite-life project’s tax
shield—holding the debt interest rate, the tax rate, and the size of the initial loan constant—
this factor will pressure the perpetuity-formula WACC to be less than the finite-life WACC.
However, because a large portion of the value of a perpetual tax shield can be attributed to
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interest payments during the next 5, 10, or 25 years, it is possible for the relative importance
of a finite-life tax shield to be greater than that of a perpetual-life tax shield. For this reason,
it is also possible for the perpetuity-formula WACC to be greater than the finite-life WACC.

This paper uses a series of numerical examples to illustrate the potential relations
between a project’s finite-life WACC and a firm’s perpetuity-formula WACC. This exercise
reveals that a project’s finite-life WACC can be either higher or lower than the firm’s
perpetuity-formula WACC depending on the length of the project’s useful life, the required
return on the unlevered project, the firm’s capital structure, the cost of debt, the marginal tax
rate, and most important, the debt repayment pattern. If the debt cash flows mirror those
of a coupon bond, the perpetuity-formula WACC can be higher or lower than the finite-life
WACC. These differences tend to be modest, especially at lower equity risk premium levels.
If the debt is structured as an amortizing loan, the perpetuity-formula WACC will be less
than the finite-life WACC. When the equity risk premium is sizable—and the perpetuity-
formula WACC is used as the discount rate in NPV calculations—these differences can be
large enough to distort capital budgeting decisions, potentially leading to overinvestment.

Yet, the finite-life WACC is typically not a practical alternative to the perpetuity-
formula WACC within the traditional capital budgeting framework. The finite-life WACC
is a function of the estimated useful life, and the numerical value of the finite-life WACC
can change noticeably in response to small changes in this useful life, especially when
it is 25 years or less. For this reason, the perpetuity-formula WACC remains the best
option to use as the discount rate within most capital budgeting applications. Nevertheless,
managers should exercise caution—and be aware of the potential biases introduced into
NPV calculations—when using the perpetuity-formula WACC to evaluate projects with
finite useful lives.

This article is organized as follows. Section 2 illustrates the applications and limitations
of the perpetuity-formula valuation approaches stemming from the Modigliani and Miller
(1958, 1963) articles. Section 3 shows how to modify the tax shield and WACC calculations
for projects (or firms) with finite useful lives. Numerical examples in this section show
that the majority of a perpetual tax shield value will be realized in the foreseeable future.
In addition, this section identifies the estimation challenges presented by the finite-life
WACC formula. Section 4 compares finite-life and perpetuity-formula WACC estimates
when the firm issues coupon bonds and when the debt is structured as amortizing loans.
Section 5 presents an example illustrating how the difference between a project’s finite-life
and perpetuity-formula WACC can affect the project’s estimated NPV. Section 6 discusses
the results in this paper and offers conclusions.

2. The Perpetuity-Formula WACC

In theory, a firm’s WACC is the appropriate discount rate to use when evaluating
projects with similar risk profiles to the firm as a whole. Within the traditional capital
budgeting framework, stemming from Modigliani and Miller (1958, 1963), a prospective
project’s estimated NPV will be equal to (or greater than) zero if the project offers an IRR
that is equal to (or in excess of) the firm’s WACC. If a firm’s expected future cash flow is
known, the firm’s WACC can be calculated as a function of that cash flow stream’s market
value. For example, assume that a firm’s expected perpetual cash inflow is 10 and that the
market value of the firm is 100. If so, the WACC of the firm is 10%, which is the IRR of a cash
flow stream comprised of an initial cash outflow of 100 followed by a perpetual cash inflow
of 10. If the initial investment in the firm was 80, then that initial investment generated a
perpetual annual return of 12.5% and a positive NPV of 20. If the initial investment in the
firm was 100, then that initial investment generated a perpetual annual return of 10% and
an NPV of 0.
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2.1. Firm Value and the Perpetuity-Formula WACC

Modigliani and Miller (1958, 1963) show that the value of a levered cash flow stream,
VL, is the sum of the value of the unlevered cash flow stream, VU, and the value of the tax
shields created by interest payments, VTS, as shown in Equation (1).

VL = VU + VTS (1)

When the debt cash flows are a level perpetuity, and if the tax shields and interest
payments have the same risk (i.e., the tax shields are discounted using the required return
on debt, rD), VTS,∞ is the product of the marginal tax rate, τ, and the market value of the
firm’s debt, D0 (Modigliani and Miller 1963; Fernandez 2004; Cooper and Nyborg 2006;
Barbi 2012; Campani 2015).2 This is Equation (2).

VTS,∞ = τ D0 (2)

Although a firm’s total market value can be quantified, the underlying cash flows
supporting that market value cannot be observed. Thus, a firm’s WACC typically cannot
be calculated as a function of the firm’s value and its expected future cash flow stream.
Instead, a firm’s WACC must be estimated using formulas derived from the Modigliani
and Miller (1958, 1963) articles. Modigliani and Miller (1963, footnote 16) show that a firm’s
WACC∞ can be calculated as a function of the unlevered required return on assets, rA,U, the
required return on debt, rD, the marginal tax rate τ, and the ratio of the market value of the
firm’s outstanding debt to the market value of the firm, WD. This is Equation (3).

WACC∞ = rA,U (1 − τWD) (3)

Because rA,U is the unlevered required return on assets, this return is unobservable for
any firm that uses debt in its capital structure. Thus, Equation (3) is difficult to apply in
practice. To operationalize Equation (3), Haley and Schall (1973, chp. 13) show how the
right-hand side of the equation can be restated in terms of the required return on levered
equity, rE, the required return on debt, rD, the marginal tax rate, τ, and the firm’s capital
structure weights, WD and WE. WE is the ratio of the market value of the equity to the
market value of the firm. Assuming that the firm does not have preferred stock outstanding,
WE = 1 − WD. The resulting formula, Equation (4), is what Myers (1974, p. 8) calls the
“textbook formula” WACC.

WACC∞ = rDWD (1 − τ) + rEWE (4)

Because VTS,∞ will accrue to the firm’s shareholders, rE in Equation (4) is a weighted
average of the unadjusted required return on the equity cash flows, r∗E, and the required
return on the tax shield, which is assumed to be equal to rD (see note 2).

To illustrate Equations (1)–(4), assume that a firm (or a project) requires an initial
investment in fixed assets of 100, funded by equal amounts of debt and equity (for simplicity,
the working capital investment is set equal to 0). The required return on debt, rD, is 8% and
the tax rate, τ, is 25%. This investment will produce level, perpetual, asset, debt, and equity
cash flow streams. Each year, the depreciation of the fixed assets (assumed to be equal to
5) is exactly offset by a new capital investment to maintain the productivity of the assets.
Assuming that the investment will produce perpetual earnings before depreciation, interest,
and taxes of 18.33, Table 1 shows how to calculate the firm’s perpetual equity cash flow
(=7), free cash flow (=10), and capital cash flow (=11) from the firm’s pro forma (perpetual)
financial statements.
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Table 1. Three Cash Flow Measures. This table shows how to calculate a firm’s equity cash flow, its
unlevered free cash flow, and its capital cash flow.

Balance Sheet (Initial) Income Statement Cash Flows

Working Cap. 0 EBITDA 18.33 Net Income 7

Fixed Assets 100 Depreciation −5.00 +Depr. 5

Total Assets 100 EBIT 13.33 +/− ∆ in WC 0

Debt 50 Interest (8%) 4.00 −CapEx −5

Equity 50 EBT 9.33 Eq. Cash Flow 7

Total D + E 100 Taxes (25%) 2.33 Unlev. FCF 10 a

Net Income 7.00 Cap. Cash Flow 11 b

a Unlevered Free Cash Flow = 13.33(1 − 25%) = 10; b Capital Cash Flow = 7 + 4 = 11.

Using these assumptions, VTS,∞ = 12.5 can be calculated using Equation (2) and
VL = 112.5 is calculated using Equation (1). Assuming that r∗E = 12%, the capital structure
weights and rE (which is the weighted average of r∗E and rD) are calculated as follows.

WD =
50

112.5
= 0.4444

WE =
62.5
112.5

= 0.5556

rE = 8%
12.5
62.5

+ 12%
50

62.5
= 11.2%

To calculate the firm’s weighted average cost of capital, plug these numbers, along
with rD = 8% and τ = 25%, into Equation (4). Thus, WACC∞ = 8.889%.

The firm’s value of 112.5 can be recalculated in four different ways. When Equation (1)
is used, the calculation is called the adjusted present value method. When the free cash
flow of 10 is divided by WACC∞ this is called the WACC approach (10/0.08889 = 112.5).
When the equity cash flow of 7 is divided by rE and is then added to the debt value, this is
called the flows-to-equity calculation (50 + 7/0.112 = 112.5). Finally, the firm’s value can
also be calculated as a function of the “pre-tax” version of Equation (4). To do this, set
τ = 0 in Equation (4) and solve for the adjusted WACC value of 9.778%. Then, divide the
capital cash flow of 11 by the adjusted WACC (11/0.09778 = 112.5). This is the capital cash
flows technique.3

2.2. Limitations of the Perpetuity-Formula WACC

The traditional perpetuity-formula WACC uses the assumption that a firm’s economic
return and its cost of capital are constant over time. However, a firm’s competitive
strengths and weaknesses are unlikely to remain unchanged over time, and the yield
curve typically is not flat. Thus, while the constant return and the constant cost of capital
assumptions serve to simplify the math, they introduce imprecision and ambiguity into
the WACC calculation.4

Additional ambiguity is introduced into the process of calculating a firm’s WACC
because Equation (4) requires analysts to estimate the firm’s before-tax cost of debt, the
firm’s marginal tax rate, the firm’s cost of equity, and the firm’s market-value capital
structure weights. As discussed in Bruner et al. (1998), there are multiple approaches that
can be used to quantify each of these variables, and each approach relies on imprecise
information. For example, if the capital asset pricing model is used to estimate the cost
of equity, the analyst must estimate the risk-free rate, the equity market risk premium,
and the firm’s Beta. Because of these challenges, Bruner et al. (1998, p. 27) conclude that
“Best-practice companies can expect to estimate their weighted average cost of capital
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with an accuracy of no more than plus or minus 100 to 150 basis points”. Similarly,
Welch (2021, p. 194) opines that we do not currently have the ability to estimate a firm’s
cost of capital more precisely than at 1 percent intervals.

If the appropriate discount rate cannot be precisely quantified, any ensuing NPV
calculation will provide only an approximation of a project’s true economic value. For
example, assume that the true cost of capital for a project is 8% and that the project will
produce free cash flows in the amount of a ten-year annuity of 100. If so, the project’s
present value is 671.01. If a 7% discount rate is used, the calculated present value would be
702.36 (4.71% too high). If a 9% discount rate is used, the calculated present value would
be 641.77 (4.36% too low). If the initial investment is 640, the estimated NPV will range
from 1.77 (WACC = 9%) to 62.36 (WACC = 7%). Clearly, the process of evaluating potential
projects is rife with uncertainty. This highlights the importance of the sensitivity analysis
phase of the capital budgeting process; a project’s NPV should be recalculated using a
range of discount rates.

Finally, the perpetuity-formula WACC employs the implicit assumption that the under-
lying cash flow streams are perpetuities and that the firm’s tax shield will accumulate over
an infinite time horizon. These assumptions will not be satisfied by any prospective project
in which a firm might consider investing. Thus, the perpetuity-formula WACC may not be
equal to the appropriate discount rate for prospective projects with finite useful lives.5

3. The Finite-Life Formulas

If a firm (or a project) will have a finite useful life, the value of the tax shield created
by tax deductible interest payments cannot be calculated using Equation (2), and its (exact)
WACC cannot be calculated using Equations (3) or (4). This section shows how to calculate
the value of a finite-life tax shield and explains how to calculate a firm’s finite-life WACC.

3.1. Finite-Life Tax Shields

If a firm’s unlevered and levered cash flow streams both have a finite useful life of N
years, VTS,N will be equal to the present value of the annual tax benefits rDτDn, where n = 1
to N, discounted using rD (Barbi 2012). This is Equation (5).

VTS,N = ∑N
n=1

rDτDn−1

(1 + rD)
n (5)

The value VTS,N will depend on how the debt repayment schedule is structured. If the
debt is structured as an amortizing loan, VTS,N must be calculated using Equation (5). If
the debt cash flows mirror those of a coupon bond, as in Brick and Thompson (1978) and
Brusov et al. (2011), the value of the tax shield is the present value of a N-year annuity in
the amount rDτD0. In this case, Equation (5) can be rewritten as Equation (6).

VTS,N = rDτD0

[
1 − (1 + rD)

−N
]

rD
(6)

Although firms typically do not issue perpetual bonds (i.e., consol bonds), many
firms do replace maturing debt with new loans, effectively extending the life of the debt.
Nevertheless, calculating the value of a firm’s debt tax shield using Equation (2), rather
than Equations (5) or (6), is likely to overstate the value of the tax shield. Table 2 compares
estimates of VTS,N using Equation (2), assuming N = ∞, to estimates using Equation (6),
finite-life coupon bonds, and Equation (5), finite-life amortizing debt. In particular, the
examples in Table 2 calculate the ratio of VTS,N to VTS,∞ assuming that the debt is coupon
bonds (Panel A) or amortizing loans (Panel B). In each panel, these ratios are listed for five
debt interest rates, rD = 2%, 4%, 6%, 8%, and 10%, and useful lives of N = 5, 10, 25, 50,
and 100 years. Because VTS is a function of τ and D0 in all three equations, the ratios are
independent of these variables.
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Table 2. The Relation Between Finite-Life and Perpetual Tax Shields. This table lists the ratio of VTS,N

to VTS,∞ assuming that the debt is coupon bonds (Panel A) or amortizing loans (Panel B). In each
panel, these ratios are listed for five debt interest rates, rD = 2%, 4%, 6%, 8%, and 10%, and useful
lives of N = 5, 10, 25, 50, and 100.

Useful Life (Years)

rD (%) 5 10 25 50 100

Panel A: Coupon Bonds
2 0.094 0.180 0.390 0.628 0.862
4 0.178 0.324 0.625 0.859 0.980
6 0.253 0.442 0.767 0.946 0.997
8 0.319 0.537 0.854 0.979 0.999
10 0.379 0.614 0.908 0.991 0.999

Panel B: Amortizing Loans
2 0.058 0.105 0.235 0.420 0.686
4 0.113 0.199 0.423 0.685 0.922
6 0.163 0.284 0.570 0.838 0.983
8 0.211 0.361 0.683 0.919 0.997

10 0.255 0.430 0.769 0.961 0.999

The results in Table 2 reveal that a large portion of VTS,∞ can be attributed to the
tax shields created by interest payments during the next 5, 10, or 25 years. For coupon
bonds (Panel A), if rD is 4%, the portion of the perpetual tax shield realized in the first 5,
10, and 25 years will be almost 18%, over 32%, and over 62%, respectively. If rD is 8%, the
portion of the perpetual tax shield realized in the first 5, 10, and 25 years will be almost 32%,
almost 54%, and over 85%, respectively. For amortizing loans (Panel B), a smaller—but still
sizeable—portion of the perpetual tax shield value can be attributed to interest payments
during the first 25 years. If rD is 4%, the portion of the perpetual tax shield realized in the
first 5, 10, and 25 years will be over 11%, almost 20%, and over 42%, respectively. If rD is
8%, the portion of the perpetual tax shield realized in the first 5, 10, and 25 years will be
over 21%, over 36%, and over 68%, respectively.

To the extent that a large portion of the tax shield value is realized in the foreseeable
future, it is possible for the relative importance of a finite-life tax shield to be equal to or
greater than that of a perpetual-life tax shield. If so, it is conceivable for the finite-life WACC
to approximate, or to even be less than, the perpetuity-formula WACC.

3.2. The Finite-Life WACC

Myers (1974) shows that the WACC for a levered firm operating in a one-period world
can be calculated using Equation (7). As in Equation (3), rA,U is the required return on the
unlevered assets. If an unlevered asset produces a return in excess of rA,U, the asset’s NPV
will be positive.

WACC1 = rA,U −
(
(1 + rA,U)rD

1 + rD

)
τWD (7)

Starting from Equations (3) and (6), Brusov et al. (2011) derive a formula identifying
the relation between a firm’s WACC, rA,U, rD, and WD when the underlying cash flow
streams have a finite useful life, N, where N < ∞. This formula uses the assumptions that
when in equilibrium—i.e., when the asset’s return is equal to the required return, rA,U—the
unlevered asset will produce an after-tax cash flow that is a level annuity and that the debt
comprises coupon bonds. This is Equation (8).6[

1 − (1 + WACCN)
−N
]

WACCN
=

[
1 − (1 + rA,U)

−N
]

rA,U[1−τWD(1−(1+rD)−N)]

(8)
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When N = 1, Brusov et al. (2011) show that Equation (8) simplifies to Equation (7).
Although mathematically correct, Equation (8) poses three challenges in practical applica-
tions. First, as noted by Brusov et al. (2011), Equation (8) can only be solved analytically for
WACCN when N ≤ 4; it can be solved numerically when N > 4. Second, rA,U is unobserv-
able. Finally, WACCN will change as N increases or decreases, complicating the sensitivity
analysis process.

4. WACCN vs. WACC∞: Numerical Examples

Because of the complexity and practical limitations of Equation (8), it is not surpris-
ing that most textbooks continue to exhort managers to use WACC∞, estimated from
Equation (4), as the discount rate when evaluating potential investments. Nevertheless, if
a project will have a finite useful life, the appropriate discount rate, WACCN, may not be
equal to WACC∞, potentially leading to overinvestment or underinvestment.

Brusov et al. (2011) illustrate the potential differences between WACCN and WACC∞
with a series of numerical examples assuming that the firm’s debt takes the form of coupon
bonds. Although these examples were limited to projects with one-year, two-year, and
infinite useful lives, they conclude (p. 820) that WACCN will be greater than WACC∞.

The examples in this section illustrate the direction and potential magnitude of the dif-
ferences between WACCN and WACC∞ across a broader set of project and capital structure
combinations. The implicit assumption is that managers will use an estimate of WACC∞
as the discount rate when evaluating prospective capital budgeting projects. Because no
prospective project will have an infinite useful life, it is unlikely that WACC∞ will equal
the more appropriate—but unobservable—discount rate WACCN. The goal of this exercise,
then, is to determine if and when the difference between these two discount rates might be
large enough to materially distort a firm’s capital budgeting decisions.

In practice, managers will estimate WACC∞ starting from Equation (4). Within these
examples, however, both WACC∞ and WACCN are calculated as functions of the required
return on unlevered assets, rA,U. This required return is assumed to be constant over time
and the same for both perpetual and finite-lived projects.7

Rather than attempting to solve Equation (8) for each WACCN the examples herein
calculate the WACCs using the following approach.

1. For assumed values of VU and rA,U, calculate the level-annuity, after-tax, cash flow
generated by the unlevered asset (when in equilibrium: actual return = rA,U) over its
N-year useful life.

2. For assumed values of rD, τ, D0, and N, calculate VTS,N using Equation (5) for amor-
tizing debt or Equation (6) for coupon bonds.

3. Then, calculate the value of the levered cash flow stream, VL, using Equation (1).
4. Finally, WACCN is the discount rate that sets the present value of the unlevered asset’s

N-year annuity equal to VL.

To illustrate this calculation, assume that rA,U = 10%, rD = 6%, τ = 20%, VU = 1000,
and D0 = 200. If N = 10, the unlevered asset will generate a level, free-cash-flow annuity
of 162.745 over its useful life. If the debt comprises coupon bonds, the value of the tax
shield can be calculated using Equation (6): VTS = 17.664. The finite-life WACC for this
project, WACC10, is the discount rate that sets the present value of the 10-year annuity of
162.745 equal to 1017.664 (=VL using Equation (1)). This discount rate, 9.594%, also satisfies
Equation (8).8 In contrast, WACC∞ can be calculated using Equation (3) and is 9.615%.9

Clearly, it is possible for the WACCN to be less than WACC∞.
As in Brusov et al. (2011), the examples in Section 4.1 illustrate the relations between

WACCN and WACC∞ when the firm’s debt comprises coupon bonds. The examples in
Section 4.2 identify the relations between WACCN and WACC∞ when the debt consists of
amortizing loans. Within each set of examples, VU = 1000 and the WACCs are calculated
using three levels of debt financing (D0 = 200, 350, and 500) and two marginal tax rates



J. Risk Financial Manag. 2023, 16, 398 8 of 17

(τ = 20% and τ = 40%). In each case, it is assumed that the unlevered after-tax cash flow is
a level annuity over the assumed useful life.10

Perhaps the most important input, however, is the risk premium—defined herein as
the difference between rA,U and rD. Unfortunately, there is not a generally accepted answer
to the question of how large this risk premium is in practice. Fernandez (2019) finds that
150 textbooks published between 1979 and 2009 recommend equity risk premiums ranging
from 3% to 10%. He also reports that the 5-year moving average of these recommendations
declined from 8.4% in 1979 to 5.7% in 2009. Fernandez et al. (2021) list the average market
risk premium used in 88 countries based upon survey responses. They find that the risk
premiums used in the U.S.A. and in the major European countries tend to fall between
5% and 6%. Similarly, Bruner et al. (1998, p. 26) report that most “of our best-practice
companies use a risk premium of 6% or lower”. However, the risk premiums referenced in
these prior studies are not differences between rA,U and rD. Instead, these risk premiums
quantify the difference between the levered equity and debt returns.11

Because rE will typically be greater than rA,U for a levered firm, the difference between
rA,U and rD is likely to be smaller than the risk premiums in the Fernandez and Bruner
studies. Therefore, the examples herein are calculated using two different risk premium
levels: 4% (slightly less than the market risk premium in the U.S.A. and major European
countries) and 8% (slightly less than the larger market risk premiums in the Fernandez and
Fernandez et al. studies).12

4.1. Coupon Bonds

The examples in this section use the assumption that the debt cash flows mirror those
of a coupon bond. The annual interest payment is equal to rDD0 with the principal to be
repaid at maturity.

Figure 1 graphs estimates of WACCN assuming that rA,U = 12% and rD = 4%
(rA,U − rD = 8%). In Panel A, τ = 20%. In Panel B, τ = 40%. Table 3, Panels A and B,
provides additional numerical information about specific data points from the graphs in
Figure 1. In particular, Table 3 identifies WACCN when N = 1, 10, and ∞. In addition, the
table lists the implied values of rE that satisfy Equation (4). Finally, the table identifies
the useful life associated with the minimum WACCN and the range, if any, within which
WACCN is less than WACC∞.

Table 3. The Finite-Life WACC with Coupon Bonds (Large Risk Premium). This table provides
information about the distribution of WACCN when rA,U = 12% and rD = 4% (rA,U − rD = 8%). In
particular, the table identifies WACCN when N = 1, 10, and ∞. In addition, the table lists the implied
values of rE that satisfy Equation (4). Finally, the table identifies the useful life associated with the
minimum WACCN and the range, if any, within which WACCN is less than WACC∞. In Panel A,
τ = 20%. In Panel B, τ = 40%. Within each panel, this information is presented for three debt levels:
D0 = 200, 350, and 500.

WACCN (%) Min. WACC WACCN < WACC∞

D0 1 10 ∞ rE (%) % N Beg N End N

Panel A: τ = 20%
200 11.83 11.69 11.54 13.52 11.54 ∞ NA NA
350 11.70 11.45 11.21 15.11 11.21 ∞ NA NA
500 11.57 11.23 10.91 17.33 10.91 ∞ NA NA

Panel B: τ = 40%
200 11.66 11.38 11.11 13.09 11.11 ∞ NA NA
350 11.40 10.93 10.53 14.13 10.53 ∞ NA NA
500 11.15 10.49 10.00 15.43 10.00 ∞ NA NA
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Figure 1. Coupon Bonds and the Finite-Life WACC when the Risk Premium is Large. This figure
graphs values of WACCN, for N = 1 to 100, when rA,U = 12%, rD = 4% (rA,U − rD = 8%), and the firm’s
debt comprises coupon bonds. In (A) τ = 20%. In (B) τ = 40%. Within each panel, this information is
graphed for three debt levels: D0 = 200, 350, and 500.

The implied values of rE listed in Table 3 range from 13.09% when τ = 40% and D0 = 200
to 17.33% when τ = 20% and D0 = 500. Thus, the differences between the implied values of
rE and rD = 4% range from just less than 10 percentage points to over 13 percentage points
and the implied market risk premium falls approximately in, or slightly above, the upper
range of potential risk premiums identified in Fernandez (2019) and Fernandez et al. (2021).

In each of the cases illustrated in Figure 1 and Table 3, WACCN is greater than WACC∞
for all N < ∞. However, WACCN decreases rapidly during the years N = 1 to 10—eliminating
approximately half of the difference between WACC1 and WACC∞—because a dispropor-
tionate amount of the perpetual tax shield value, τ D0, can be attributed to interest pay-
ments during those years, as shown in Table 2. The smallest difference between WACC10
and WACC∞ is when D0 = 200 and τ = 20% (Panel A): the difference between WACC1
and WACC∞ is 0.29 percentage points and the difference between WACC10 and WACC∞
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is 0.15 percentage points. The largest difference between WACC10 and WACC∞ is when
D0 = 500 and τ = 40% (Panel B): the difference between WACC1 and WACC∞ is 1.15 per-
centage points, and the difference between WACC10 and WACC∞ is 0.49 percentage points.

Figure 2 graphs finite-life WACC estimates assuming that rA,U = 12% and rD = 8%
(rA,U − rD = 4%). In Panel A, τ = 20%. In Panel B, τ = 40%. Table 4, Panels A and B,
provides additional numerical information about specific data points from the graphs in
Figure 2. The column headings are repeated from Table 3.
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N values when the risk premium is 4% and rD = 8%. In Panel A, WACCN is less than WACC∞ 
for N = 3 through N = 63 when D0 = 500. However, the maximum difference between the 
minimum value of WACCN and WACC∞ is only 0.18 percentage points. In Panel B, the 
ranges over which WACCN is less than WACC∞ are longer, and the differences between the 

Figure 2. Coupon Bonds and the Finite-Life WACC when the Risk Premium is Small. This figure
graphs values of WACCN, for N = 1 to 100, when rA,U = 12%, rD = 8% (rA,U − rD = 4%), and the firm’s
debt comprises coupon bonds. In (A) τ = 20%. In (B) τ = 40%. Within each panel, this information is
graphed for three debt levels: D0 = 200, 350, and 500.
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Table 4. The Finite-Life WACC with Coupon Bonds (Small Risk Premium). This table provides
information about the distribution of WACCN when rA,U = 12%, rD = 8% (rA,U − rD = 4%), and the
firm’s debt comprises coupon bonds. In particular, the table identifies WACCN when N = 1, 10, and ∞.
In addition, the table lists the implied values of rE that satisfy Equation (4). Finally, the table identifies
the useful life associated with the minimum WACCN and the range, if any, within which WACCN is
less than WACC∞. In Panel A, τ = 20%. In Panel B, τ = 40%. Within each panel, this information is
presented for three debt levels: D0 = 200, 350, and 500.

WACCN (%) Min. WACC WACCN < WACC∞

D0 1 10 ∞ rE (%) % N Beg N End N

Panel A: τ = 20%
200 11.67 11.48 11.54 12.76 11.48 8 3 47
350 11.42 11.11 11.21 13.56 11.10 7 3 53
500 11.18 10.74 10.91 14.67 10.73 7 3 63

Panel B: τ = 40%
200 11.34 10.99 11.11 12.54 10.98 7 3 55
350 10.85 10.27 10.53 13.06 10.24 7 2 68
500 10.36 9.58 10.00 13.71 9.53 6 2 84

The implied values of rE listed in Table 4 range from 12.54% when τ = 40% and
D0 = 200 to 14.67% when τ = 20% and D0 = 500. Thus, the differences between the implied
values of rE,∞ and rD = 8% range from 4.5 percentage points to 6.67 percentage points and
the implied market risk premium falls approximately in the lower range of potential risk
premiums identified in Fernandez (2019) and Fernandez et al. (2021).

Figure 2 and Table 4 reveal that WACCN can be less than WACC∞ over a wide range
of N values when the risk premium is 4% and rD = 8%. In Panel A, WACCN is less than
WACC∞ for N = 3 through N = 63 when D0 = 500. However, the maximum difference
between the minimum value of WACCN and WACC∞ is only 0.18 percentage points. In
Panel B, the ranges over which WACCN is less than WACC∞ are longer, and the differences
between the minimum WACCN and WACC∞ are slightly larger. The maximum difference
between the minimum value of WACCN and WACC∞ is 0.47 percentage points.

As rD increases and the risk premium rA,U − rD decreases, the combination of the
following two factors makes it possible for WACCN to be less than WACC∞. First, as rD
increases, a greater portion of the perpetual tax shield can be attributed to the earlier interest
payments, as shown in Table 2. Second, as the risk premium rA,U − rD decreases (holding
rA,U constant), the differences between WACC1 and WACC∞ will become smaller at each
combination of τ and D0. For example, the maximum difference between WACC1 and
WACC∞ in Table 3 (rD = 4%, τ = 40%, and D0 = 500) is 1.15 percentage points. In Table 4
(rD = 8%, τ = 40%, and D0 = 500), it is just 0.36 percentage points.

As rD increases and the risk premium rA,U − rD decreases, WACCN will be less than
WACC∞ if VTS,N exceeds a critical value. To illustrate this, note that when rA,U = 12%,
VU = 1000, and N = ∞, the perpetual, unlevered, after-tax cash flow is 120. If τ = 40% and
D0 = 500, then VTS,∞ = 200 and WACC∞ = 10%. When rA,U = 12%, VU = 1000, and N = 10,
the perpetual, unlevered, after-tax cash flow is 176.98. For WACC10 to be greater than or
equal to 10%, VL must less than or equal to 1087.49.13 However, when D0 = 500, τ = 40%,
rD = 8%, and K = 10, VTS,10 = 107.36, which is calculated using Equation (6). Because
VTS,10 = 107.36 > 87.49, WACC10 is less than 10%.14

The results in Figures 1 and 2 (and Tables 3 and 4) reveal that when a firm’s debt
comprises coupon bonds, the difference between WACCN and WACC∞ is likely to be less
than one percentage point, especially if N is approximately equal to or greater than 10 years.
Nevertheless, the results in Figure 1 and Table 3 suggest that if the market risk premium is
large (i.e., 8 percentage points), the use of WACC∞ when evaluating potential projects can
introduce an upward bias into NPV estimates because WACC∞ is too low. In contrast, if
the risk premium is smaller (i.e., 4 percentage points), the results in Figure 2 and Table 4
show that the use of WACC∞ can introduce either an upward or downward bias into NPV
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calculations depending on whether WACCN is higher or lower than WACC∞. Even though
these biases might be small, managers should be aware of their existence before embarking
on the sensitivity analysis of a project’s estimated NPV.

4.2. Amortizing Loans

If a firm’s debt comprises amortizing loans rather than coupon bonds, the firm will
pay off the debt principal sooner and will pay less interest over time. Thus, the value of
a its tax shield will be lower if it issues amortizing loans rather than coupon bonds. The
examples in this section compare estimates of WACCN to WACC∞ assuming that the firm’s
debt comprises amortizing loans.

The examples in Table 5 use the assumptions that rA,U = 12% and rD = 4%. In Panel A,
τ = 20%. In Panel B, τ = 40%. For the debt levels D0 = 200, 350, and 500, each panel lists
WACCN when N = 1, 5, 10, 25, 50, 100, and ∞.

Table 5. The Finite-Life WACC with Amortizing Debt (Large Risk Premium). This table lists values of
WACCN when rA,U = 12%, rD = 4% (rA,U − rD = 8%), and the firm’s debt comprises amortizing loans.
In particular, the table identifies WACCN when N = 1, 5, 10, 25, 50, 100, and ∞. In Panel A, τ = 20%.
In Panel B, τ = 40%. Within each panel, this information is presented for three debt levels: D0 = 200,
350, and 500.

WACC Value for Useful Life N (%)

D0 1 5 10 25 50 100 ∞

Panel A: τ = 20%
200 11.83 11.82 11.81 11.76 11.67 11.57 11.54
350 11.70 11.68 11.66 11.58 11.44 11.27 11.21
500 11.57 11.55 11.52 11.41 11.21 10.99 10.91

Panel B: τ = 40%
200 11.66 11.64 11.62 11.53 11.36 11.18 11.11
350 11.40 11.37 11.33 11.19 10.93 10.63 10.53
500 11.15 11.11 11.06 10.86 10.52 10.13 10.00

The results in Table 5 reveal that when a firm’s debt comprises amortizing loans
WACCN will decrease progressively (but not linearly) as N increases from 1 to 100, converg-
ing toward WACC∞. The smallest differences between WACCN and WACC∞ in Table 5 are
when D0 = 200 and τ = 20%: the difference between WACC1 and WACC∞ is 0.29 percentage
points, the difference between WACC10 and WACC∞ is 0.27 percentage points, the differ-
ence between WACC25 and WACC∞ is 0.22 percentage points, and the difference between
WACC50 and WACC∞ is 0.13 percentage points. The largest differences between WACCN
and WACC∞ are when D0 = 500 and τ = 40% (Panel B): the difference between WACC1
and WACC∞ is 1.15 percentage points, the difference between WACC10 and WACC∞ is
1.11 percentage points, the difference between WACC25 and WACC∞ is 0.86 percentage
points, and the difference between WACC50 and WACC∞ is 0.52 percentage points.

The examples in Table 6 use the assumptions that rA,U = 12% and rD = 8%. In Panel A,
τ = 20%. In Panel B, τ = 40%. For the debt levels D0 = 200, 350, and 500, each panel lists
WACCN when N = 1, 5, 10, 25, 50, 100, and ∞.

As in Table 5, the results in Table 6 show that when a firm’s debt comprises amor-
tizing loans WACCN will decrease progressively (but not linearly) as N increases from 1
to 100, converging toward WACC∞. However, because the differences between WACC1
and WACC∞ are smaller in Table 6 than in Table 5, the difference between each WACCN
and WACC∞ is smaller as well. The smallest differences between WACCN and WACC∞
in Table 6 are when D0 = 200 and τ = 20% (Panel A): the difference between WACC1
and WACC∞ is 0.13 percentage points, the difference between WACC10 and WACC∞ is
0.11 percentage points, the difference between WACC25 and WACC∞ is 0.08 percentage
points, and the difference between WACC50 and WACC∞ is 0.03 percentage points. The
largest differences between WACCN and WACC∞ are when D0 = 500 and τ = 40% (Panel B):
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the difference between WACC1 and WACC∞ is 0.36 percentage points, the difference be-
tween WACC10 and WACC∞ is 0.33 percentage points, the difference between WACC25
and WACC∞ is 0.24 percentage points, and the difference between WACC50 and WACC∞ is
0.09 percentage points.

Table 6. The Finite-Life WACC with Amortizing Debt (Small Risk Premium). This table lists values of
WACCN when rA,U = 12%, rD = 8% (rA,U − rD = 4%), and the firm’s debt comprises amortizing loans.
In particular, the table identifies WACCN when N = 1, 5, 10, 25, 50, 100, and ∞. In Panel A, τ = 20%.
In Panel B, τ = 40%. Within each panel, this information is presented for three debt levels: D0 = 200,
350, and 500.

WACC Value for Useful Life N (%)

D0 1 5 10 25 50 100 ∞

Panel A: τ = 20%
200 11.67 11.66 11.65 11.62 11.57 11.54 11.54
350 11.42 11.41 11.40 11.34 11.26 11.22 11.21
500 11.18 11.16 11.14 11.07 10.97 10.91 10.91

Panel B: τ = 40%
200 11.34 11.33 11.31 11.25 11.16 11.11 11.11
350 10.85 10.84 10.81 10.73 10.60 10.53 10.53
500 10.36 10.35 10.33 10.24 10.09 10.01 10.00

The results in Tables 5 and 6 reveal that when a firm’s debt comprises amortizing
loans, WACCN is likely to be greater than WACC∞. Therefore, the use of WACC∞ can, again,
introduce an upward bias into NPV estimates. If the risk premium is large, as in Table 5,
the differences between WACCN and WACC∞ can approximate or exceed one percentage
point, especially when the tax rate is high and the firm uses a substantial amount of debt. If
the risk premium is smaller, as in Table 6, the differences between WACCN and WACC∞ are
likely to be smaller as well. Thus, managers should be aware that the potential magnitude
of any distortion to the estimated NPV of a potential project will be related to the size
of the risk premium, and guard against overinvestment (e.g., by engaging in additional
sensitivity analysis) when the appropriate risk premium is large.

5. What Difference Does the Difference between WACCN and WACC∞ Make?

As discussed in Section 2.2, data limitations will make it difficult for managers to
estimate a firm’s WACC∞ with precision. Additional uncertainty is introduced into the
capital budgeting process if a project will have a finite useful life, as WACC∞ (even if
accurately measured) can differ from the appropriate discount rate, WACCN. However,
as noted by Miller (2009, p. 137), NPV estimates can also be distorted because a project’s
future cash flows cannot be precisely quantified, and these distortions can dwarf those
created by the imprecise measurement of the discount rate.

The classic WACC valuation framework requires managers to first estimate the un-
levered free cash flows a project will produce over its useful life. Then, the present value
of these cash flows must be calculated. The project’s NPV is the difference between this
present value and the required initial investment. The following example illustrates the
potential distortion to this NPV estimate if WACC∞, rather than WACCN, is used as the
discount rate.

Assume that a project requires an initial investment in fixed assets of 1000 (assume
that the working capital investment is equal to 0), will have a ten-year useful life, and
will produce a level amount of earnings before depreciation and taxes in each of the ten
years. The investment will be depreciated using the straight-line method over ten years for
both book and tax purposes and the tax rate is 40%. Table 7 shows how to calculate the
unlevered free cash flow for this project.
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Table 7. The Unlevered Free Cash Flow Calculation. This table shows how to calculate a project’s
unlevered free cash flow. Within this example, the pro forma income and cash flow statements are
constant across each of the 10 years of the project’s useful life.

Income Statement Cash Flows

EBTD 220 Net Income 72

Depreciation −100 +Depr. 100

EBT 120 +/− ∆ in WC 0

Taxes (40%) 48 −CapEx 0

Net Income 72 Unlev. FCF 172

The firm’s (exact) WACC∞ can be calculated using Equation (3) and the following
inputs: rA,U = 12%, τ = 40%, and D0 = 500. Thus, WACC∞ = 10%. For purposes of calculating
WACC10, rD = 8%. If the firm issues coupon bonds, WACC10 = 9.58%. (Table 4, Panel B). If
the firm issues amortizing debt, WACC10 = 10.33%. (Table 6, Panel B). Using the assumption
that the project produces a ten-year annuity in the amount of 172, the project’s NPV is 56.87
using WACC∞ = 10%, 76.21 using WACC10 = 9.58%, and 42.05 using WACC10 = 10.33%.

Within this hypothetical example, the NPV is positive using all three discount rates
(This of course will not always be the case). However, just because the estimated NPV of
a project is positive does not mean that the firm should immediately accept the project.
Instead, the decision-maker must recognize that each line item in the pro forma income
statement—each year—is an estimate, and one or more of these estimates could prove to
be incorrect. Thus, before accepting a project, the manager must evaluate the estimated
NPV for reasonableness. What value is created for consumers, allowing the firm to charge
premium prices? And if the firm can charge premium prices for the product, rival firms
will almost certainly attempt to replicate the product and enter the market. Within this
environment, how will the firm construct entry barriers—making it difficult for competitor
to enter the market—allowing the project to continue producing positive NPV cash flows
into the (distant) future? If the firm cannot identify satisfactory answers to these questions,
the firm should not make the investment because future events might reveal that the
project’s NPV was not really positive.

6. Conclusions

No project or firm will produce cash flows in perpetuity. As a result, a firm’s perpetuity-
formula WACC is unlikely to be the theoretically appropriate discount rate for a project
with a finite useful life. However, because the numerical value of the finite-life WACC can
be very sensitive to the assumed life of a project, and because it is difficult to estimate
the useful life of a project with precision, the finite-life WACC is unlikely to be a viable
replacement for the perpetuity-formula WACC within most applications.

The goal of this paper, then, is to help managers better understand the potential biases
introduced into the project selection process when the perpetuity-formula WACC is used to
evaluate projects with finite useful lives. To do this, the paper compares perpetuity-formula
and finite-life WACC estimates across a wide range of input values.

If a firm issues coupon bonds, the finite-life WACC converges quickly toward the
perpetuity-formula WACC as the assumed useful life increases from 1 to 5. If the equity
risk premium is sizeable (i.e., >8%), the perpetuity-formula WACC is likely to remain
lower than (but close to) the finite-life WACC as the useful life extends toward infinity. If
the risk premium is smaller (i.e., 4%), the finite-life WACC can be slightly less than the
perpetuity-formula WACC across the range of useful lives most likely to be encountered in
practice (i.e., between 3 and 50). Thus, if the discount rate in an NPV calculation is viewed
as a rough approximation of the true, unobservable discount rate (e.g., + or −1 percentage
point from the true rate), the use of the perpetuity-formula WACC is unlikely to materially
distort the investment decisions of firms that issue coupon bonds.
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If the firm issues amortizing debt, the perpetuity-formula WACC is likely to be less
than the finite-life WACC, regardless of whether the risk premium is large or small. These
differences are largest when the marginal tax rate is high, when the firm finances a substan-
tial portion of its investments with debt, and when the equity risk premium is large. If any
of these conditions are met, managers should be cognizant of the fact that the perpetuity-
formula WACC is potentially too low, and guard against overinvestment. In particular,
managers should recalculate the project’s estimated NPV after increasing WACC∞ by
1 percentage point or more during the sensitivity analysis phase of the selection process.

The capital budgeting process requires firms to forecast cash flows five, ten, or more
years into the future. Because macroeconomic, industry, and firm-specific conditions can
change—sometimes dramatically—over these time horizons, cash flow estimates are, at
best, approximations of a project’s prospective performance. From this perspective, small
differences in the size of the discount rate used to calculate a project’s NPV will simply add
to this uncertainty, as long as these differences are randomly distributed around the true,
unobservable, discount rate. However, the results herein suggest that this might not always
be the case, and that the difference between the finite-life WACC and the perpetuity-formula
WACC can be systematically related to factors such as the project’s useful life, the project’s
unlevered cost of capital, the firm’s capital structure, the cost of debt, the marginal tax rate,
and most important, the debt repayment pattern (e.g., coupon bonds or amortizing loans).
By highlighting factors that could pressure the finite-life WACC to be either higher or lower
than the perpetuity-formula WACC, the results in this paper can help managers to better
understand the potential biases introduced into the capital budgeting process when using
the perpetuity-formula WACC to evaluate projects with finite useful lives.
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Notes
1 Using the AIRR model, Magni (2010, 2013, 2016, 2020) restates the investment selection decision in terms of a project’s average

economic return and its average cost of capital. Within the AIRR framework, a project is acceptable if its AIRR is equal to or in
excess of the benchmark AIRR (i.e., the average cost of capital). The analysis in this paper is limited to the WACC approach to
capital budgeting as presented in most finance textbooks. Within the WACC framework, a project will have a positive NPV if its
internal rate of return (IRR) exceeds its WACC.

2 Alternatively, Miles and Ezzell (1980) argue that the cash flows generated by a firm’s tax shield should be discounted using the
firm’s required return on assets. Farber et al. (2006) and Fernandez (2007) derive a generalized form of the WACC that allows
the tax shields to be discounted using either the required return on debt or the required return on assets. Although the issue
has not been resolved in the literature, this paper adopts the Modigliani and Miller (1963) and Fernandez (2004) approach and
calculates the tax shield value using Equation (2).

3 For more information about these four valuation methods, see Booth (2002), Fernandez (2004), or Magni (2020). Magni (2020)
discusses the finite-life applications of these valuation methods.

4 The AIRR approach, Magni (2010, 2013, 2016, 2020), allows both a project’s annual economic return and its annual cost of capital
to vary across time.

5 Using the AIRR approach, Magni (2016, sct. 10) generalizes the three most prominent Modigiani and Miller results (Proposition 1,
Proposition 2, and dividend irrelevance) to allow for time-varying debt, equity, and asset returns and for finite-lived assets.

6 Miller (2009) derives an alternative formula to calculate WACCN.
7 In practice, the required return on assets is unlikely to be constant over time as inflation premiums, risk premiums, and real

returns can all vary in response to changing economic conditions. If the potential time series of future capital costs can be
estimated, the AIRR approach, Magni (2010, 2013, 2016), provides a theoretically robust framework in which to make investment
decisions. However, if future capital costs cannot be estimated with precision, the constant discount rate assumption retains
value within first-cut estimates of a potential project’s NPV.

8 When WACC = 9.594%, rA,U = 10%, rD = 6%, τ = 20%, D0 = 200, VL = 1017.664, WD = D0/VL, and N = 10 are plugged into
Equation (8), both sides are equal to 6.2531.
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9 The value of the tax shield, using Equation (2) is 40 = (20%)200. Thus, the value of the levered firm, using Equation (1) is 1040.
The WACC of 9.615% can then be calculated using Equation (3): 9.615% = 10%(1 − 20%(200/1040)).

10 When the firm issues coupon bonds, all of the estimates of WACCN satisfy Equation (8). When the firm issues amortizing loans,
the estimates of WACCN do not satisfy Equation (8).

11 Fernandez (2019) notes that the risk premium is defined in at least four (subtly) different ways in textbooks. In each case, it is
the difference between levered equity and debt returns.

12 Respondents in 12 of the 88 countries analyzed in Fernandez et al. (2021) use market risk premiums > 10%.
13 The critical value, VL = 1087.49, is the present value of a 10-year annuity of 176.98 calculated using a discount rate of 10%.
14 For WACCN to be less than WACC∞, the risk premium rA,U − rD must be sufficiently small and rD must be sufficiently large.

Holding the risk premium constant at 4%, WACCN is more likely to be less than WACC∞ when rD = 8%, and less likely to be less
than WACC∞ when rD = 4%. However, it is still possible for WACCN to be less than WACC∞ when rA,U = 8% and rD = 4%. For
example, if VU = 1000, D0 = 500, and τ = 40%, WACC10 = 6.63% is less than WACC∞ = 6.67%.
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