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Abstract: Vasicek’s asymptotic single risk factor (ASRF) model is employed by the Basel Committee
on Banking Supervision (BCBS) in its internal ratings-based (IRB) approach for estimating credit losses
and regulatory credit risk capital. This methodology requires estimates of asset correlations; these are
prescribed by the BCBS. Practitioners are interested to know market-implied asset correlations since
these influence economic capital and lending behavior. These may be backed out from ASRF loan
loss distributions using ex post loan losses. Prescribed asset correlations have been neither updated
nor recalibrated since their introduction in 2008 with the implementation of the Basel II accord. The
market milieu has undergone significant alterations and adaptations since then; it is unlikely that
these remain relevant. Loan loss data from a developed (US) and developing (South Africa) economy
spanning at least two business cycles for each region were used to explore the relevance of the BCBS
calibration. Results obtained from three alternative methodologies are compared with prescribed
BCBS values, and the latter were found to be countercyclical to empirical loan loss experience,
resulting in less punitive credit risk capital requirements than required in market crises and more
punitive requirements than required in calm conditions.

Keywords: asset correlation; loan losses; asymptotic single risk factor model

1. Introduction

Credit portfolios comprise an assortment of financial debt instruments—such as bonds
and loans—held by banks and financial institutions; credit risk arises from the possibility
of loss when obligors fail to meet repayment obligations. Loss data (such as the severity
of losses given default and exposure at the time of default) are used in credit models
developed from pioneering work by Merton (1974) and Black and Cox (1976), and adapted
and updated at various times by, e.g., Alfonsi and Lelong (2012) and Cohen and Costanzino
(2017). Credit loss distributions arising from empirical losses (the characteristics of which
play a vital role in predicting credit-risky portfolio behavior) have been described by
various authors (see, for example, Crouhy et al. 2000 and sources therein), but it was
Vasicek (1987, 2002, 2015) who laid the foundations for the rules governing the calculation
of regulatory credit risk capital (BCBS 2005). Banks are required to mitigate credit risk
by allocating sufficient capital to absorb credit losses when defaults or downgrades occur
using the Vasicek framework.

The prevailing approach to model default correlation combines default probabilities
with asset correlations. This methodology involves linking defaults of two borrowers
to their asset values, in which insufficient assets lead to simultaneous defaults of both
borrowers. This idea, introduced by Vasicek (1987) gained traction due to its reliance on
continuously available market data, bypassing limitations of historical default information.
It underpins various credit risk models, including the BCBS credit risk capital charge’s
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ASRF model. For this BCBS-mandated approach, banks may measure and use as input into
the prescribed ASRF approach some of the required input parameters such as probabilities
of default and losses given default (after satisfying relevant supervisory criteria). Other
parameters such as asset correlation, ρ, are fixed by the BCBS regardless of the approach
adopted. The asset ρ measures the degree of co-movement between obligors’ loan health,
while

√
ρ measures the degree of the obligor’s co-movement with the single systematic risk

factor (BCBS 2005; Zhang et al. 2008) to which all borrowers are linked. This parameter
(ρ) is difficult to measure because of a lack of required sector data and often incomparable
obligor characteristics. As a result, banks may not determine this value themselves but
are instead forced to rely on compulsory calibration and fixing by the BCBS (BCBS 2005,
2023). The ρ values stipulated by the BCBS were determined prior to the 2008 credit crisis
and have, to date (August 2023), never been altered, despite the severity of the credit crisis
(which led to severe widespread defaults) or the impact of the COVID-19 pandemic of
2020–2021 which introduced another critical shock to the global economy.

Market-implied asset ρs may, however, be estimated using relevant loan loss data:
there are several approaches to accomplish this. How these market-implied ρs have altered
since their institution in 2008 provides interesting insights into credit risky behavior and
inform whether the Basel II values remain sensible or even economically feasible.

The remainder of this article proceeds as follows: Section 2 sets out a combination of
a review of historical work pertaining to this research and the theoretical developments
of the relevant mathematics. This covers the Vasicek asymptotic single risk factor model
development, the use of the beta distribution in credit risk loss assessment, and the tech-
niques required to reverse-engineer asset correlations from known loan losses. Section 3
discusses the data used, provides the rationale for their use in this exercise, and extends
the theoretical discussion from the preceding section. Section 4 presents the results and
discusses possible consequences. Section 5 concludes the paper.

2. Theoretical Development and Literature Review

Credit risk is the potential for financial loss caused by a borrower’s inability to make
payments on debt obligations. Portfolios of many loans—aggregated by loan type—behave
in predictable ways, which has led to the development of credit risk models to evaluate loan
portfolio losses. The earliest credit risk models were based on financial ratios, such as the
debt-to-equity (or asset) ratio and the interest coverage ratio, to predict default likelihood.
These models were, however, limited in their ability to predict default accurately, leading to
the development of more sophisticated credit risk models in the 1980s and 1990s, with a shift
toward the use of statistical techniques, such as logistic regression and survival analysis
(Crouhy et al. (2000) provided a comprehensive review of credit risk model evolution).

A widely used contemporary credit risk model described by Merton (1974) employs
the Black–Scholes option pricing formula to estimate the value of a firm’s debt and equity,
and then calculates the probability of default as a function of the difference between the
value of the assets and the value of the liabilities. The Merton model is widely used in
corporate finance, but its assumption of normally distributed returns and constant volatility
has been criticized as unrealistic (see e.g., Majumder 2006).

Also widely used is the KMV model which uses a firm’s historical stock price data to
estimate the probability of default. The model assumes that the firm’s stock price reflects its
creditworthiness, and that a sharp decline in the stock price is an indicator of an increased
risk of default. The KMV model has been criticized for its reliance on historical stock prices,
which may not accurately reflect a firm’s current creditworthiness, and its reliance on the
assumption that asset values are normally distributed (Zhan et al. 2013).

Recent improvements in credit risk modeling have been instituted using machine
learning techniques, such as artificial neural networks and support vector machines. These
models are more accurate in predicting default than traditional statistical models, but their
widespread adoption is still in its relative infancy; thus, further research is needed to fully
understand their potential benefits and limitations (Khandani et al. 2010; Shi et al. 2022).
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Vasicek’s (1987) work on single and multifactor credit risk models dominate the
banking credit risk landscape. The ASRF model (Vasicek 2002) is a structural mathemat-
ical model describing the mechanics of the default process, which has been adopted by
the BCBS in the regulatory credit risk framework. Unlike reduced-form models (which
focus on the statistical properties of default), the Vasicek (2002) ASRF model assumes
that the default process is mean-reverting, i.e., that PDs evolve over time depending on
the spread between the risk-free rate and borrower’s credit spread (Kupiec 2007), and
that credit portfolios become invariant to new obligors as the obligor number becomes
large. Widely used in the financial industry because of its computational efficiency, it
provides a simple, tractable credit risk assessment framework. Inevitably, it also has some
limitations such as the assumption of the market index as a proxy for the economy and
portfolio invariance for large obligor numbers (Gordy 2003; Cowan and Cowan 2004;
García-Céspedes and Moreno 2017).

Zhou (2001) developed an elementary theoretical framework describing default corre-
lations using the concept of first-passage times. A company is considered to default once
its value initially crosses a predefined default threshold. Estimating the default correlation
between two companies involves computing the likelihood of a two-dimensional random
process crossing a threshold. Zhou (2001) demonstrated the way in which asset-return
correlations, default correlations, and time horizons are interconnected but these assertions
have been largely discredited. For example, Li and Krehbiel (2016) asserted an inconsistency
between the stochastic assumptions of Merton’s firm-specific default probability model
with the bivariate first passage time model of default correlation and derived a closed-form
equation to determine default correlations. Accornero et al. (2018) demonstrated how
the ASRF model could be disadvantageous because of the reliance on a single risk factor.
The asset correlation errors resulting from simplified single risk factor models lead to
considerable default correlation errors. Mwamba et al. (2019) used similar approaches to
Stoffberg and van Vuuren (2015) and closely corroborated their results using South African
loan loss data. They suggested that, because of the discrepancies between empirical asset
correlations and those prescribed by the BCBS, systematic contagion could result since all
banks in a jurisdiction would be similarly undercapitalized. Mwamba et al. (2019) urged
central banks to consider the findings and adapt or revise their asset correlation values.

Although it is widely accepted that observed default rates or even equity returns may
be used to calibrate a single factor Gaussian copula model (as is the case for the ASRF), the
formulation is still likely to understate tail risk (Dias 2020). Using a Bayesian approach in
which asset correlations are modeled using an inverse Wishart prior and equity correla-
tions to obtain the posterior distribution, Dias (2020) found that probabilistic forecasts of
defaults were produced with better out-of-sample performance than the standard ASRF
model. Cho and Lee (2022) used a time-varying credit risk model to extract empirical asset
correlations from loan loss data (the identical dataset to that used in our work). The model
outperformed the regulatory model for US credit portfolios with strong empirical evidence
of cyclical and asymmetric asset correlation. The authors argued that Basel’s mandatory
criteria for determining asset correlation was insufficient during economic downturns.

The Basel II Framework was instituted in most compliant countries in January 2008
(BCBS 2004). The aim of the framework was to provide stability in the risk management
industry, including the credit risk sector, strengthen regulatory capital requirements, and
support good banking practices (Stephanou and Mendoza 2005). The framework requires,
inter alia, two main approaches that banks may use to determine regulatory credit risk
capital: the standardized and the internal ratings-based (IRB) approaches (BCBS 2006).

The standardized approach to credit risk presents a method of determining the mini-
mum capital requirement for credit risk according to a standardized set of rules and inputs
that are used to determine the level of risk associated with different types of exposures.
The minimum capital requirement involves calculating the product of each exposure and a
prescribed risk weight (based on credit quality of the exposure). The approach includes
guidelines for determining the credit quality of exposures, as well as measuring and moni-
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toring credit risk and promotes a more consistent and transparent approach to credit risk
management across the banking industry (BCBS 2006).

The IRB approach uses Vasicek’s (2002) ASRF model and regulates banks to catego-
rize loans according to specific criteria. Each category comprises unique characteristics,
including risk components and minimum capital requirements (BCBS 2006). These risk
components are the PD, the exposure at default (EAD), the loss given default (LGD), loan
maturity, M, and asset correlations ρ. The resultant calculations determine the minimum
regulatory credit risk capital requirements (Gordy 2003).

The expected loss of a credit portfolio is the total expected loss a credit portfolio holder
can expect to experience on their portfolio over a chosen time horizon (Chatterjee 2015).
The expected loss (EL) is calculated as the aggregate sum of the expected loss for each
obligor in a portfolio of N obligors:

EL =
N

∑
i=1

PDi · LGDi · EADi

Under the IRB approach, credit portfolio risk is the unexpected loss (ULp), determined
using the standard deviation of credit losses (Chatterjee 2015):

ULp =
N

∑
i=1

σi · ρip

where σi is the standard deviation of credit losses for obligor i, and ρip denotes the ρ
between obligor i and overall portfolio p credit losses.

The arrangement of these credit losses (EL and UL) in the Vasicek credit loss distribu-
tion is shown in Figure 1.
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Figure 1. The credit loss distribution. Source: authors’ representation.

Under the IRB’s ASRF approach, using the Vasicek formulation, the minimum capital
requirement (K) for corporate, sovereign, bank, and high-volatility commercial real-estate
exposures is given by

K = EAD · LGD ·
(

Φ

[
Φ−1(PD) +

√
ρ ·Φ−1(0.999)√

1− ρ

]
− PD

)
· 1 + (M− 2.5) · b

1− 1.5 · b︸ ︷︷ ︸
Maturity adjustment

(1)

where M is the effective (remaining) maturity of the obligation in years (floored at one year
and capped at five), b is a scaling coefficient dependent only on PD, and a systematic factor
of 0.999 implies a 99.9% confidence level or the credit risk capital required to cover the
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annual unexpected losses arising from a 99.9th worst-case systematic factor scenario as
required by the BCBS (2005).

Banks may use their own internal models to determine PD, LGD, EAD, and M, but
independent estimation of asset ρ is not permitted. Set by the BCBS (2005), these are either
fixed or dependent on PDs and are set out in Table 1. Other loans, such as mortgages,
as well as revolving and other retail, do not include the maturity adjustment used in (1).
Developing a method to determine the ‘true’ asset ρ—as established by market participants
and embedded in credit portfolios—is crucial in credit risk measurement.

Table 1. Asset ρ for various exposures under the IRB ARSF approach. Source: BCBS (2005, 2023).

Loan Type Asset ρ

Residential mortgage 15%

Qualifying revolving retail 4%

Other retail 0.03 ·
(

1−e−35·PD

1−e−35

)
+ 0.16 ·

(
1−

[
1−e−35·PD

1−e−35

])
Corporates, sovereigns,

and banks 0.12 ·
(

1−e−50·PD

1−e−50

)
+ 0.24 ·

(
1−

[
1−e−50·PD

1−e−50

])
High-volatility commercial

real estate 0.12 ·
(

1−e−50·PD

1−e−50

)
+ 0.30 ·

(
1−

[
1−e−50·PD

1−e−50

])

In the ASRF model, the singular systematic risk factor takes on the role of an indicator
for the global economic state. This pivotal factor is gauged by the asset correlation, ρ,
signifying the extent of an obligor’s susceptibility to systematic risk. This correlation
delineates the interrelationship between the asset value of one borrower and that of another,
capturing how borrowers’ asset values hinge on the overall economic health. All borrowers
are inherently intertwined through this pivotal risk factor. These asset correlations form
the bedrock for establishing the BCBS risk weight functions, inherently contingent on asset
classes due to varying dependencies of different borrowers and asset categories on the
broader economic panorama. Dissimilar asset correlations emerge from analyzing divergent
loss experiences among portfolios that share identical anticipated losses. When correlation
prevails among individual exposures within a portfolio and with the overarching systematic
risk factor of the ASRF model, the result is a heightened variance in loss rates. This
configuration mirrors a portfolio marked by elevated interactions between borrowers,
where defaults are tightly knit to the prevailing economic climate (BCBS 2005, 2023).

In (1), ρ measures the degree of co-movement between obligors’ loan health, while√
ρ measures the degree of the obligor’s exposure to the systematic risk factor. Because

this parameter is difficult to estimate and, if unrestricted, could provide banks with too
much model flexibility leading to widely disparate risk weightings and associate credit
risk capital, the IRB approach specifies and prescribes asset ρ coefficients, given in Table 1
(BCBS 2023). Note that these are unchanged since the introduction of the prescribed asset
correlations in 2005 (BCBS 2005). These are provided for various loan types and are either
fixed or vary with PD. Those that vary with PD do so monotonically (Figure 2), decreasing
as PD increases (Gordy 2003; Lopez 2004). In Table 1, the value which precedes the first
bracket is the lower bound ρ, and the value which precedes the second bracket is the
upper bound.
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Figure 2. Asset ρ dependence on PD for (a) corporate, bank, and sovereign loans, and (b) other retail.

The rationale for the asset ρ profiles in Figure 2 arises from the empirical observations
that different loans or obligors with low PDs have higher asset ρs and vice versa. Dev (2006)
explained this feature intuitively, invoking the sensible reasoning that loans with lower PDs
are generally larger and more dependent on the economy or market (i.e., the systemic factor)
as a whole. Loans with higher PDs are more influenced by idiosyncratic factors whilst those
loans with lower PDs are more impacted by systematic factors. This heuristic explanation
assumes different loans in an economy; at any specific time, different asset ρs are assigned
to different loans, dependent only on their respective PDs. The logic of this framework does
not, however, extend to large portfolios of heterogeneous loans. Consider the evolution of
such a large loan’s average portfolio PD evolving over time. Changes in average portfolio
PD are caused by specific market circumstances and shifts in the economic milieu. A
worsening economic environment increases the average portfolio PD because incipient
loans’ asset values—being correlated with the systemic factor—deteriorate together (albeit
to different extents).

As an example, consider a bank’s portfolio of many debt securities prior to the credit
crisis of 2008/2009. In the benign economic environment which preceded the crisis, de-
fault rates of such a portfolio were low. As market conditions deteriorated, default rates
increased considerably as all obligors—correlated with the systemic factor—suffered in-
creased impairments (thereby increasing average portfolio PD). It is not counterintuitive
to envision a scenario in which incumbent asset ρs lead to a higher portfolio PD which
increases asset ρs as panic sets in, binding loan quality even more tightly to the market
environment and so on, in a malign feedback loop.

Tasche (2008) posited that high levels of asset ρs observed during the crisis were
a major contributor to the high default rates observed in loan portfolios and that those
banks which had relied on diversification as a risk management tool were particularly
vulnerable to the breakdown in diversification that occurred during the crisis. Acharya
and Richardson (2009) argued that the high levels of asset ρs observed during the crisis
eroded diversification as different types of assets became highly correlated with the market
and each other, leading to higher loan portfolio default rates as the risk of individual loans
became more difficult to manage.

Tarashev and Zhu (2018) explored how specification and calibration errors can impact
portfolio credit risk measurement accuracy, specifically in the ASRF model. They concluded
that these errors can significantly affect the model’s performance and that proper calibra-
tion was crucial for accurate risk measurement. Lee et al. (2011) assessed the asymmetric
behavior and procyclical impact of asset correlations. In an investigation of the relationship
between asset correlations and economic cycles, correlations were found to behave differ-
ently during economic expansions and contractions. High correlations during expansions
are associated with a procyclical impact on the economy, while low correlations during
contractions lead to a countercyclical impact.

Half a decade before the crisis, Duchemin et al. (2003) found the BCBS-prescribed
asset ρs to be conservative and suggested that the volatility of the PD parameter should
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be included in estimating the empirical asset ρ. This conservatism in asset ρ values was
echoed by Hartigan (2003) in a stinging letter to the BCBS.

Using empirical data, Zhang et al. (2008) found that, despite reasonable agreement
between their default implied asset ρs and those specified in the Basel II Accord for large
corporate borrowers, other default-implied asset ρ values were considerably higher than
previous studies even after applying the small corporates adjustment. Measuring asset ρ
ex ante led to the improvement of realized default ρs and portfolio credit risk, statistically
and economically. The authors asserted that important practical, economic, and regulatory
implications stemmed from the discrepancies between Basel-specified asset ρs and market-
implied results.

Botha and van Vuuren (2010) concluded that the BCBS estimates of asset ρ outlined in
Table 1 were conservative compared with market-implied estimates, measured by reverse
engineering (1) and using US credit loss data. Market-implied data suggested that asset ρs
were much lower in the US than the values provided by the BCBS. The authors concluded
that this deviation introduced a level of conservatism in the asset ρ parameter and allowed
for more prudent credit risk measurements but should be monitored regularly in case the
mandated and market-implied values continue to drift apart.

3. Materials and Methods
3.1. Materials

For the US, national, quarterly, non-seasonally adjusted charge-off rates (all loan types
from all insured US chartered commercial banks were used as historical data to estimate
the market-implied asset ρ (FRED Economic Data 2023). Charge-off rates are loan and lease
values removed from bank books and charged against loss reserves; hence, these serve as
a convenient proxy for sovereign-wide annualized losses net of recoveries and measured
as a percentage of average loans. Delinquent loans are those past due more than 90 days
(including those with interest accrual and nonaccrual status) measured as a percentage of
end-of-period loans. Loans for residential real estate encompass those that are secured by
properties with one to four families, which can include home equity lines of credit, while
loans for commercial real estate consist of construction and land development loans, loans
secured by multi-family residences, and loans secured by non-farm, non-residential real
estate (FRED Economic Data 2023).

Charge-off rate data were assembled from the following:

• Q1-85 to Q4-22 for qualifying revolving retail (credit card), other retail and corpo-
rate/sovereign and bank exposures, and

• Q1-91 to Q4-22 for residential mortgage and high volatility commercial real estate
exposures.

South African charge-off rate data were collected from Marsh global loss data (Marsh
2023) over the period spanning January 1993 to July 2022. These data represent country-
wide charge off rates (all loan types). Because principal bank loan losses arise from com-
mercial and industrial loan type in South Africa, the standards applied to this loan type
were instituted in the analysis which follows.

We are aware that the span of our data predates the Basel regulatory rules for de-
termining the requisite credit risk capital (which were only required from 2008 with the
institution of Basel II (BCBS 2006)). This work, then, investigates not only the requisite
credit risk capital since the initiation of Basel II, but also that which would have been required
had the Basel II rules been in place in the 1980s.

3.2. Methods
3.2.1. The Vasicek ASRF Model

The original framework for credit loss distributions was given by Vasicek (2002). The
derivations and results formulated by Vasicek (2002) laid the foundation for credit risk
research and provided much-needed risk analysis methods for banks. Vasicek (2002) made
several assumptions regarding credit loss portfolios and their behavior. The first assump-
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tion is that a loan defaults if the respective borrower’s assets fall below the obligation
payment of the borrower. This assumption gives rise to the first derivation, the probability
of default on the i-th loan can be represented by P(Ai < Bi), where Ai is the asset value of
obligor i and Bi is the loan amount of obligor i.

The asset value of obligor i evolves in time according to the stochastic process:

dAi = µi Aidt + σi AidXi

where Xi satisfies standard one-dimensional Brownian motion, Wt, µi is the mean, and σi is
the standard deviation of obligor i’s asset returns. Considering this process, the discrete
asset value of obligor i is

log(Ai(T)) = log(Ai) +

(
µi −

σ2
i

2

)
T + σiXi

√
T (2)

The PD of obligor i is PDi = P[Ai(T) < Bi] = P(Xi < ci) = N(ci),
where

ci =

log(Bi)− log(Ai)−
(

µiT −
σ2

i
2

)
T

σi
√

T

and N is the cumulative normal distribution function. Xi in (2) is described by

Xi = Y
√

ρ + Zi
√

1− ρ

where Y, Zi are mutually independent standard normal variables with Y representing
the systematic risk factor such as an economic index, and Zi representing a borrowing
company’s specific risk factor (any risk that affects the company uniquely such as client
base behavior, operational risk and revenue); ρi is the asset ρ between the i-th asset return
and the systematic risk factor.

Vasicek (2002) considered a homogeneous portfolio comprising n number of loans
with equal loan exposures and PDs, the same maturity, T and the correlation between any
two obligor asset values = ρ. Defining li as an indicator function representing default of
obligor i such that li = 0 if obligor i defaults and li = 1 if obligor i does not default, the
portfolio percentage loss, L, is

L =
1
N

N

∑
i=1

li

Since the events of default are not independent, the central limit theorem does not
hold, and the loss distribution does not converge to a limit form. If the systematic risk
factor, Y, is known, the conditional probability of loss on a single loan is

PD(Y) = P(Di = 1|Y = y) = P(Ai(T) < Bi|Y = y)
= P(Xi < ci|Y = y) = P

(√
ρY +

√
1− ρZi < ci

)
= P

(
Zi <

ci−
√

ρY√
1−ρ
|Y = y

)
= N

(
N−1(PD)−√ρY√

1−ρ

) (3)

PD(Y) is the loan default probability given the scenario Y. The variables li, conditional
on Y, are independent equally distributed variables with finite variance. Thus, the portfolio
percentage loss L, given Y, converges by the law of large numbers to its expectation PD(Y)
as N → ∞ . Therefore,

P(L ≤ x) = P(PD(Y) ≤ x) = P
(

Y ≥ PD−1(x)
)
= N

(
−PD−1(x)

)
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Allowing the number of loans on a given portfolio to approach infinity, and through the
law of large numbers, Vasicek (2002) derived the main result of his proposed distribution.
The cumulative distribution function of loan losses on a very large portfolio:

P(L ≤ x) = N

(√
1− ρ · N−1(x)− N−1(PD)

√
ρ

)
(4)

Vasicek (2002) then developed the loss distribution function of a very large portfolio
of loans:

f (x; PD; ρ) =

√
1− ρ

ρ
· exp

[
1
2

(
N−1(x)

)2
− 1

2ρ

(
N−1(x)

√
1− ρ− N−1(PD)

)2
]

(5)

3.2.2. Vasicek ASRF Portfolio Loss Distribution: Mode

This density function of the Vasicek ASRF portfolio loss distribution (5) is unimodal
with mode

Lmode = N

[√
1− ρ

1− 2ρ
· N−1(PD)

]
(6)

(6) may be manipulated (Botha and van Vuuren 2010; Stoffberg and van Vuuren 2015)
to determine an estimator for the asset ρ coefficient:

N−1(Lmode)

N−1(PD)
=

√
1− ρ̂

1− 2ρ̂

(
N−1(Lmode)

N−1(PD)

)2

=
1− ρ̂

(1− 2ρ̂)2

Thus, we can define

ψ =

(
N−1(Lmode)

N−1(PD)

)2

which gives ψ(1− 2ρ̂)2 = 1− ρ̂, or, in quadratic form,

4ψρ̂2 + (1− 4ψ)ρ̂ + (ψ− 1) = 0 (7)

Solving for ρ in (7) gives

ρ̂ =
(4ψ− 1)±

√
8ψ + 1

8ψ
(8)

Due to the quadratic form of (7), there are two possible solutions for the asset ρ estima-
tor, but only the negative solution produces a mathematically tractable result. Extracting
the asset ρ involves assembling gross credit loss data as a percentage of the total loan value
and determining the mode of the resulting loss distribution by measuring the average gross
loss as a proportion of the total loan value. Knowing Lmode, (8) may be used to extract the
market implied ρ embedded in known ex post loan losses.

3.2.3. Vasicek ASRF Portfolio Loss Distribution: Variance

The mean of the Vasicek ASRF portfolio loss distribution (5) is EL = PD and the
variance, s2, is s2 = E

(
x2)− [E(x)]2 or

s2 =
∫ ∞

−∞
x2· f (x)dx− PD2

s2 =
∫ ∞

−∞
x2
(

ρ̂

1− ρ̂

)
exp

(
− 1

2ρ̂
·
(

N−1(x) ·
√

1− ρ̂− N−1(PD)
)2

+
1
2

(
N−1(x)

)2
)

dx− PD2 (9)
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The method to extract ρ̂ is, thus, as follows (again using gross credit loss data as a
percentage of the total loan value): determine the empirical variance, s, of relevant loan
losses, and reverse-extract ρ̂ using (9) since this is then the only unknown variable, extracted
using a numerical integration approach.

3.2.4. β Distribution Fitting

The method proposed by Hansen et al. (2008) fits a β distribution to observed annu-
alized loss rates, which provides an estimate of credit losses at a 99.9% confidence level
(chosen to be that required by regulatory requirements).

A β distribution is completely characterised by two parameters, α and β, which are
easily obtained from the mean (µ = EL) and standard deviation (σ) of the loan losses. These
quantities are linked by

α = µ·
(

µ·(1− µ)

σ2 − 1
)

β = (1− µ)·
(

µ·(1− µ)

σ2 − 1
)

The probability density function for a β distribution is

f (x, α, β) =
Γ(α + β)

Γ(α) · Γ(β)
·
[
(1− t)β−1 · tα−1

]
(10)

where ∀ α, β > 0 and 1 ≥ x ≥ 0. The cumulative density function for the β distribution,
B(α, β, x), may be used to calculate losses at any given percentile value, x, say 99.9% as per
Basel regulatory requirements. Thus, equating (3) with the cumulative density function for
the β distribution gives

B(α, β, x) = N

(
N−1(PD) +

√
ρ·N−1(99.9%)√

1− ρ

)

N−1[B(α, β, x)] =
N−1(PD) +

√
ρ·N−1(99.9%)√

1− ρ
(11)

Let v = N−1[B(α, β, x)], p = N−1(PD), and q = N−1(99.9%).
Thus, v·

√
1− ρ̂ = p + q·

√
ρ̂ .

After some tedious algebra, (11) may be rewritten as

ρ̂ =

(
v2 + p2)·(v2 + q2)− 2vp ·

(
vp + q

√
v2 + q2 − p2

)
(v2 + q2)

2 (12)

where (12) measures the market implied asset ρ provided by Hansen et al. (2008).
There are, thus, three approaches to measuring the market-implied asset ρ as illustrated

in (8), (9), and (12). These form the basis of the comparisons with the asset ρs as given by
the BCBS, i.e., Table 1.

4. Results

The charge-off rates for all US bank exposures are shown in Figure 3. Charge-off rates
(hence, default rates) peaked at various times over the 30-year data span in both countries.
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Figure 3. Charge-off rates on all loan exposures from commercial banks in the US and South Africa.
Source: FRED Economic Data (2023) and Marsh (2023).

The surge of US defaults that occurred in

• 1991/1992 arose due to the 1990/1991 recession exacerbated by the 1990 oil price shock
and high levels of US consumer and corporate debt,

• 2002 were caused by the bursting of the dot-com bubble in the early 2000s, the 9/11
terrorist attacks in 2001, and the accounting scandals at Enron and WorldCom in 2002,
which exposed widespread financial fraud and accounting irregularities, and

• 2009/2010 developed because of the global financial crisis which began in 2008, trig-
gered by the collapse of the US housing market, subprime mortgage defaults, and the
widespread use of risky financial derivatives.

The increase in South African defaults that occurred in

• 2001 was due in part to the global economic slowdown, but also because of spillover
effects caused by the crisis in neighboring Zimbabwe which had a significant impact
on South Africa’s political and economic stability,

• 2011 occurred because of the European debt crisis, which led to a significant drop in
demand for South African exports to Europe and a decrease in foreign investment, as
well as the mismanagement of state-owned enterprises, particularly the power utility
Eskom, which led to country-wide power shortages and rolling blackouts, and

• 2020 arose because of the COVID-19 pandemic and its associated declines on exports,
foreign investment, and demand for South African commodities. Lockdown measures
impacted small and medium-sized enterprises, forcing closures, widespread job losses,
and a decline in consumer spending.

Charge-off rates may be converted to PDs by dividing them by relevant LGDs. LGDs
are highly variable across loan types, individual obligors, and over time; thus, the as-
signment of a single-point LGD is non-trivial. Although LGDs used in this article were
provided by the sources listed in Table 2, the literature is understandably silent (for propri-
etary reasons) on advanced approach LGDs for various loan types. To compensate for this
shortcoming, a wide range of LGDs was used, i.e.,

80% · LGD ≤ LGD ≤ max(120% · LGD, 100%) (13)
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Table 2. Exposure types, LGDs, and sources used for the two regions.

Region Exposure Type LGD (%) Source

US Residential mortgage 30 Neumann (2018)

US Qualifying revolving retail 40 Ross and Shibut (2015)

US Other retail 85 Banerjee and Canals-Cerdá (2012)

US Corporates, sovereigns,
and banks 75 Bandyopadhyay and Singh (2016)

US High-volatility commercial
real estate 60 Emery et al. (2009)

SA Other retail, sovereign 50 Aslam (2020)

Output variations are shown as error bars in Figure 4.
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Figure 4. Implied asset ρs derived from the β-fitting approach (Hansen et al. 2008) and the Vasicek
portfolio loan loss distribution’s mode and variance. (a–e) US loan types and (f) South African loans
over a period which spans the 2008 credit crisis and the 2020/2021 COVID-pandemic. Error bars
indicate the range of ρs obtained for the range of LGDs set out in (13) from those values stated in
Table 2. Sources: Hansen et al. (2008), Vasicek (2002), BCBS (2005) and authors’ calculations.

Sample sizes of 12 quarters (three years) were used to measure the various requisite
parameters (Lmode (6) for calculating ρ from (8), s2 to reverse engineer ρ from (9), and α and
β to determine ρ from (12)). These samples were then rolled forward quarter by quarter to
generate the relevant time series data of evolving ρ values, shown in Figure 4a–f.

The asset ρ magnitudes obtained for loan types which vary with PD, i.e., ρ = ρ(PD)
are similar (within established uncertainties indicated by error bars), while those obtained
using the Basel ASRF approach are inverted.1 Asset ρ peaks for the three alternative
methods are troughs under the Basel ASRF approach and vice versa; thus, the Basel ASRF
methodology indicates lower asset ρs during market turbulence (characterized by high
default rates) and higher asset ρs during calm periods (characterized by low default rates).
All alternative approaches indicate the opposite. Basel ASRF asset ρ profiles over time are,
thus, both illogical and confusing, while those generated by the alternative approaches
are sensible and consistent with the reasoning provided in Section 2 (after Figure 2). To
reiterate, these approaches assert that asset ρs increase with increasing PD over time, while
the current regulatory formulation posits that the opposite occurs.

An MLE approach was used to recalibrate the Basel II (BCBS 2005) ρ parameters such
that they matched other approach results. Rather than duplicate many calculations, the β
distribution fitting approach (Hansen et al. 2008) was selected for the target asset ρ. The
results are shown in Table 3 and the resulting Basel asset ρs using the empirical parameters
shown in Figure 5a–d for loan types whose ρ = ρ(PD).
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Table 3. Exponents and upper and lower bounds for ρ-fitted functions currently stipulated by Basel
(Table 1) and derived empirically from loan loss data using an MLE approach. The loan types omitted
(US residential mortgages and credit cards) are assumed to be constant, i.e., ρ 6= ρ(PD). Source:
BCBS (2005) and authors’ calculations.

Loan Type Asset ρs Lower Upper Exponent

US HVCRE
Current (Basel) 0.12 0.30 50

Recalibrated 0.31 0.06 17

US other retail
Current (Basel) 0.03 0.16 35

Recalibrated 0.20 0.06 20
US corporates,

sovereigns, banks
Current (Basel) 0.12 0.24 50

Recalibrated 0.29 0.05 13

SA loans (other retail)
Current (Basel) 0.03 0.16 35

Recalibrated 0.34 0.02 33
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Figure 5. Recalibrated Basel ρs after applying an MLS approach to differences between original
parameters and those obtained using the β distribution (Hansen et al. 2008). ρs were arbitrarily
selected: all three approaches generate similar empirical results.2 (a–c) US loan-type results and
(d) South African loan results. Sources: BCBS (2005) and authors’ calculations.

Implementing the empirical asset ρs will impact credit risk regulatory capital. A
comparison of credit risk capital as determined by current regulatory rules and empirically
determined ρs are shown in Figure 6a–f for a hypothetical total loan portfolio exposure of
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100, LGDs sourced from Table 2, maturities of one year (where applicable), and prevailing
PDs derived from charge-off rates.
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Figure 6. Comparison of regulatory Basel credit risk capital and empirically derived credit risk
capital using for US loan types (a–e) and South African loans (f) over a period spanning both the
2008 credit crisis and the 2020/2021 COVID-pandemic. Error bars generated using the variability in
asset ρs derived from the range of potential ρ values obtained for Figure 4. Sources: BCBS (2005) and
author calculations.

The results indicate that capital levels are currently too low during market crises
(periods of high default) and too high during calm market periods (low defaults). This is



J. Risk Financial Manag. 2023, 16, 402 16 of 19

an important result for risk mitigation as these capital levels are used to provide safety
during market turbulence.

Lastly, a comparison of asset ρ as a function of PD using current Basel requirements
and empirically derived ρs is shown in Figure 7a–f.
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Figure 7. Regulatory Basel asset ρs and proposed empirically derived values as a function of PD
for (a–e) US loan types and (f) South African loans. Dashed lines indicate BCBS (2005) asset ρs
per loan type, while solid lines indicate empirically derived asset ρs. Sources: BCBS (2005) and
author calculations.

5. Conclusions

Compared with the three alternative methodologies to estimate asset ρs, prescribed
BCBS asset ρs are countercyclical to empirical loan loss experience over the entire 30-year
period of loan loss experience investigated. The original assessment, calibration, and
assignment of asset ρs—set before the introduction of Basel II in 2008—are flawed and
result in less punitive credit risk capital requirements than required during and after
market crises and more punitive than required in calm conditions. The original calibrations,
therefore, are redundant and should be updated and incorporated into the Basel framework.
It is possible that the misalignment of Basel’s estimated asset ρs may understate default
levels during periods of market turbulence, surely an unintentional regulatory consequence.
The approaches detailed in this article do not guarantee consistency as the market will
eventually reveal limitations embedded in current models. This work, however, aimed
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to demonstrate inconsistencies in the current asset correlation formulation, prescribed by
Basel for regulatory capital allocation.

5.1. Limitations

In the absence of default data distinguished by loan type, losses arising from charge-
offs are assumed to be a suitable and reliable proxy for default rates. Charge-off data for
only one developed (US) and one developing (South Africa) country were used in this
analysis. A principal reason for this is the scarcity of granular default rate data. Time series
of default rates are available, but these are recorded at different frequencies (some only
annually) for different jurisdictions, and—even where available—losses distinguished by
loan type are absent.

Loan losses are assumed to be distributed either according to a Vasicek’s (2002) formu-
lation or a β distribution. Both come with assumptions and limitations, thus influencing
the results.

LGDs are assumed to be relatively constant, and, in the absence of more regular
research governing the evolution of this important parameter, existing results were used,
some published over a decade ago. Although this limitation was partially ameliorated
by generating outputs from a range of sensible LGDs, current LGDs relevant for each
jurisdiction should ideally be used.

5.2. Future Work

Future work could extend this analysis to a wider base and include more—and
different—country-specific loan loss data. Where available, loan-type data (measured
as frequently as possible) should be employed, and, if absent from a national database,
their assembly and recording should be encouraged.

Other distributional assumptions could be used, and relevant percentile losses could
be extracted from these for comparison with empirical loss experience. Historical credit
risk capital requirements, determined using the BCBS equations, could be compared with
proposed values and assessed against historical loss experience to ascertain and evaluate
capital adequacy for credit risk losses.

Because higher asset correlations result in higher unexpected losses and associated
higher capital charges, if all banks in a jurisdiction are undercapitalized due to inaccurate
asset correlation values, systemic risk could be the result. Although Basel III requires
changes to both the quality and the quantity of regulatory capital, this takes the form of
capital buffers and increased tier 1 capital requirements rather than changes to the credit
risk capital formula or adjusted asset correlations. We recommend that banks raise the
level of their economic capital to adjust for the regulatory shortcomings of the current
Basel-mandated approach.
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Notes
1 Positive solutions of (8) give asset ρs whose time profile is consistent with those specified by the BCBS (2005), but consider-

ably higher.
2 Indeed, new Basel parameter values obtained using other methodologies differed only from those obtained in Table 3 by a

few percent.
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