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Abstract: In this paper, the use of artificial neural networks (ANNs) is proposed to approximate the
option price sensitivities of Johannesburg Stock Exchange (JSE) Top 40 European call options in a
classical and a modern multi-curve framework. The ANNs were trained on artificially generated
option price data given the illiquid nature of the South African market, and the out-of-sample
performance of the optimized ANNs was evaluated using an implied volatility surface constructed
from published volatility skews. The results from this paper show that ANNs trained on artificially
generated input data are able to accurately approximate the explicit solutions to the respective
option price sensitivities of both a classical and a modern multi-curve framework in a real-world
out-of-sample application to the South African market.
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1. Introduction

The mechanics of derivative pricing theory have fundamentally changed in the after-
math of the global financial crisis (GFC) in 2008. Following the GFC, it was uncovered that
specific assumptions underpinning classical derivative pricing theory, such as the existence
of a unique risk-free rate at which parties can borrow and lend in the Black–Scholes (BS)
model by Black and Scholes (1973), were not necessarily realistic. To address this limitation,
Piterbarg (2010) derived a theoretical pricing framework from first-principles that relaxes
the assumption on the existence of a unique risk-free rate and incorporates the effects of
collateral on the price of a financial derivative.

In addition to the fundamental changes to derivative pricing theory post the GFC, the
rapid advancement of technology has seen research focused on machine learning techniques
across numerous financial disciplines grow exponentially in recent years. This is primarily
driven by the ease with which these techniques can be developed and implemented using
tools and information that are widely available.

Modern day financial machine learning literature studies, such as the literature review
by Ruf and Wang (2020), have highlighted the extensive exploration of these techniques
in the pricing, hedging, and risk management of derivative securities. The majority of the
literature, as mentioned by Ruf and Wang (2020), has been solely focused on approximating
the prices of financial derivatives. Research on the hedging and risk management of
financial derivatives has been largely limited in comparison.

The aim of this paper is to contribute to the existing literature by showing that ANNs
can be trained to approximate the option price sensitivities of both the BS and the Piterbarg
models in a real-world setting. Multi-curve frameworks, such as the Piterbarg model, have
become increasingly relevant after the GFC, given that the effects of collateral on the price
of financial derivatives are considered. Furthermore, the out-of-sample performance of the
optimized ANNs will be evaluated using option price data sourced from the South African
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market. The South African market was specifically chosen given that there is a gap in the
current literature on the real-world financial applications of machine learning techniques.
The majority of related studies have either focused on more developed and liquid markets
or considered simulated data only.

The structure of this paper is as follows: Section 2 provides a review of recent and
relevant literature. Section 3 focuses on the theoretical frameworks of the BS and Piterbarg
models. Section 4 outlines the ANN architecture and configurations as well as the training
and test data used. Section 5 discusses the results, which is followed by the concluding
remarks in Section 6.

2. Literature Review

The use of machine learning techniques in financial applications is well-documented
in the literature and continues to be a field of keen interest. In this section, a review of
relevant literature is provided.

In the seminal paper by Hutchinson et al. (1994), a new paradigm in the pricing
and hedging of financial derivatives through the use of machine learning techniques was
explored. It was argued that the effectiveness of classical approaches, such as the BS model,
used in the pricing and hedging of financial derivatives depends on the ability to model
the dynamics of the underlying asset process. It was proposed that instead of theorizing
more complex models to capture the dynamics of a market, simple data-driven approaches,
such as ANNs, can be used to learn the dynamics of the underlying asset process as well
the relation between the underlying asset process and other observed market variables to
the price of a financial derivative.

The financial applications of machine learning techniques were further explored in
the breakthrough research by Buehler et al. (2019), where a framework for the hedging
of financial derivatives reflective of the various intricacies of real-world markets was
proposed. To address the deficiencies present in traditional market models, a deep hedging
framework was proposed which modeled trading decisions used in hedging strategies as
ANNs. Furthermore, since the deep hedging framework is data-driven, there is no need to
explicitly calculate the option price sensitivities using traditional derivative pricing models,
since these risk measures are implied within the deep hedging strategy.

The use of machine learning techniques in approximating not only the prices of
financial derivatives but also the respective option price sensitivities has been explored
in more recent research. In Ratku and Neumann (2022), it was shown that a deep feed-
forward ANN optimized to approximate the pricing function of the Heston (1993) stochastic
volatility model for European options could also be used to accurately approximate the
respective option price sensitivities. The conclusions drawn from this study were based
on a data set that was artificially generated by uniformly sampling data from a range of
input parameters.

In a similar study, Umeorah et al. (2023) approximated the closed-form solutions to the
option price and option price sensitivities of barrier options using a feed-forward ANN. The
performance of the ANN was further compared to other techniques, such as random forest
and polynomial regression. Given a simulated data set, it was found that ANNs provide
an efficient and effective alternative to complex existing approaches for pricing barrier
options and that an optimized ANN outperforms the other machine learning techniques
considered in the study.

A general shortcoming observed from the literature considered in this paper is the
fact that the numerical applications of these studies are often solely based on simulated
or artificially generated data sets. This is mostly due to a lack of sufficient option price
data needed to train data-driven techniques, such as ANNs. As a result, the out-of-
sample performance of machine learning techniques in real-world applications, especially
in illiquid financial markets, has received less attention. Additionally, a focus is often
placed on classical frameworks, such as the BS model, which do not consider the effects of
collateral on the price of derivative securities.
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Therefore, this paper aims to address these gaps in the existing literature by evaluating
the out-of-sample performance of ANNs in approximating the option price sensitivities
in both a classical BS and multi-curve framework, such as the Piterbarg model, using
option price data sourced from the South African market. The methodology of this paper is
outlined in the next section.

3. Methodology

In this section, a brief overview is provided on the theory underpinning the BS and
Piterbarg models. It is, however, useful to first define the respective option price sensitivities
that form the basis of this paper.

3.1. Option Greeks

Option price sensitivities or Greeks are extensively used by financial practitioners,
such as traders, to monitor and manage the risk in a trading position, where each option
Greek as described by Hull (2009) is used to capture a specific dimension of risk to a
position. More formally, the option Greeks can be seen as the partial derivatives of the
value of the option with respect to the parameters that the value is derived from. The
option Greeks considered in this study based on the definitions by Leoni (2014) can be
described in a general sense ignoring time subscripts as follows:

3.1.1. Delta

Delta ∆ is the sensitivity of the option price V with respect to changes in the value of
the underlying asset S:

∆ =
∂V
∂S

,

and is the amount of the underlying asset that should be traded to hedge the option position.
Delta ranges from 0 to 1 for European call options and from 0 to −1 for European put
options. The Delta of an out-of-the-money (OTM) European call option is close to 0 since it
is unlikely that the option will be exercised by the holder and close to 1 for an in-the-money
(ITM) European call option, therefore requiring a full hedge of the option position.

3.1.2. Gamma and Dollar Gamma

Gamma Γ is a second-order partial derivative and measures the sensitivity of Delta
with respect to changes in the value of the underlying asset:

Γ =
∂2V
∂S2 ,

and is positive for both European call and put options. The Gamma of a European call
option is largest for at-the-money (ATM) options since Delta is most sensitive around this
point, and tends to flatten out for OTM and ITM options. A useful simplification made
in this paper to avoid dealing with minuscule or zero-valued outputs when training the
ANNs to approximate Gamma is to consider Dollar Gamma $Γ throughout this paper
which is given by:

$Γ =
ΓS2

100
.

3.1.3. Vega

Vega ν measures the sensitivity of the option price with respect to changes in the
implied volatility σ of the underlying asset:

ν =
∂V
∂σ

,
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and is positive for both European call and put options. Vega tends to increase as the time
to maturity of the option increases, especially for an ATM option given that there is more
uncertainty around whether the option will be ITM or OTM at maturity. Vega tends toward
zero for ITM and OTM options as the option reaches maturity given that large moves in
the underlying price are less likely given the shorter time frame.

3.1.4. Theta

Theta Θ measures the sensitivity of the option price with respect to changes in the
passage of time t:

Θ =
∂V
∂t

,

and is typically negative for both European call and put options given that an option
loses value as it approaches maturity. Theta is greatest (smallest) for an ATM option near
maturity and approaches zero for OTM options given that it is less likely for an OTM option
to gain value over time.

3.1.5. Rho

Rho ρ measures the sensitivity of the option price with respect to changes in the
interest rate r:

ρ =
∂V
∂r

,

and is typically viewed as one of the option Greeks of lesser importance given that the
value of an option is less sensitive to changes in interest rates compared to changes in the
other pricing parameters. This holds true since changes in interest rates are typically small
and less frequent. Rho is positive for European call options and negative for European
put options. The next section presents the theory underlying the BS model as well as the
explicit solutions of the respective option Greeks.

3.2. The Black–Scholes Model

Black and Scholes (1973), through their seminal paper, introduced the BS model for
the valuation of European options under the assumption of a complete and frictionless
market. Under these assumptions, the value of a European option only depends on the
price of the underlying S, the time t, and other known constant variables, such as the strike
price K, the unique risk-free rate r, and the implied volatility σBS. The partial differential
equation (PDE) for a European call option on a non-dividend paying stock is derived by
constructing a self-financing portfolio and is given by:

∂V
∂t

+ rS
∂V
∂S

+
1
2

σ2
BSS2 ∂2V

∂S2 = Vr. (1)

The closed-form solution to the PDE in Equation (1) for the value of a European call
option at time t exists and is given by:

VBS(St, t) = StΦ(d1)− Ke−r(T−t)Φ(d2), (2)

where

d1 =
ln
(

St
K

)
+

(
r + 1

2 σ2
BS

)
(T − t)

σBS
√

T − t
, (3)

d2 = d1 − σBS
√

T − t, (4)
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and Φ(·) is the cumulative distribution function of the standard normal distribution. Given
the closed-form solution for the value of a European call option in Equation (2), the explicit
solutions of the respective option Greeks are given by:

∆BS =
∂VBS(t)

∂St
= Φ(d1),

ΓBS =
∂2VBS(t)

∂S2
t

=
ϕ(d1)

StσBS
√

T − t
,

νBS =
∂VBS(t)

∂σBS
= St

√
T − tϕ(d1),

ΘBS =
∂VBS(t)

∂t
= −Stϕ(d1)σBS

2
√

T − t
− rKe−r(T−t)Φ(d2),

ρBS =
∂VBS(t)

∂r
= K(T − t)e−r(T−t)Φ(d2),

where ϕ(·) is the probability density function of the standard normal distribution and d1
and d2 are given by Equations (3) and (4).

3.3. The Piterbarg Model

Piterbarg (2010) introduced an extension to the classical BS model which relaxes the
assumption that parties can borrow and lend at a unique risk-free rate. Under the Piterbarg
model, the effects of collateral on the price of a financial derivative is incorporated into a
valuation framework through the introduction of three deterministic interest rates, namely,
the collateral rate rC, the repurchase agreement rate rS

R, and the funding rate rF, where the
following relationship holds:

rC ≤ rS
R ≤ rF. (5)

As stated by Hunzinger and Labuschagne (2015) in the context of the inequality in
Equation (5), if a trade is collateralized, then future expected cash flows are discounted off
the collateral curve. On the contrary, if a trade is not collateralized, then future expected
cash flows are discounted off the funding curve to appropriately reflect the credit riskiness
of the trade. This makes intuitive sense given that collateral is used to mitigate counterparty
credit risk in over-the-counter (OTC) trades. The Piterbarg PDE, which incorporates the
presence of collateral C is derived by constructing a self-financing portfolio and is given by:

∂V
∂t

+ rS
RS

∂V
∂S

+
1
2

σ2
pS2 ∂2V

∂S2 = VrF − C(rF − rC). (6)

Based on the work by von Boetticher (2017), it was shown that a closed-form solution
for a zero collateral (ZC) European call option, where no collateral is posted, and a fully
collateralized (FC) European call option, where the collateral posted is equal to the value of
the derivative, can be derived from the PDE in Equation (6). If interest rates are assumed to
be constant, then it follows that:

VZC(St, t) = e−rF(T−t)
(

SterS
R(T−t)Φ(d1)− KΦ(d2)

)
, (7)

and

VFC(St, t) = e−rC(T−t)
(

SterS
R(T−t)Φ(d1)− KΦ(d2)

)
, (8)

where

d1 =
ln
(

St
K

)
+

(
rS

R + 1
2 σ2

P

)
(T − t)

σP
√

T − t
, (9)

d2 = d1 − σP
√

T − t. (10)
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The explicit solutions to the respective option Greeks for ZC and FC European call
options assuming constant interest rates based on the derivations by Labuschagne and
von Boetticher (2017) are presented below. It should be noted that Rho under the Piterbarg
model for the purposes of this paper is expressed with respect to the repurchase rate only.

The explicit solutions of the option Greeks considered in this paper for a ZC European
call option derived from Equation (7) are of the form:

∆ZC =
∂VZC(t)

∂St
= e−(rF−rS

R)(T−t)Φ(d1),

ΓZC =
∂2VZC(t)

∂S2
t

=
1

Stσp
√

T − t
e−(rF−rS

R)(T−t)ϕ(d1),

νZC =
∂VZC(t)

∂σp
= e−rF(T−t)Kϕ(d2)

√
T − t,

ΘZC =
∂VZC(t)

∂t
= e−(rF−rS

R)(T−t)
(

rF(t)− rS
R(t)

)
StΦ(d1)

− e−rF(T−t)
(

KΦ(d2)rF(t) + Kϕ(d2)
σp

2
√

T − t

)
,

ρZC =
∂VZC(t)

∂rS
R

= e−(rF−rS
R)(T−t)St(T − t)Φ(d1).

Similarly, in the case of an FC European call option, the explicit solutions of the
respective option Greeks derived from Equation (8) are of the form:

∆FC =
∂VFC(t)

∂St
= e−(rC−rS

R)(T−t)Φ(d1),

ΓFC =
∂2VFC(t)

∂S2
t

=
1

Stσp
√

T − t
e−(rC−rS

R)(T−t)ϕ(d1),

νFC =
∂VFC(t)

∂σp
= e−rC(T−t)Kϕ(d2)

√
T − t,

ΘFC =
∂VFC(t)

∂t
= e−(rC−rS

R)(T−t)
(

rC(t)− rS
R(t)

)
StΦ(d1)

− e−rC(T−t)
(

KΦ(d2)rC(t) + Kϕ(d2)
σp

2
√

T − t

)
,

ρZC =
∂VFC(t)

∂rS
R

= e−(rC−rS
R)(T−t)St(T − t)Φ(d1),

where d1 and d2 are given by Equations (9) and (10). In the next section, the general ANN
architecture and configuration is discussed and an overview of the training and test data
considered in this paper is provided.

4. Data and Network Architecture

The following section discusses the general ANN architecture and specifications and
provides an overview of the procedure to generate artificial option price data for training
the ANNs used to approximate the respective option Greeks under the BS and Piterbarg
models. This section also elaborates on the construction of an implied volatility surface
using option price data from the South African market, which will serve as the test data
set to evaluate the out-of-sample performance of the optimized ANNs under the BS and
Piterbarg models.

4.1. ANN Architecture and Configuration

In this section, the chosen ANN architecture and hyper-parameter configurations
for the BS and Piterbarg option Greek ANNs are discussed. The respective ANNs were
implemented in Python using the Keras Application Programming Interface (API) based
on TensorFlow 2.0 developed by Chollet (2015).
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For the purposes of this paper, the ANN architecture and hyper-parameters were
configured with an eye toward keeping the ANN structure and hyper-parameter config-
uration as standard as possible. It is worth mentioning that according to the universal
approximation theorem by Cybenko (1989) and Hornik et al. (1989), a single hidden layer
feed-forward ANN with a continuous non-linear activation function can approximate
any continuous function. Therefore, as long as the chosen activation functions within a
feed-forward ANN are suitable for the problem at hand, a standard ANN structure in terms
of the number of hidden layers and neurons per hidden layer will suffice. The general
ANN architecture and configurations are outlined in Table 1.

Table 1. General ANN Greek configuration.

Parameter Delta Dollar Gamma Vega Theta Rho

Hidden layers 4 4 4 4 4
Neurons per hidden layer 256 256 256 256 256
Neurons in output layer 1 1 1 1 1
Hidden activation function ReLU ReLU ReLU ReLU ReLU
Output activation function Sigmoid 1 Softplus Softplus Linear Softplus
Optimiser Adam Adam Adam Adam Adam
Batch size 64 64 64 64 64
Epochs 50 50 50 50 50
Loss function MAE MAE MAE MAE MAE
Early stopping Yes Yes Yes Yes Yes

1 The Softplus function was used to approximate the Delta of a FC European call option.

From Table 1, it can be seen that the same ANN architecture was applied to approxi-
mate each Greek, with only slight differences in the choice of the output activation function.
For example, the Delta of a European call option under the BS model is between 0 and 1;
therefore, to use the sigmoid function in the output layer helps restrict output values to this
desired domain. The Delta of an FC European call option can, however, be slightly greater
than 1 due to the fact that a European call option that is fully collateralized is discounted
using the collateral rate which is lower than the repurchase agreement rate. The Softplus
function is, therefore, an ideal output activation function to ensure that outputs are positive
given its non-zero-centered property and not bounded from above. Finally, a linear output
activation function was selected for ANNs approximating Theta under both theoretical
frameworks due to its zero-centered property which can output negative values that are
not restricted to a specific domain. The mean absolute error (MAE) was selected as the loss
function when fitting the respective ANNs due to the fact that the MAE is more robust to
noisy data when outliers are present in the artificially generated training data. Given the
rather noisy artificially generated data and the non-linear profiles of the respective option
Greeks, it was observed during the initial testing that the MAE resulted in more stable
performance compared to the mean squared error (MSE). The next section provides an
overview of the training and test data considered in this paper.

4.2. Training and Test Data

It is a known fact that option price data are scarce in emerging markets, such as South
Africa, due to these markets being illiquid compared to other more developed markets. To
address this limitation, option price data were artificially generated to train and validate
the ANNs. Artificial data sets consisting of 2,000,000 samples were generated by uniformly
sampling data from a wide range of input parameter ranges. The parameter ranges used to
generate data for training the BS ANN Greeks are outlined in Table 2.
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Table 2. Black–Scholes model input parameter ranges.

Parameter Range

Moneyness (K/S) 0.25–2.00
Time to maturity (T − t) 7/365–3.50
Risk-free rate (r) 3.00–35.00%
Implied volatility (σBS) 2.00–80.00%

Similarly, the training data for the Piterbarg ANN Greeks were generated from the
parameter ranges outlined in Table 3.

Table 3. Piterbarg model input parameter ranges.

Parameter Range

Moneyness (K/S) 0.25–2.00
Time to maturity (T − t) 7/365–3.50
Repurchase agreement rate (rS

R) 3.00–35.00%
Collateral rate (rC) 60.00–80.00% of rS

R
Funding rate (rF) 120.00–140.00% of rS

R
Implied volatility (σp) 2.00–80.00%

From the respective artificially generated data sets, 80% of the generated samples were
used as the training set, and the remaining 20% of the generated samples were used as the
validation set. Given that spot and strike prices are required to calculate the sensitivity
values under the BS and Piterbarg models to serve as the output sets, the underlying spot
price of the JSE Top 40 Index equal to R51 564.09 as at 9 April 2019 was used to convert the
moneyness ratio (K/S) into strike prices. The test set used to evaluate the out-of-sample
performance of the optimized ANN Greeks comprised JSE Top 40 European call option
price data obtained from the JSE. The option price data consisted of volatility skews from
which an implied volatility surface was constructed using linear interpolation in the strike
dimension, and linear variance interpolation in the maturity dimension. This resulted in a
granular surface comprising 10,000 implied volatility estimates, as shown in Figure 1.
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Figure 1. JSE Top 40 implied volatility surface.
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It is further assumed that the same constructed implied volatility surface is used to
evaluate the out-of-sample performance of the optimized ANN Greeks under both the BS
and Piterbarg models, given that ZC and FC option price data are not available within
the South African market. Constant interest rates are further assumed with rC = 5.50%,
r = rS

R = 7.00%, and rF = 8.50%, which allows for the Piterbarg option Greeks to be
calculated analytically. The same underlying index spot price as at 9 April 2019 used for
the training and validation sets was also used as an input to the test set. The out-of-sample
performance of the optimized ANN Greeks compared to the explicit solutions of the option
Greeks under the BS and Piterbarg model is discussed in the next section.

5. Results

This section provides an overview of the results obtained by deploying the optimized
ANN Greeks to an out-of-sample test set to numerically approximate the respective option
Greeks under both the BS and Piterbarg model. This section consists of two parts: the first
part focuses on the results obtained under the BS model, whereas the second part focuses
on the ZC and FC results under the Piterbarg model.

5.1. Numerical Results: Black–Scholes Option Greeks

The optimized BS ANN Greeks were provided the test data set consisting of a con-
structed implied volatility surface as well as the other test set inputs, which were then
used to generate JSE Top 40 European call option Greek surfaces. The sensitivity values
generated by the BS ANN Greeks were then benchmarked against the values obtained
using the explicit solutions to these option Greeks under the BS model. The performance of
the BS ANN Greeks compared to the explicit solutions are detailed in Table 4.

Table 4. BS ANN Greek error metrics.

Greek MAE MAPE R2

Delta 0.001960 0.988138% 0.999911
Dollar Gamma 9.410143 2.312544% 0.999331
Vega 74.368062 1.083190% 0.999863
Theta 23.146617 0.978941% 0.999080
Rho 76.742017 1.504959% 0.999962

From Table 4, it can be seen that the BS ANN Greeks were able to approximate
the explicit solutions to the BS Greeks very well, as highlighted by the respective error
metrics. A graphical overview of the overall performance of the respective BS ANN Greeks
in approximating the option Greeks of JSE Top 40 European call options is provided in
Figures 2–6.

In the next section, the out-of-sample performance of the optimized ANNs in approxi-
mating the option Greeks under the Piterbarg model is evaluated.
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Figure 2. JSE Top 40 European call option Delta. (a) Delta surface: Black–Scholes; (b) Delta surface:
ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency of errors.
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Figure 3. JSE Top 40 European call option Dollar Gamma. (a) Dollar Gamma surface: Black–Scholes;
(b) Dollar Gamma surface: ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted;
(f) Frequency of errors.
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Figure 4. JSE Top 40 European call option Vega. (a) Vega surface: Black–Scholes; (b) Vega surface:
ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency of errors.
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Figure 5. JSE Top 40 European call option Theta. (a) Theta surface: Black–Scholes; (b) Theta surface:
ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency of errors.
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Figure 6. JSE Top 40 European call option Rho. (a) Rho surface: Black–Scholes; (b) Rho surface: ANN;
(c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency of errors.
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5.2. Numerical Results: Piterbarg Option Greeks

In this section, the performance of the optimized ZC and FC ANN Greeks is evaluated.
The sensitivity values generated by the ZC and FC ANN Greeks were compared to the
values obtained using the explicit solutions to the option Greeks under the Piterbarg model.
The out-of-sample performance of the ZC and FC ANN Greeks compared to the explicit
solutions under the Piterbarg model are detailed in Table 5.

Table 5. Piterbarg ANN Greek error metrics.

Greek MAE MAPE R2

ZC Delta 0.002313 0.886302% 0.999876
FC Delta 0.002467 0.901067% 0.999853
ZC Dollar Gamma 6.993475 1.369866% 0.999402
FC Dollar Gamma 7.523029 1.525594% 0.999246
ZC Vega 91.628587 1.390869% 0.999767
FC Vega 97.614717 1.537854% 0.999720
ZC Theta 18.890212 0.945713% 0.999191
FC Theta 24.170855 0.976136% 0.998857
ZC Rho 191.633702 3.312146% 0.999901
FC Rho 157.464666 2.528751% 0.999922

From Table 5, similar conclusions as for the BS model in Table 4 can be made, therefore
highlighting that ANNs can also approximate the option Greeks in a multi-curve frame-
work, such as the Piterbarg model, with a high degree of accuracy. The out-of-sample
performance of the ZC and FC ANN Greeks is graphically illustrated in Figures 7–16 and
the findings of this paper are concluded in the next section.
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Figure 7. JSE Top 40 zero collateral call option Delta. (a) Delta surface: Zero collateral; (b) Delta
surface: ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency
of errors.
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Figure 8. JSE Top 40 fully collateralized call option Delta. (a) Delta surface: Fully collateralized;
(b) Delta surface: ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency
of errors.
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Figure 9. JSE Top 40 zero collateral call option Dollar Gamma. (a) Dollar Gamma surface: Zero
collateral; (b) Dollar Gamma surface: ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs.
predicted; (f) Frequency of errors.
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Figure 10. JSE Top 40 fully collateralized call option Dollar Gamma. (a) Dollar Gamma surface: Fully
collateralized; (b) Dollar Gamma surface: ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs.
predicted; (f) Frequency of errors.
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Figure 11. JSE Top 40 zero collateral call option Vega. (a) Vega surface: Zero collateral; (b) Vega
surface: ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency
of errors.
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Figure 12. JSE Top 40 fully collateralized call option Vega. (a) Vega surface: Fully collateralized;
(b) Vega surface: ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency
of errors.
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Figure 13. JSE Top 40 zero collateral call option Theta. (a) Theta surface: Zero collateral; (b) Theta
surface: ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency
of errors.
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Figure 14. JSE Top 40 fully collateralized call option Theta. (a) Theta surface: Fully collateralized;
(b) Theta surface: ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency
of errors.
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Figure 15. JSE Top 40 zero collateral call option Rho. (a) Rho surface: Zero collateral; (b) Rho surface:
ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency of errors.
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Figure 16. JSE Top 40 fully collateralized call option Rho. (a) Rho surface: Fully collateralized;
(b) Rho surface: ANN; (c) Absolute error; (d) Percentage error; (e) Actual vs. predicted; (f) Frequency
of errors.

6. Conclusions

The purpose of this paper was to build upon the existing financial machine learning
literature by extending the use of machine learning techniques, such as ANNs, to the
approximation of option price sensitivities in a BS and multi-curve framework, such as
the Piterbarg model, that incorporates the effects of collateral on the price of a financial
derivative. It was found that ANNs are able to approximate the respective option price
sensitivities under the BS and Piterbarg models with a high degree of accuracy in a real-
world out-of-sample application to the South African market.

The conclusions drawn from this paper are consistent with the observations made by
Ratku and Neumann (2022) as well as Umeorah et al. (2023), and indicate that machine
learning techniques, such as ANNs, can be utilized as an alternative data-driven approach
to approximate the first- and second-order option price sensitivities. The results further
highlight that even in the absence of sufficient option price data, especially in illiquid
markets, such as South Africa, it is still possible to optimize ANNs on artificial training data
and obtain satisfactory out-of-sample performance in a real-world setting. This is especially
promising given that the approach used in this paper to generate artificial training data
was fairly standard.

Areas of further research include exploring feasible solutions to the lack of repre-
sentative training data in illiquid markets. Given that machine learning techniques are
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data-driven, it is pivotal to address this fundamental issue before we see the adoption of
complex real-world applications that will undoubtedly redefine how financial markets
interact in future.
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