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Abstract: In this paper, we utilize a machine learning model (the convolutional neural network) to
analyze aerial images of winter hard red wheat planted areas and cloud coverage over the planted
areas as a proxy for future yield forecasts. We trained our model to forecast the futures price 20 days
ahead and provide recommendations for either a long or short position on wheat futures. Our method
shows that achieving positive alpha within a short time window is possible if the algorithm and
data choice are unique. However, the model’s performance can deteriorate quickly if the input data
become more easily available and/or the trading strategy becomes crowded, as was the case with the
aerial imagery we utilized in this paper.

Keywords: machine learning; convolutional neural network; futures price forecasting; commodity
futures

JEL Classification: G11; G13; G17

1. Introduction

Wheat is one of the most important cereal crops grown in many parts of the world.
The price of wheat is influenced by two major factors: demand and supply. On the demand
side, economic cycles and population growth both play major roles. On the supply side,
total areas of crops planted, conditions, and geopolitical tensions all have major impacts on
crop yields. Most agriculture futures price forecasts are based on econometric models using
World Agriculture Supply and Demand Estimates (WASDE) projections (see Meyer 1998;
Hoffman and Balagtas 1999; Goodwin and Schnepf 2000; Hoffman 2005; Hoffman et al.
2007; Adjemian 2012; Adjemain and Smith 2012; Hoffman et al. 2015; Hoffman and Meyer
2018; Isengildina-Massa and MacDonald 2009). Because the WASDE projections are widely
used in the industry, the efficient market hypothesis (Fama 1970) suggests that it would
be impossible to generate excess returns with WASDE data. In this paper, we explore an
alternative method by using aerial imagery of the planted areas of a specific crop to forecast
its future yield (and thus prices). We found that the use of an alternative method could
yield positive returns in a short time window. However, the profitable trading algorithm
could lose its advantage quickly if the data become more widely accessible.

With the advancements in deep learning architectures and computing powers, it is
possible to train machine learning models with a large number of images efficiently and
effectively so that they can capture hidden features that are difficult to detect by humans. In
this paper, we utilize satellite imagery of wheat fields combined with weather imagery to
generate a trading rule for wheat futures. The trading rule is a simple long or short position
for 20 days at the beginning of the month (often correlated with rolls). If the model is
correct, the trading rule will yield excess returns. Using data from 1984 to 2023, our model
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produces excellent in-sample results (the training set), with an annual return of 24.12%
unleveraged, and relatively modest results for out-of-sample results (the holdout set) until
2018. The performance of the model deteriorated rapidly after 2018, which coincides with
the start of Airbus and other satellite imagery companies providing the real-time images
used in our model to hedge funds.

Our paper makes two important contributions to the existing literature. First, we
show that it is possible to use image data as a proxy for fundamentals in forecasting the
prices of agricultural commodities. In order to use image data in machine learning, a
convolutional neural network (CNN) must be utilized. The use of a CNN to analyze
fundamentals rather than using it as an augmentation tool is also a new approach. Aerial
images are less costly to collect than WASDE data. Allowing machine learning models to
interpret data can improve the accuracy of forecasts compared to using data summarized
by humans such as the WASDE. Liu et al. (2021) also show that combining time series
data and other fundamental data can improve the forecasting performance of ML models.
Second, we utilize live trading as part of the out-of-sample dataset for our paper. While the
use of live data to trade makes it impossible to replicate the results from our out-of-sample
results, the approach is what would happen in real life if certain algorithms or models
were used to trade with live data. The existing literature on the application of machine
learning models to estimate financial asset prices only reports the model’s training accuracy
and one-period ahead out-of-sample predictions. When real trades are involved, a model
with 90% accuracy in the training and testing set could still face significant losses if the
out-of-sample data have a different distribution than the training and testing data.

Our approach shows that it is possible to achieve excess returns by utilizing alternative
data and applying image processing techniques. However, the rapid decline in model
performance as more participants access similar data highlights the risk of using machine
learning for trading strategies: the saturation of similar data and models can lead to
crowding of good trades and eroding returns.

2. Literature Review

Due to the potential for capturing non-linear relationships, the application of neural
networks in finance began as soon as the foundation models were developed. Zhang et al.
(1998) summarize the application of artificial neural networks (ANNs) in forecasting. Due
to the primitive architecture of ANNs in the 1990s and the complexity of financial data,
ANNs failed to outperform the forecasting ability of more traditional forecasting methods
such as ARIMA and GARCH-type models. Moreover, with the exception of a few papers
surveyed (such as Grudnitski and Osburn 1993; Kaastra and Boyd 1996; Kuan and Liu 1995;
Kryzanowski et al. 1993; Wong et al. 1992; Wong and Long 1995; Yu and Yan 2020), most
applications of ANNs remained in non-finance/economics areas.

Since 2014, the number of papers published that are related to the use of long short-
term memory (LSTM) architecture in financial forecasting has exploded. LSTM architecture
has been used to forecast stock market returns from around the world (Chopra and Sharma
2021; Jafar et al. 2023; Liu et al. 2021; Oukhouya and Himdi 2023; Qiu et al. 2020; Zaheer
et al. 2023), the prices of cryptocurrencies (Seabe et al. 2023), the futures market (Ly et al.
2021), and foreign exchange markets (Yıldırım et al. 2021). However, Chudziak (2023)
shows that the long-term performance of neural net-based models is generally relatively
poor. In addition to the issues of exploding or diminishing gradients during the training
process, financial time series typically have very limited data points and, as a result, are
prone to overfitting in the training process, which leads to poor out-of-sample performance
(Liu and Long 2020). The apparent good results in some of the papers mentioned above
may simply be an illusion of the overfitting issue.

Alternative models such as the hybrid fuzzy neural network (García et al. 2018), deep
ensemble-CNN-SAE (Parida et al. 2021), and CNN-BiLSTM-AM (Lu et al. 2021) seem to
have produced better results. However, these models have only been applied to forecast
the next day’s stock market prices using in-sample data. Their models will not work in
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the context of commodity markets where hedgers tend to hold positions longer than a day.
Endri et al. (2020) utilized a support vector machine (SVM) to predict the probability of a
certain company being delisted from the Malaysia Stock Exchange. While the SVM is useful
for classification purposes, its ability to predict financial asset prices is not conclusive.

Due to the poor performance and limitations of using price data alone, researchers
have investigated models focused on incorporating factors of supply and demand into
the models. Haile et al. (2016) developed an acreage response model to forecast the likely
acreages to be planted for four major crops and found that the current price can predict
future acreages planted. Their study established the link between planted areas and futures
prices. The total acreages planted is only one of the two major factors that affect future
yields, however. Weather also plays a major role. Bad weather conditions (too wet, too
cold, or too hot could all have major impacts) during planting season can have devastating
effects on future yields. Hammer et al. (2001) and Bekkerman et al. (2016) show that even
with all the advances in technology, it is no easy task to forecast the weather conditions in a
specific area when the planting season for certain crops starts.

Once the crops are planted, weather conditions until harvest play the most critical
role in determining the yield. There are a number of studies that utilize the normalized
difference vegetation index (NDVI) derived from NOAA’s advanced very high resolution
radiometer (AVHRR) and found a positive correlation between NDVI data and future crop
yields (Mkhabela and Mashinini 2005; Funk and Budde 2009). Wall et al. (2008) found
that the AVHRR-NDVI data have better explanatory power four weeks earlier than using
the cumulative moisture index (CMI) alone when forecasting the crop yields for wheat.
Mkhabela et al. (2011) show that using Moderate Resolution Imaging Spectroradiometer
(MODIS) data yield better forecasting results (up to two months ahead) than AVHRR-
NDVI data. These studies show that acreage and weather data are effective predictors of
future yields.

In this study, we utilize aerial imagery of selected wheat farms and weather conditions
(proxied by cloud coverage over the planted area) within a machine learning framework to
predict future prices for wheat. This paper explores utilizing convolutional neural networks
(CNNs) to predict the future yields and prices of wheat. There were a few studies utilizing
CNNs to predict financial asset prices prior to Nair and Hinton (2010), where the rectified
linear unit (ReLU) activation function was proposed. Before the ReLU activation function
was invented, most papers related to the use of CNNs utilized the hyperbolic tangent
(tanh) or the Sigmoid activation function (Laxmi and Kumar 2011). Both tanh and Sigmoid
functions are more computationally complex than the ReLU function. By utilizing ReLU
activations instead of Sigmoid or tanh, we can reduce training time by improving the
sparsity of the model, helping to avoid the vanishing/exploding gradient problem during
the model training process.

3. Data and Methodology

While there are many varieties of wheat grown across the world, this paper focuses
on the hard red winter (HRW) since it has the widest distribution across the USA. HRW is
used in bread, hard rolls, flatbreads, all-purpose flour, and Asian noodles.

Aerial imagery that shows cloud cover, sun elevation, and azimuth over the planted ar-
eas for HWR was pulled from the Landsat Collection 2 database through the Google Earth
Engine. More specifically, we used the following datasets:

- Landsat 1–5 MSS
- Landsat 4 TM
- Landsat 5 TM
- Landsat 7 ETM+
- Landsat 8 OLI/TIRS
- Landsat 9 OLI-2/TIRS-2

Much of the historical data are trained on Landsat 5 and 8 starting from 1984 and
continuing to the end of the study period. The dataset containing Landsat 9 images (which
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is available after late 2021) was used in the test set to check whether the models are robust
(if they have high variance issues).

Figure 1 shows the general areas where HRW is planted. We used the Landsat 8 and
Landsat 5 satellites to show cloud covers in this area.
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Figure 2 shows the Google Earth Image without cloud cover and the same location
with varying levels of cloud cover.
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In addition to the planting data, we also collected special weather features. These
features are:

- Cloud cover: Percentage of the sample that is obscured by clouds.
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- Sun elevation: A single value for the Sun’s elevation (in degrees) above the horizon at
the time of image acquisition. This is also normalized between 0–1.

- Sun azimuth: The horizontal angle between the sun and a reference direction, usually
north. This defines the Sun’s relative direction along the local horizon. The azimuth
angle ranges from −180◦ (south) to −90◦ (west) to 0◦ (north) to 90◦ (east) and back to
180◦ (south). This is normalized to a value between 0 to 1.

Wheat futures data were collected from the Chicago Mercantile Exchange. We collected
the price data from 1984 onward to match our imagery data time frame. When simulating
trades, we utilized the front-month contract price at the close of each trading day.

We combined the image data with the front future and predicted the future price
20 trading days ahead. The model predicts the direction of the future price 20 days into the
future and takes a long position if the model predicts that the price will go up and takes
a short position if it predicts that prices will go down from the current futures price. We
chose the 20-day time window to avoid the price effects of futures contract rolling practices,
which occur on the third Friday of each month, before the 20-day window.

3.1. Data Preparation and Model Selection

To improve the model generalizability of the data, we segmented the images in our
dataset with image transformations. Many images can appear to be strikingly similar due to
inconsistent capturing conditions and vast homogenous landscapes. Image augmentations
prove instrumental when working with imperfect or small datasets. The process can
amplify the dataset size and strengthen model robustness by providing variety in the
images. This provides robustness against frequently encountered real-world imperfections
of aerial imagery captures such as inconsistent lighting or orientation distortions. Moreover,
augmentations provide a cost-effective alternative to extensive aerial recaptures. The
following augmentations were performed on all the images in our dataset.

Applying Transformations to Improve Model Generalizability

Satellite imagery often suffers from distortions and artifacts due to atmospheric con-
ditions, sensor limitations, and processing anomalies. To counter these challenges and
enhance the generalization capability of our model to new, unseen data, we implemented
a series of programmatic image transformations. These transformations equip the model
to handle a diverse array of real-world scenarios more effectively. Since manually curat-
ing and adjusting each image is impractical, automated transformations offer a scalable
solution to improve our model’s performance.

More specifically, we applied the following transformations:

• Translation: To mimic positional variances.
• Rotation: To account for changes in orientation.
• Scaling: To simulate different zoom levels.
• Noise injection: To represent sensor and environmental noise.
• Random cropping: To generate variability in scene composition.

Each transformation addresses a specific type of variability or distortion that can occur
in satellite imagery, thus preparing our model to generalize well across different conditions
and geographical areas. For example, noise injection helps the model remain robust against
grainy or pixelated images while scaling ensures that it can interpret features of varying
sizes effectively.

By automating the application of these transformations, we significantly enhance the
model’s ability to generalize from the training data to real-world scenarios, a crucial step
for achieving reliable and accurate predictions from satellite imagery.

3.2. Selection of Model Architecture

Our model was built by feeding multiple picture inputs before a specified time to
predict the direction (up or down) of a wheat futures price. Images are randomly selected
nearest and prior to the time of the future for a given region. For example, if an image of
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an area has a timestamp at 6:45 p.m. (when the data are published), we obtain the time
series inputs (in images) of the same area before that time. This model utilizes images from
multiple regions throughout North America. Figure 3 shows the different regions for the
images (up to a maximum of 50 regions used).

J. Risk Financial Manag. 2024, 17, x FOR PEER REVIEW 6 of 15 
 

 

nearest and prior to the time of the future for a given region. For example, if an image of 
an area has a timestamp at 6:45 p.m. (when the data are published), we obtain the time 
series inputs (in images) of the same area before that time. This model utilizes images from 
multiple regions throughout North America. Figure 3 shows the different regions for the 
images (up to a maximum of 50 regions used).  

 
Figure 3. Regional ,map of the US where the aerial images were obtained. 

To keep the model simple to visualize, let us use an example of this model using 2 
picture inputs (see Figure 4). These inputs use a standard convolution with a ReLU activa-
tion function and maxpooling (Conv + pool). To mimic a mobile net architecture, we exper-
imented with different models’ multiple layers of convolution and pooling. In practice, mul-
tiple picture inputs are utilized. Each image has two convolutional layers (kernel 3, stride 
1, and padding 1), with two max-pooling layers, and ReLU activations. 

In parallel, we fed alternative data (cloud cover, sun elevation, previous wheat prices, 
etc.) into a tabular format. This was fed into a dense net. All these models were put into a 
single vector combined for a single prediction. There is a linear dense layer for this vector.  

A dense network was finally used to combine the final vectors. This was carried out 
so that each part could be learned and to give region-specific performance, and alternative 
data could be supplemented and learned to predict a final feature. This is similar to how 
multi-modal models are built in other stacks so each one can learn a feature and that fea-
ture can be used to explain and provide weights. Since this prediction layer is only a single 
layer deep, you can obtain the feature contributions.  

We used the ReLU activation function instead of the sigmoid or tanh activation func-
tions due to its much better training speed. ReLU is computationally more efficient than 
sigmoid and tanh because it only requires simple thresholding at zero, allowing models to 
train faster with fewer computational resources. ReLU activation can also lead to sparsity. 
When the output is zero, it is essentially ignoring that particular neuron, leading to sparse 
representation. Sparsity is beneficial because it makes the network easier to optimize and 
can lead to a more efficient model. 

Figure 3. Regional, map of the US where the aerial images were obtained.

To keep the model simple to visualize, let us use an example of this model using
2 picture inputs (see Figure 4). These inputs use a standard convolution with a ReLU
activation function and maxpooling (Conv + pool). To mimic a mobile net architecture,
we experimented with different models’ multiple layers of convolution and pooling. In
practice, multiple picture inputs are utilized. Each image has two convolutional layers
(kernel 3, stride 1, and padding 1), with two max-pooling layers, and ReLU activations.

In parallel, we fed alternative data (cloud cover, sun elevation, previous wheat prices,
etc.) into a tabular format. This was fed into a dense net. All these models were put into a
single vector combined for a single prediction. There is a linear dense layer for this vector.

A dense network was finally used to combine the final vectors. This was carried out
so that each part could be learned and to give region-specific performance, and alternative
data could be supplemented and learned to predict a final feature. This is similar to how
multi-modal models are built in other stacks so each one can learn a feature and that feature
can be used to explain and provide weights. Since this prediction layer is only a single
layer deep, you can obtain the feature contributions.

We used the ReLU activation function instead of the sigmoid or tanh activation
functions due to its much better training speed. ReLU is computationally more efficient
than sigmoid and tanh because it only requires simple thresholding at zero, allowing
models to train faster with fewer computational resources. ReLU activation can also lead to
sparsity. When the output is zero, it is essentially ignoring that particular neuron, leading to
sparse representation. Sparsity is beneficial because it makes the network easier to optimize
and can lead to a more efficient model.
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Figure 4. Model architecture. The goal of the model architecture is to break down the images into
their own individual networks (i.e., image 1 has a simplified mobile net architecture, image 2, etc.)
until you reach n images. This corresponds to the number of regions within North America. This
means that the images and their architectures can go up to 50. The alternative data are combined
with a dense network and then, all of the features are combined (technically concatenated), and then,
a dense network is run to combine the vectors.

3.3. Setting Model Objectives and Performing the Tasks

The objective of our model is to predict the underlying return 20 trading days ahead
each month. This means we will either take a long position or a short position. Note that
we are not training the model to predict crop yields (thus no crop yield/harvest data are
needed). Instead, we want the model to predict future prices of wheat 20 trading days
ahead each month. Since crop yield and futures price have a strong relationship, our model
is simply trained to learn this latent feature.

Model Performance and Hyperparameter Testing

Figure 5 shows the model’s performance in terms of training accuracy. Figures 6 and 7
show the results of hyperparameter tuning of the model.
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From the hyperparameter tests we performed, we selected a model with two layers of
non-linearity, 100 epochs trained, and 25 regions within North America (codes provided in
the Appendix A). We split the data into two sets: the training set (in-sample data) contains
a data sample covering 1984–2004, and the testing set (out-of-sample data) contains data
covering 2004–2014. The 67%/33% split of the data could help reduce the potential of
overfitting when training the model. We will use an accuracy metric (number of correct
predictions/total number of predictions) to measure the performance of the model first.
We then evaluated the performance of the training set and testing set using a common
measure used in investment management, the profits and losses (PNL) measure. The PNL
measure is a better performance measure for models involving trading with live data. The
reason is that a model with 90% accuracy could continue to roll the profit into trade and
lose everything in one bad trade.

4. Results

Traditionally, machine learning evaluation methods consist of dividing the data into
three subsets: the training set, the testing set, and the holdout set. In this paper, we took the
historical data from 1984 to 2014 as the training and testing set. The holdout set is derived
from trading with live data using the model we selected. The holdout set is from 2014
onward and is considered the out-of-sample set. Table 1 summarizes the profit and losses
(PNL) results of the model.

Table 1. PNL values for the training set and the testing set.

Metric Value

Average Train PNL 2.01% monthly
Average Test PNL 1.01% monthly

Standard Deviation Train PNL 6.2% monthly
Standard Deviation Test PNL 6.6% monthly

Sharpe Ratio Train PNL 1.12
Sharpe Ratio Test PNL 0.54

The result shows that the model performs well for the in-sample sets. Both the training
set and the testing set produce positive average monthly returns. The decline in PNL for
the testing set coincides with the increased financialization of the commodity markets
(Chan et al. 2015). We observed a similar negative impact from increases in participations
on returns when we used the model to trade with live data.

4.1. Robustness Test of the Model with Live Data

One of the major issues found in most other studies related to financial data forecasting
is that those models might perform well in sample but perform poorly out of sample because
the distribution of the out-of-sample data might be completely different from the in-sample
data distribution. To test the robustness of our model, we utilized an approach not common
in the finance literature: we tested the model’s performance by trading with real-time data
and real funds. We trained our model with data from 1984 to the end of 2003 as the training
set and data from 2004 to the end of 2013 as the testing set. We also had an initial holdout
set (out-of-sample set) from 2014 to the end of 2015. We then instructed the model to start
trading live in 2016. The results are shown in Figure 8.

As the results indicate, the performance of the testing set is not as good as the training
set. The average monthly PNL is only half of the results for the training set (Table 1).
This relates to the drastic deterioration in the model’s performance after 2018. The model
performs well in the sample and partially out of the sample until about 2018. This is about
the same time when Airbus and other companies started selling their data in real time to
hedge funds and other traders in the industry. Most likely, more traders have utilized these
alternative datasets to make trades, resulting in lower profitability for all trades.
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When we performed live trades with the model, we experienced decays in perfor-
mance around 2018. The availability of real-time image data increases the availability of
observations in the data and could result in better model performance for those who use
the real-time data. We expect that this is likely the case. Since we observed that the model’s
performance declined (which could be due to better model performance by other traders),
we needed to run a real-time analysis looking at the distribution of returns to see when
the value of the last 12 months of returns no longer looked profitable. This was achieved
by looking at a distribution pairwise test and testing if the distribution of returns has
shifted (measured by average monthly returns). Linear returns instead of compounding
returns help highlight the model performance and drawdowns. Knowing that the model’s
performance would decay, we instructed it not to reinvest profits but to instead trade
with a fixed amount of capital. The results are shown in Figures 9 and 10. The model’s
performance in 2019 and 2020 was particularly poor. The decline in performance might be
partly due to the global economic conditions, i.e., the COVID-19 pandemic. However, the
model failed to capture the benefits of the sharp increases in wheat prices during late 2021
and 2022. The decision to abandon live trade with cumulative funds was correct.
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4.2. Robustness Test with Traditional Machine Learning Models

To test the robustness of our approach, we compared the model’s PNL performance
using more traditional machine learning methods such as support vector machine (SVM)
and multilayer perceptron (MLP). The results are shown in Table 2. The results show that
the convolutional neural network (CNN) architecture outperformed both SVM and MLP.

Table 2. PNL values for different machine learning architectures.

Metric CNN SVM MLP

Average Trained PNL 2.1% 0.52% 0.45%
Average Test PNL 1.01% −0.21% 0.25%

In summary, our results show that the use of alternative data (such as aerial images)
as proxy for fundamentals can yield excess returns for wheat futures. The ability to keep
excess return depends on the novelty of the data and machine model architecture. While
our model performed well against more traditional machine learning architectures (such as
the SVM and MLP), its advantage can deteriorate quickly in live trades if other traders have
access to better data and/or superior algorithms. Therefore, it is important to observe the
out-of-sample performance and adjust the strategy and/or trading algorithm to avoid large
losses. This is particularly important in markets with few participants and low trading
volumes such as the wheat futures market.

5. Conclusions

In this paper, we utilize a convolutional neural network to analyze aerial images of
areas of winter hard red wheat planted and cloud coverages over the panted areas as a
proxy for future yield forecasts. Because future crop yields can affect futures prices directly,
the approach we took in this paper was driven by fundamentals. We trained the model to
forecast the futures price 20 days ahead and give recommendations to either to take long or
short positions on wheat futures. Our method shows that it is possible to achieve positive
alpha within a short time window if the algorithm and data choice are unique. We also
took a unique approach to handle out-of-sample distribution by trading with real-time
(live) data. When trading with live data, the model’s performance can deteriorate quickly
if the input data become more easily available, as is the case with the aerial imagery we
utilized in this paper. Another potential contributor to the decline in performance, since
we traded with live data, is that other algorithm trading systems might be able to pick
up our approach and create additional competitions that drive prices further away from
fundamentals, leading to poor performance out of sample.
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The initial successes of our model point to the potential that this approach can be
generalized for other crops. However, the rapid decline in performance in our model due
to the improved access to the data shows the limits of algorithmic trading. If an investor
wants to maintain an excess return position, he/she must constantly innovate the algorithm
or data sources. Contrary to other studies using machine learning tools to forecast financial
time series with historical data and model accuracy above 50%, our findings suggest that
those models will likely not be able to achieve above 50% consistently when dealing with
out-of-sample data (trading with live data). In short, if the algorithm is easy to implement
and data are widely available, the efficient market hypothesis should hold.
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Appendix A 
Codes for the custom model with two image inputs. 

 

 

 

 

 

 

class CustomModel(nn.Module): 

    def __init__(self): 

        super(CustomModel, self).__init__() 

 

        # For image 1 

        self.conv1_1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) 

        self.conv2_1 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) 

        self.fc1_1 = nn.Linear( 

            32 * 64 * 64, 1 

        )  # Size after pooling layers: 2 * [256/2/2] = 64 

 

        # For image 2 

        self.conv1_2 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) 

        self.conv2_2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) 

        self.fc1_2 = nn.Linear( 

            32 * 64 * 64, 1 

        )  # Size after pooling layers: 2 * [256/2/2] = 64 

        # For vector of length 26 

        self.fc1_vec = nn.Linear(26, 1) 

        # Final dense layers 

        self.fc_final = nn.Linear(3, 3)  # Increasing output features 

        self.fc2 = nn.Linear(3, 3)  # New layer 

        self.fc3 = nn.Linear(3, 3)  # New layer 

        self.fc4 = nn.Linear(3, 1)  # New layer 

 

    def forward(self, x_img1, x_img2, x_vec): 

        # Image 1 

        x1 = F.max_pool2d(F.relu(self.conv1_1(x_img1)), 2) 

        x1 = F.max_pool2d(F.relu(self.conv2_1(x1)), 2) 

        x1 = x1.view(-1, 32 * 64 * 64) 

Commented [M1]: please confirm if the back-
gound/color/special font format need keep 
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        x1 = self.fc1_1(x1) 

        # Image 2 

        x2 = F.max_pool2d(F.relu(self.conv1_2(x_img2)), 2) 

        x2 = F.max_pool2d(F.relu(self.conv2_2(x2)), 2) 

        x2 = x2.view(-1, 32 * 64 * 64) 

        x2 = self.fc1_2(x2) 

        # Vector of length 26 

        x3 = self.fc1_vec(x_vec) 

        # Concatenating 

        x = torch.cat((x1, x2, x3), dim=1) 

        # Passing through final dense layers 

        x = F.relu(self.fc_final(x)) 

        x = F.relu(self.fc2(x)) 

        x = F.relu(self.fc3(x)) 

        x = self.fc4(x) 

 

        return x 
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