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Abstract: We clear up an ambiguity in the statement of the GRS statistic by providing the correct
formula of the GRS statistic and the first proof of its F-distribution in the general multiple-factor case.
Casual generalization of the Sharpe-ratio-based interpretation of the single-factor GRS statistic to
the multiple-portfolio case makes experts in asset pricing studies susceptible to an incorrect formula.
We illustrate the consequences of using the incorrect formulas that the ambiguity in GRS leads
to—over-rejecting and misranking asset pricing models. In addition, we suggest a new approach to
ranking models using the GRS statistic p-value.

Keywords: GRS; asset pricing; CAPM; multivariate test; portfolio efficiency; Sharpe ratio;
over-rejection; model ranking
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1. Introduction

In an influential paper, Gibbons et al. (1989) developed and analyzed a test of the
ex ante mean-variance efficiency of portfolios. This test statistic is now widely used to
evaluate asset pricing models and has also been exploited to rank competing models. For
the single factor case, Gibbons et al. (1989) carefully developed the statistic in a linear
regression model (hereafter referred to as the GRS statistic or test), derived its small-sample
F distribution, investigated its power properties, and highlighted its significance in asset
pricing theory by purveying an alternative interpretation involving the Sharpe ratio (Sharpe
1966)—the excess return to a portfolio per unit of risk (or volatility, measured by standard
deviation)—which is a key measure of portfolio efficiency. For the multiple factor case,
however, Gibbons et al. (1989, sec. 7), were ambiguous on how the statistic should be
constructed.

The solution to the portfolio optimization problem that yields the Sharpe ratio has us
estimate a variance–covariance matrix of the portfolio excess returns, but the equivalence
of the GRS statistic and the F test statistic relies on this matrix arising in the projection of
the test asset returns on the column space of the asset pricing factors, not as a variance–
covariance matrix. Unfortunately, Gibbons et al. (1989) used equivocal language to describe
this matrix, referring to it as a “variance-covariance matrix”, and this has apparently caused
confusion about the function of the GRS statistic, which is further exacerbated by the
fact that the small-sample F distribution wrongfully conjures up a degrees-of-freedom
(d.f. hereafter) adjustment that is improper in this case. This has led to the application of a
very common incorrect formula that, paradoxically, is more likely to be used by financial
economists, the experts in the field, than by someone who focuses only on the statistical
aspects of the problem.1 We find that using the incorrect formula, which we will refer to for
conciseness as Ŵ below, leads to (i) a test statistic that does not follow the F distribution
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as prescribed and over-rejects the null hypothesis of portfolio efficiency; and (ii) smaller
models often being favored over larger ones when the statistic is used to rank asset pricing
models. This error comes from mixing terms that fall out of portfolio optimization with a
statistical object that comes from the small-sample F test derivation.

The main contribution of our paper is to clear up the ambiguity in the calculation of
the GRS statistic and highlight (both theoretically and empirically) issues that arise from
the use of Ŵ and two related and popularly used statistics, one which folds in a second
degree of freedom error (we will refer to this as W̆), and the asymptotic χ2 version often
used to replace the GRS test.2 The asymptotic χ2 and W̆ implementations result in much
higher model rejection rates than the correct GRS statistic, most notably for the asymptotic
χ2 test, even with 50 years of monthly data. The use of an incorrect implementation of
the GRS statistic also results in inconsistent model rankings across Ŵ, W̆ and the correct
calculation of the GRS statistic, with 40 or even 50 years of data. Finally, we propose a
new methodology for the ranking of competing asset pricing models, making use of test
p-values rather than the raw GRS statistic values, meant to properly internalize the model
sizes. While a determination of statistically significantly different model performance
is valuable, often researchers are simply attempting to rank models. Our approach is a
computationally straightforward approach to answering this question.

We will adopt the notation in Gibbons et al. (1989, sec. 7), whenever possible. The
proofs of the theoretical results and the details of the empirical results are in the Appendix A.

2. The GRS Test for Multiple Factors

The proofs of all the claims in this section can be found in Appendix A. The problem
is to test the mean-variance efficiency of L portfolios utilizing another type of N assets
(known as test assets).

We start with a linear regression model:

r̃it = δi0 + δ′i r̃pt + η̃it, ∀i = 1, . . . , N, and t = 1, . . . , T, (1)

where r̃it denotes the excess return on test asset i in period t, the L-vector of portfolio excess
returns r̃pt serves as factors, and η̃it denotes the disturbance. Mean-variance efficiency of
the L portfolios implies (Sharpe 1964)

H0 : δi0 = 0, ∀i = 1, . . . , N. (2)

Lemma 1 (Joint F test). Let r̃p ≡
[
r̃p1, . . . , r̃pT

]′, r̄p ≡ T−1 ∑T
t=1 r̃pt, and let δ̂0 be the ordinary

least squares (OLS) estimator of δ0 ≡ (δ10, . . . , δN0)
′; also let η̂t ≡ (η̂1t, . . . , η̂Nt)

′ be the OLS
residuals of model (1). We follow Gibbons et al. (1989) to assume that the disturbance η̃t ≡
(η̃1t, . . . , η̃Nt)

′ is independent from the factors r̃pt and has a joint normal distribution3 with mean
zero and nonsingular variance–covariance matrix Σ and is iid over t. Define

Ω̃∗ ≡
1
T

T

∑
t=1

r̃pt r̃′pt, (3)

Σ̂ ≡ 1
T − L − 1

T

∑
t=1

η̂tη̂
′
t. (4)

Then, the F statistic

W̃∗ ≡
T(T − N − L)
N(T − L − 1)

(
1 − r̄′pΩ̃−1

∗ r̄p

)
δ̂′0Σ̂−1δ̂0 (5)

follows the FN,T−N−L distribution under H0.

From a purely statistical perspective, Lemma 1 is all we need for testing the implica-
tion (2) of mean-variance efficiency, which is just the usual joint F test of zero intercepts in
a linear regression system.4
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The economic interpretation of the GRS test, however, is better understood via another
implication of mean-variance efficiency—θ∗N+L, the Sharpe ratio of the optimal portfolio
consisting of the L portfolios and the N test assets, equals θ∗p, the Sharpe ratio of the L
portfolios alone (Gibbons et al. 1989).

We consider a general portfolio optimization problem that yields the Sharpe ratio. Let
r̃ denote a vector of excess returns of K assets (K ≥ 1), and let µr̃ and Ωr̃ be their ex ante
mean vector and variance–covariance matrix, respectively. Let m be the target mean excess
return and ω be a vector of K asset weights. The optimal portfolio weights ω∗ solve

min
ω

ω′Ωr̃ω, subject to ω′µr̃ = m.

The square of the Sharpe ratio of the optimal portfolio composed of these K assets, there-
fore, is

θ∗2 ≡
(

m√
ω∗′Ωr̃ω∗

)2
= µ′

r̃Ω−1
r̃ µr̃,

in which the variance–covariance matrix Ωr̃ of the K assets plays a central role. Applying
this general result twice, we obtain that

W ≡


√

1 + θ∗2
N+L√

1 + θ∗2
p

2

− 1 =
(

1 + µ′
r̃p Ω−1µr̃p

)−1
δ′0Σ−1δ0, (6)

where Ω is the variance–covariance matrix of L portfolio excess returns r̃pt and Σ is that of
the disturbances η̃t. So, W = 0 if the L portfolios are efficient, and this is the basis of the
GRS test in asset pricing theory.

Theorem 1 (Generalized GRS statistic). Define

Ω̃ ≡ 1
T

T

∑
t=1

(
r̃pt − r̄p

)(
r̃pt − r̄p

)′
=

1
T

T

∑
t=1

r̃pt r̃′pt − r̄p r̄′p (7)

and the generalized GRS statistic

W̃ ≡ T(T − N − L)
N(T − L − 1)

(
1 + r̄′pΩ̃−1r̄p

)−1
δ̂′0Σ̂−1δ̂0. (8)

Then, W̃ = W̃∗, and therefore under the conditions of Lemma 1, W̃ follows the FN,T−N−L distribu-
tion under the H0.

Theorem 1 connects the statistical perspective to the economic interpretation of the
GRS test, because W̃ equals the F statistic W̃∗ and can be regarded as a sample analog of
W—replace Ω in Equation (6) with its maximum likelihood estimator (MLE) Ω̃, Σ with its
unbiased estimator Σ̂, µr̃p with r̄p, δ0 with δ̂0, and pre-multiply the ratio T(T−N−L)

N(T−L−1) , then

one obtains W̃ in Equation (8).

Common Mistakes and Consequences

W̃ equals the original GRS statistic when L = 1. For the L > 1 case, however, Gibbons
et al. (1989, p. 1146) gave a statistic Ŵ, almost identical to W̃, but instead of Ω̃, they
prescribed “sample variance-covariance matrix” Ω̂ without giving its explicit formula.
Since the sample variance–covariance matrix customarily entails a d.f. adjustment, i.e.,

Ω̂ ≡ 1
T − 1

T

∑
t=1

(
r̃pt − r̄p

)(
r̃pt − r̄p

)′
=

T
T − 1

Ω̃, (9)
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this would cause Ŵ to differ from W̃, and therefore Theorem 1 implies that Ŵ does not
follow the FN,T−N−L distribution as prescribed.

This incorrect GRS statistic Ŵ inflicts two consequences on empirical asset pricing
studies. First, it over-rejects mean-variance efficiency when gauged against the FN,T−N−L
distribution, because the ratio between Ŵ and W̃ is always larger than 1. Second, it
misranks competing asset pricing models, because the ratio between Ŵ and W̃ tends to be
disproportionally larger for models with more factors.

The significance of the GRS statistic in recent financial studies, as Fama and French
(2015) advocate, resides in the ranking of competing asset pricing models, rather than
testing them. Using even the correct GRS statistics to rank models, albeit its portfolio
optimization interpretation, is subject to a familiar critique akin to the use of R2 for lin-
ear regression model comparison. Instead, the p-values associated with W̃ in respective
FN,T−N−L distributions are a statistically sound metric for this purpose, as they internalize
the difference in the second d.f.

The implementations of the GRS test found in popular user-defined software packages,
such as GRS.test in R and grstest and grstest2 in Stata, not only use Ω̂ when computing
the GRS statistic, but also fold in additional errors. Results for the R formula are labeled
with W̆ in the rest of this paper.

The asymptotic χ2 test is frequently recommended as an alternative of the F test. One
might think that when T is large, the d.f. issue we point out here can be circumvented
by using the asymptotic χ2 test. Unfortunately, we find that the commonly used χ2 test
statistics also over-reject for any sample size, especially if the number of test assets N or
the number of factors L is large. In addition, they erroneously favor smaller models to an
extent worse than Ŵ.

3. Empirical Results

We use portfolios of test assets borrowed from Fama and French (2015, 2016) to show
that over-rejection and misranking of Ŵ, W̆ and χ2 relative to W̃ is empirically significant,
even remarkable in many cases. To summarize our empirical findings (which are detailed
in Appendix B and below), the W̆ misapplication of the GRS statistic and the asymptotic
χ2 both result in much higher model rejection rates than the correct GRS statistic, most
notably for the asymptotic χ2 test, even with 50 years of monthly data, and also result in
scrambled model rankings, with 40 or even 50 years of data, most notably for the W̆ version
of the GRS statistic. While the F test is asymptotically equivalent to χ2, typical sample sizes
available in financial markets research are not large enough to make this approximation
innocuous. The exact F test construction is also the most conservative test, resulting in less
over-rejection of the null hypothesis when the null is correct, even with highly non-normal
return data, by measure of the bootstrap resampling experiments we perform.

In Table 1, we highlight the over-rejection issue, with five-year windows. This span
of data shows serious over-rejection of asset pricing models from the application of the
alternative formulations of the GRS test. Results for the largest number of test assets
we considered, 32, are displayed in the first three rows of the table, the results for cases
with 25 test assets follow in rows four through thirteen, the 17 test assets of the industry
portfolios follow in row fourteen, and the remaining six rows present results for sets of
10 test assets. In Table 1, we use a total of 53 five-year overlapping windows starting from
1963 and consider six different asset pricing models, meaning that we have 318 cases for
which an asset pricing model might be rejected, for each of the 19 sets of test assets.

The asymptotic χ2 statistic fares the worst relative to the correct GRS statistic among
the alternatives; it over-rejects dramatically relative to the correct GRS statistic, 50% of the
time on average, faring worse when we consider more test assets. W̆ and Ŵ over-reject
relative to the correct GRS statistic about 10% and 1% of the time on average. Ŵ is unstable
across test assets, however, with a few cases displaying close to 4% over-rejection, and
some with no over-rejection.
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Table 1. Number and proportion of cases with more rejections relative to the GRS test for five-year
windows sampled during 1963–2019, across 19 sets of test assets.

Test Assets Asymptotic W̆ Ŵ
Nb of Subsamples = 53 χ2

1% 5% 10% 1% 5% 10% 1% 5% 10%

2 × 4 × 4 MExMEBExINV 289 275 247 4 17 21 0 1 0
2 × 4 × 4 MExMEBExOP 262 246 220 4 14 18 0 0 0
2 × 4 × 4 MExOPxINV 282 238 194 10 27 28 0 3 1
5 × 5 AccrualsxME 222 218 207 7 17 31 0 0 1
5 × 5 BExME 212 191 166 8 21 20 1 0 1
5 × 5 BetaxME 229 221 204 11 16 25 0 1 0
5 × 5 MExOP 238 227 188 9 27 42 0 0 0
5 × 5 MomentumxME 210 166 124 14 29 27 0 0 0
5 × 5 NetIssuexME 216 176 147 9 29 27 0 2 2
5 × 5 RVariancexME 147 94 65 18 28 12 0 2 0
5 × 5 VariancexME 137 81 45 26 27 12 0 3 1
5 × 5 BExInv 248 259 245 4 18 16 0 2 1
5 × 5 MExInv 214 189 171 14 17 29 0 0 0
Industry 126 153 152 12 9 22 0 1 0
Book-to-Market Deciles 48 70 67 5 22 21 0 1 1
Investment Deciles 22 30 56 4 4 6 0 0 0
Momentum Deciles 56 60 66 18 14 20 1 1 1
Size Deciles 49 90 68 6 23 27 0 0 2
Operating Profitability 48 70 65 4 24 15 0 1 0
Deciles

Average 171.3 160.7 142 9.8 20.2 22.1 0.11 0.95 0.58
Proportion (%) 53.9 50.5 44.6 3.1 6.3 6.9 0.0 0.3 0.2

Notes: (1) The figures are the number of all decisions at the stated significance level for which the test statistic
rejects the model when the correct GRS statistic W̃ does not reject, out of a total of 318 possible cases, with the
exception of the last row in which the proportion is given. The sample periods of five years are sampled from July
1963 to December 2019, and the number of models tested is 6 for each window, which we sum over to obtain the
total number of over-rejections. These windows overlap, adjusted in a rolling window so that all but 1 year of
data overlaps with the next sample window. This means that there are 53 samples for the 5-year window. (2) For a
detailed description of the factor and test asset construction see Fama and French (2015, 2016).

In Table 2, we consider the model misranking among six models for each of the 53
five-year windows of Table 1. Misranking of models shows similar problems for the χ2

statistic as we saw for test rejections, with over 40% of the cases displaying misranking of
at least one asset pricing model. The W̆ statistic displays much worse performance than
test rejections, with close to 60% of the cases displaying misranking, and we see worse
performance even for the Ŵ, with close to 3% of the cases misranked.

While the typical Fama and French paper uses 40 or 50 years of data, it is also true
that much empirical work uses far less data. Gibbons et al. (1989) noted that issues of
stationarity can reasonably constrain the length of a time series used, so that “it is not
uncommon to see published work where T is around 60”, Affleck-Graves and McDonald
(1989) limited their analysis and simulations to 60 month periods, Ferson and Foerster
(1994) studied 60, 120, and 720 monthly observations in their simulation, Rouwenhorst
(1999) used five years in subsample analysis, and among recent works that exploited as
little as four or five years of data are Belimam et al. (2018) and Qin (2019). Leite et al. (2018)
used as few as 98 months of data, Lewellen et al. (2010) used 168 observations of quarterly
data, Choi et al. (2020) performed subsample stability tests using eight years of monthly
data, and many studies of emerging economy markets have used 10 to 15 years of monthly
data. See, for instance, Alhomaidi et al. (2019), Alshammari and Goto (2022), Merdad et al.
(2015), and Sha and Gao (2019).
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One takeaway from these papers is that many situations involving specialized data
(like (Sha and Gao 2019) and their exploration of mutual fund returns in China) or sub-
sample robustness checks (like Baek and Bilson 2015) are necessarily constrained to shorter
samples than fifty or even twenty years, so that the bias from an incorrectly calculated GRS
statistic becomes large.

Table 2. Number and proportion of cases with different ranking outcomes from the GRS statistic for
five-year windows sampled during 1963–2019, across 19 sets of test assets

Any Model Mis-Ranked Top Model Mis-Ranked

Test Assets W̆ Ŵ W̆ Ŵ
Nb of Subsamples = 53

2 × 4 × 4 MExMEBExINV 26 2 5 0
2 × 4 × 4 MExMEBExOP 37 1 6 0
2 × 4 × 4 MExOPxINV 31 1 12 0
5 × 5 AccrualsxME 36 1 12 0
5 × 5 BExME 26 1 7 0
5 × 5 BetaxME 31 1 10 0
5 × 5 MExOP 33 0 10 0
5 × 5 MomentumxME 33 0 14 0
5 × 5 NetIssuexME 27 4 9 2
5 × 5 RVariancexME 32 0 14 0
5 × 5 VariancexME 34 1 10 0
5 × 5 BExInv 35 3 6 0
5 × 5 MExInv 30 3 9 0
Industry 29 2 4 0
Book-to-Market Deciles 28 0 4 0
Investment Deciles 24 2 4 0
Momentum Deciles 30 2 5 0
Size Deciles 27 3 5 0
Operating Profitability 30 0 6 0
Deciles

Average 30.47 1.42 8.00 0.11
Proportion (%) 57.5 2.7 15.1 0.2

Notes: (1) The figures are the number of all misrankings by the test statistic value across models relative to the
correct GRS statistic ranking, out of a total of 53 possible cases, with the exception of the last row in which the
proportion is given. The sample periods of five years are sampled over July 1963 to December 2019, and the
number of models ranked is 6 for each window. These windows overlap, adjusted in a rolling window, so that all
but 1 year of data overlaps with the next sample window. This means that there are 53 samples for the 5-year
window. (2) For a detailed description of the factor and test asset construction see Fama and French (2015, 2016).

4. Concluding Remarks

The GRS statistic of Gibbons et al. (1989), developed to provide a test of the ex ante
mean-variance efficiency of portfolios and more recently exploited to rank competing
models, can be easily implemented incorrectly due to an ambiguity in the presentation of
the multivariate form of the test in Gibbons et al. (1989). This presentation suggests a degree-
of-freedom-adjusted unbiased variance–covariance matrix estimator Ω̂ of the portfolio
excess returns used in the small-sample GRS F test. Indeed, the portfolio optimization
problem naturally has us estimate the variance–covariance matrix Ω of the portfolio excess
returns, but the equivalence of the GRS statistic to the F test relies on Ω̃, which arises in the
projection matrix of the test asset returns on the column space of the asset pricing factors,
not as a variance–covariance matrix. Paradoxically, this error is clearly visible when turning
a blind eye to the economic interpretation of the GRS statistic and taking a purely statistical
approach. Although an unbiased estimator Ω̂ appears intuitive in the context of portfolio
optimization, it does not yield a correct small-sample exact F test.
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Further complicating this ambiguity, Cochrane (2005) presented the GRS statistic
omitting a degree-of-freedom adjustment in the calculation of the variance–covariance
matrix of the regression residuals, Σ.5 Perhaps an outcome of Cochrane (2005), there is an
implementation of the GRS statistic in an R package, which we label W̆, that omits the d.f.
adjustment when estimating Σ but fails to pre-multiply the correct ratio.6 It has also become
common in the field to ignore the F distribution completely and employ an asymptotic χ2

approximation in place of the F test.
The main results for both the asymptotic asymptotic χ2 and W̆ implementations is

much higher model rejection rates than the correct GRS statistic, most notably for the
asymptotic χ2 test, and they also result in scrambled model rankings. Further, the F
distribution is inherently pertinent to small-sample exact tests, where one should make
a point of computing the d.f. correctly. For this reason, we recommend the exact F test
construction with its attendant F distribution, for both testing and ranking of asset pricing
models. The exact F test construction is also the most conservative test, resulting in less
over-rejection of the null hypothesis when the null is correct, even with highly non-normal
return data.

Another result of this research inquiry is that we provided the first proof of the F-
distribution of this test for the general multi-factor case and we recommended a new
ranking method, making use of the p-value rather than the raw GRS statistic value. Al-
though ranking by the values of the GRS statistic has a desirable economic intuition attached
to it, the applied researcher taking advantage of this must recognize that this ranking is
statistically as unsound as favoring a regression model with the highest R2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jrfm17040168/s1.
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Appendix A. Proofs and Details for the Results in Section 2

The following two lemmas are used in the proof of Lemma 1.

Lemma A1. If a random vector Y and a random matrix W satisfy: (i) Y ∼ Nd(µ, Σ), the d
dimensional normal distribution; (ii) W ∼ Wd( f , Σ), the d × d dimensional Wishart distribution;
and (iii) Y ⊥ W. Then, given Hotelling’s T-squared defined as T2 ≡ f (Y − µ)′W−1(Y − µ), we
have F ≡ f−d+1

f d T2 ∼ Fd, f−d+1.

Lemma A2 (Sherman–Morrison formula). Suppose A is an invertible L × L matrix and u and
v are L × 1 vectors. If A + uv′ is invertible, then (A + uv′)−1 = A−1 − A−1uv′A−1

1+v′A−1u .

Lemma A1 is a standard result in multivariate statistics (see, e.g., Anderson 2003,
Theorem 5.2.2), and Lemma A2 is a standard result in linear algebra (see, e.g., Bartlett 1951,
p. 107).

https://www.mdpi.com/article/10.3390/jrfm17040168/s1
https://www.mdpi.com/article/10.3390/jrfm17040168/s1
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Proof of Lemma 1. The proof proceeds in three steps.

Step 1. In this step, we show that under the null hypothesis (2),√
T(1 − r̄′pΩ̃−1

∗ r̄p)δ̂0 ∼ NN(0, Σ), (A1)

where Ω̃∗ is defined in Equation (3).
Let ℓT denote a T × 1 vector with every element being one, and let IT denote the

T × T identity matrix. Define Pp,T = r̃p

(
r̃′p r̃p

)−1
r̃′p as the T × T projection matrix (onto the

column space of r̃p) and its T × T complement matrix Qp,T = IT − Pp,T . It is a standard
result (e.g., Hayashi 2000, pp. 18–19) that the OLS estimator of δi0 satisfies δ̂i0 − δi0 =(
ℓ′TQp,TℓT

)−1
ℓ′TQp,T η̃i, where η̃i ≡ (η̃i1, . . . , η̃iT)

′ for ∀i = 1, . . . , N. Since η̃it has a normal
distribution, and let σ2

ii denote the (i, i) entry of Σ, then it is a standard result (e.g., Hayashi

(2000, Sec. 1.3) that
√
ℓ′TQp,TℓT

(
δ̂i0 − δi0

)
∼ N1(0, σ2

ii). It then only takes some algebra to
show that √

ℓ′TQp,TℓT
(
δ̂0 − δ0

)
∼ NN(0, Σ). (A2)

Now, let us take a closer look at ℓ′TQp,TℓT :

ℓ′TQp,TℓT = ℓ′TℓT − ℓ′T r̃p

(
r̃′p r̃p

)−1
r̃′pℓT

= T −
(

T

∑
t=1

r̃′pt

)(
T

∑
t=1

r̃pt r̃′pt

)−1( T

∑
t=1

r̃pt

)

= T − T

(
1
T

T

∑
t=1

r̃′pt

)(
1
T

T

∑
t=1

r̃pt r̃′pt

)−1(
1
T

T

∑
t=1

r̃pt

)
= T(1 − r̄′pΩ̃−1

∗ r̄p). (A3)

Recall that δ0 = 0 under the null hypothesis (2), so Equation (A2) and (A3) together imply
(A1), the claim of Step 1.

Step 2. In this step, we will show that δ̂0 ⊥ Σ̂ and

(T − L − 1)Σ̂ ∼ WN(T − L − 1, Σ). (A4)

Let X = [ℓT , r̃p] denote the T × (L + 1) design matrix of Equation (1). Define the T × T
projection matrix P = X(X′X)−1X′ and its complement Q = IT − P. Let η̃ = [η̃1, . . . , η̃N ]
denote the T × N matrix of all disturbances in Equation (1). Then, by the standard results
of the OLS estimators with normal disturbances (e.g., Hayashi (2000, Sec. 1.3), we have
δ̂0 ⊥ Σ̂ and (T − L − 1)Σ̂ = ∑T

t=1 η̂tη̂
′
t = η̃′Qη̃ = η̃′UDU′η̃, where the last equality holds

by the singular value decomposition of Q, in which U is a T × T unitary matrix, and
D is a T × T diagonal matrix with T − L − 1 diagonal entries being ones and the rest
being zeros. Since we assume that the rows of η̃ are mutually independent and follow
the NN(0, Σ) distribution, the rows of U′η̃ are also mutually independent and follow
the NN(0, Σ) distribution. This further implies that η̃′UDU′η̃ has the same distribution
as such sum S = ∑T−L−1

j=1 ξ jξ
′
j, where ξ j are mutually independent and ξ j ∼ NN(0, Σ)

(j = 1, . . . , T − L − 1). By construction, the distribution of S is the Wishart distribution
WN(T − L − 1, Σ). This proves the claim of Step 2.

Step 3. In this step, we apply Lemma A1 to the results of Steps 1 and 2. After some
simple algebra, we obtain W̃∗ ∼ FN,T−N−L with W̃∗ defined in Equation (5). This completes
the proof of Lemma 1. □
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Derivation of Equation (6). Gibbons et al. (1989) derives this, in Section 6, for the L = 1
case, and here we provide the derivation for the general L ≥ 1 case. We start by considering
a general portfolio optimization problem that yields the Sharpe ratio—mean excess return
to a portfolio per unit of volatility (standard deviation)—of the optimal portfolio consisting
of given assets. Let r̃ denote a vector of excess returns of K assets (K ≥ 1), and let µr̃ and
Ωr̃ be their ex ante mean vector and variance–covariance matrix, respectively. Let m be
the target mean excess return and ω be a vector of K asset weights. The optimal portfolio
weights ω∗ solve

min
ω

ω′Ωr̃ω, subject to ω′µr̃ = m.

The first order conditions for this problems are ω∗ = φΩ−1
r̃ µr̃ and φ = m/(µ′

r̃Ω−1
r̃ µr̃),

where φ is the Lagrange multiplier. The squared Sharpe ratio of the optimal portfolio
consisting of these K assets is, therefore,

θ∗2 ≡
(

m√
ω∗′Ωr̃ω∗

)2
= µ′

r̃Ω−1
r̃ µr̃,

in which the variance–covariance matrix Ωr̃ plays a central role.
Applying this general result, we know that when the constituent assets are the L

portfolios, the squared Sharpe ratio is

θ∗2
p = µ′

r̃p Ω−1µr̃p . (A5)

When the constituent assets include both the N test assets and the L portfolios, the squared

Sharpe ratio is θ∗2
N+L = µ′

r̃N+L
Ω−1

r̃N+L
µr̃N+L , where µr̃N+L ≡

(
µ′

r̃N
, µ′

r̃p

)′
,

Ωr̃N+L ≡
[

δΩδ′ + Σ δΩ
Ωδ′ Ω

]
, (A6)

and δ ≡ [δ1, . . . , δN ]
′ with δi being the slope coefficient in model (1). Equation (A6) holds

because we can rewrite the variance–covariance matrix of the N test assets and their
covariance matrix with the L portfolios using Ω, Σ and δ (in the same way as V̂ on p. 1143
and eq. (24) in Gibbons et al. 1989). Applying the inverse formula for a block matrix and
noticing the relationship between µr̃N and µr̃p implied by model (1), we obtain

θ∗2
N+L = θ∗2

p + δ′0Σ−1δ0, (A7)

which is essentially the same as Equations (22) and (23) in MacKinlay and Richardson
(1991). This, together with Equation (A5) and simple algebra, further implies Equation (6).

Proof of Theorem 1. Based on Lemma 1, we only need to show that W̃∗ defined in
Equation (5) equals W̃ in Equation (8). By comparing Equation (3) and (7), we see that
Ω̃ = Ω̃∗ − r̄p r̄′p, so it suffices to show that

1 − r̄′pΩ̃−1
∗ r̄p =

(
1 + r̄′pΩ̃−1r̄p

)−1
=

[
1 + r̄′p

(
Ω̃∗ − r̄p r̄′p

)−1
r̄p

]−1
. (A8)

Applying Lemma A2 with A = Ω̃∗, u = r̄p and v = −r̄p, we get
(

Ω̃∗ − r̄p r̄′p
)−1

= Ω̃−1
∗ +

Ω̃−1
∗ r̄p r̄′pΩ̃−1

∗
1−r̄′pΩ̃−1

∗ r̄p
, which implies that 1 + r̄′p

(
Ω̃∗ − r̄p r̄′p

)−1
r̄p = 1 + r̄pΩ̃−1

∗ r̄p +
(r̄′pΩ̃−1

∗ r̄p)
2

1−r̄′pΩ̃−1
∗ r̄p

=(
1 − r̄′pΩ̃−1

∗ r̄p

)−1
, which further immediately implies Equation (A8). This completes the

proof of Theorem 1. □
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Original GRS statistic when L = 1. When L = 1, Ω̃ equals to 1
T ∑T

t=1 r̃2
pt − r̄2

p = s2
p, the

sample variance of r̃pt without d.f. defined by Gibbons et al. (1989, p. 1124). So, W̃ equals
the original GRS statistic when L = 1.

Over-rejection of Ŵ. Take the ratio between Ŵ and W̃, then by the relationship between Ω̂
and Ω̃ in Equation (9), we get

Ŵ
W̃

=
1 + r̄′pΩ̃−1r̄p

1 + T−1
T r̄′pΩ̃−1r̄p

, (A9)

which measures how much the incorrect formula inflates the GRS statistic. Define a function
g(x) = 1+x

1+ T−1
T x

. Since the first-order derivative of this function is g′(x) = 1/T
(1+ T−1

T x)
2 > 0,

we know that g(x) is a monotonically increasing function of x. This, combined with the
facts that g(0) = 1 and r̄′pΩ̃−1r̄p > 0, implies that Ŵ/W̃ > 1. As a result, when Ŵ is
gauged against the FN,T−N−L, the distribution of W̃, it will over-reject the null hypothesis
of mean-variance efficiency of the L portfolios.

Model misranking by Ŵ. Some back-of-the-envelop calculation shows that r̄′pΩ̃−1r̄p
tends to be larger for models with more factors. To see this, let µr̃p denote the mean

vector of r̃pt as above, then by the central limit theorem, we have
√

T(r̄p − µr̃p)
d.−→

N (0, Ω); and by the law of large numbers, we have Ω̃
p.−→ Ω. These two results imply

that T(r̄p − µr̃p)
′Ω̃−1(r̄p − µr̃p)

d.−→ χ2
L. Note that E(χ2

L) = L, so this in turn implies that
for fixed T, the mean of r̄′pΩ̃−1r̄p is approximately E(r̄′pΩ̃−1r̄p) ≈ L

T + µ′
r̃p

Ω−1µr̃p , where

µ′
r̃p

Ω−1µr̃p is expected to increase with L since the dimensions of both µr̃p and Ω increase

with L. As a result, the random variable r̄′pΩ̃−1r̄p tends to increase with L on average.7

Combined with Equation (A9), this means that the ratio Ŵ/W̃ tends to be larger for
larger models; that is, smaller models tend to be disproportionally favored if the incorrect
GRS statistic Ŵ is used to rank models, compared to the ranking based on the correct GRS
statistic W̃.

Additional errors in software packages. The R package GRS.test computes two different
GRS statistics, see Kim (2022). One (function GRS.test) uses the unbiased estimators Ω̂ and
Σ̂ at the same time; the other (function GRS.MLtest) uses the MLEs Ω̃ and Σ̃ ≡ 1

T ∑T
t=1 η̂′

tη̂t

at the same time. The former is just Ŵ, and we denote the latter as

W̆ ≡ T(T − N − L)
N(T − L − 1)

(
1 + r̄′pΩ̃−1r̄p

)−1
δ̂′0Σ̃−1δ̂0, and note W̆ =

T
T − L − 1

W̃. (A10)

These two statistics are both incorrect and clearly stem from the interpretation of Ω and Σ
as variance–covariance matrices in Gibbons et al. (1989).

Because of the relationship between W̃ and W̆ in Equation (A10), similar analysis as in
that for Ŵ indicates the same over-rejection and misranking problems for W̆ as well, even
to a worse extent than Ŵ for typical data in empirical asset pricing studies.

The Stata packages grstest and grstest2, composed by different contributors,8

make use of Ω̂ and further compound this error by estimating Σ as 1
T−1 ∑T

t=1 η̂tη̂
′
t and pre-

multiplying the ratio T−N−L
N instead of T(T−N−L)

N(T−L−1) . The result is a statistic that is difficult to

justify and different from all those we discussed above.9

Asymptotic χ2 test. First note that the distribution of the correct GRS statistic W̃, when
multiplied by N, converges to the χ2

N distribution as T → ∞.10 So, comparing NW̃ with the
critical value from the χ2

N distribution, rather than comparing W̃ with the FN,T−N−L critical
value, is by itself an asymptotically valid χ2 test. The commonly used χ2 test statistics in
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empirical asset pricing research deviate from NW̃, and the deviations are all positive,11

so they will over-reject compared to NW̃.12 We find that the χ2 statistics misrank models
more often even than W̆ in our empirical studies, but we do not report the model ranking
results for χ2, because they do not have an intuitive economic interpretation in the model
ranking context, and therefore are not commonly used for this purpose. The misrankings
of these χ2 can be easily shown by a similar analysis as for Ŵ and W̆ and are therefore
skipped here.

Appendix B. Details of the Empirical Results

We now turn to some empirical examples, focusing on how the different implemen-
tations of the GRS statistic, as well as the asymptotic χ2 statistic, compare to the correct
calculation, based on model testing and ranking outcomes, borrowing from Fama and
French (2015, 2016) the choice of asset pricing models and the choice of test assets. The
models we consider include the CAPM, the Fama–French three-factor model, two varia-
tions of a four-factor model, the Fama–French five-factor model and a six-factor model
that includes momentum. The test assets we explore include 5 × 5 sortings based on mar-
ket capitalization and various anomaly variables including operating profitability, return
volatility, residual volatility, accruals and so on, up to as many as 32 (2 × 4 × 4) portfolio
sortings. We also explore decile portfolio sortings based on size, operating profitability,
momentum, book-to-market and investment. The number of test assets used in empirical
work is commonly as large as 25, as we see in Fama and French (2015, 2016), though many
studies use 30 to over 50 test assets. See, for instance, Lewellen et al. (2010), Kroencke
(2017), Demaj et al. (2018), and Kleibergen and Zhan (2020). Recently, asset pricing models
have typically contained at least four or five factors, though six are also commonly seen.
See, for instance, Barillas and Shanken (2018), Fama and and French (2018), Kan et al. (2024)
or Hanauer (2020). Given the state of the literature, our choice of test assets and factors sits
comfortably amidst the typical empirical asset pricing applications.

We use data retrieved from the French data library, and we consider five, ten, fifteen,
twenty, twenty-five, forty, and fifty-year periods drawn from 1963–2019 for our consider-
ation of up to six factors in the competing asset pricing models, and from 1926–2019 for
our consideration of up to four factors in the competing asset pricing models.13. We limit
our sample window to no less than five years of monthly data because few studies use less
than 60 observations; Gibbons et al. (1989) note that issues of stationarity can reasonably
constrain the length of a time series used, so that “it is not uncommon to published work
where T is around 60”, Affleck-Graves and McDonald (1989) limited their analysis and
simulations to 60 month periods; Ferson and Foerster (1994) studied 60, 120, and 720
monthly observations in their simulation study; Rouwenhorst (1999) used five years in
sub-sample analysis; and among recent work that exploited as few as four or five years of
data are Belimam et al. (2018), and Qin (2019). Leite et al. (2018) used as few as 98 months
of data, Lewellen, Nagel, and Shanken (2010) used 168 observations of quarterly data, Choi
et al. (2020) performed sub-sample stability tests using eight years of monthly data, and
many studies of emerging economy markets have used ten to fifteen years of monthly
data. See, for instance, Alhomaidi et al. (2019), Alshammari and Goto (2022), Merdad et al.
(2015), and Sha and Gao (2019).

Our primary results, found in Tables A1–A7, make use of the full sample available
to us by partitioning the data sample into overlapping periods. For instance, at the five
year horizon over 1963–2019, we form five-year windows starting in 1963 and every year
following, so that the first window extends from July 1963 to June 1967, the second from
January 1964 to December 1968, January 1965 to December 1969, and so on, resulting in
53 five-year overlapping windows. For each of these windows over the period 1963–2019,
we use 19 sets of test assets, listed in the first column of Table A1, and six competing asset
pricing models. These models are the CAPM, the Fama–French three-factor model, four
and five-factor models, as well as a six-factor model including momentum, all as considered
in Fama and French (2015, 2016).
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Appendix B.1. Results for Five-Year Windows

We first present a small subset of our empirical findings in Tables A1–A3. For conve-
nience, Tables A1 and A2 replicate Tables 1 and 2 from the main text, and here we discuss
them in greater depth. In these tables, we consider five-year windows, the minimum
span of data the GRS statistic is commonly applied to. This short span of data shows the
most serious over-rejection of asset pricing models from the application of the alternative
formulations of the GRS test, as well as the highest frequency of misrankings relative to the
correct formulation of the GRS statistic. We present evidence for longer spans of data, up
to 50 year windows, in Tables A4–A7, and discuss them in Appendix B.2.

In Table A1, we present the number of excess test rejections at the 1%, 5%, and 10%
levels, relative to the correct GRS statistic W̃, for each of the alternative test statistics, the
asymptotic χ2, Ŵ and W̆. The results for the largest number of test assets we considered,
32, are displayed in the first three rows of the table; the results for cases with 25 test assets
follow on rows four through thirteen; the 17 test assets of the industry portfolios follow
on row fourteen; and the remaining five rows present results for sets of 10 test assets.
In Table A1, we use a total of 53 five-year overlapping windows starting from 1963 and
consider six different asset pricing models, meaning that we have 318 cases for which an
asset pricing model might be rejected, for each of the 19 sets of test assets.

Table A1. Number and proportion of subsamples with more rejections relative to the GRS test for
five year windows sampled during 1963–2019, across 19 sets of test assets.

Test Assets Asymptotic W̆ Ŵ
Nb of Subsamples = 53 χ2

1% 5% 10% 1% 5% 10% 1% 5% 10%

2 × 4 × 4 MExMEBExINV 289 275 247 4 17 21 0 1 0
2 × 4 × 4 MExMEBExOP 262 246 220 4 14 18 0 0 0
2 × 4 × 4 MExOPxINV 282 238 194 10 27 28 0 3 1
5 × 5 AccrualsxME 222 218 207 7 17 31 0 0 1
5 × 5 BExME 212 191 166 8 21 20 1 0 1
5 × 5 BetaxME 229 221 204 11 16 25 0 1 0
5 × 5 MExOP 238 227 188 9 27 42 0 0 0
5 × 5 MomentumxME 210 166 124 14 29 27 0 0 0
5 × 5 NetIssuexME 216 176 147 9 29 27 0 2 2
5 × 5 RVariancexME 147 94 65 18 28 12 0 2 0
5 × 5 VariancexME 137 81 45 26 27 12 0 3 1
5 × 5 BExInv 248 259 245 4 18 16 0 2 1
5 × 5 MExInv 214 189 171 14 17 29 0 0 0
Industry 126 153 152 12 9 22 0 1 0
Book-to-Market Deciles 48 70 67 5 22 21 0 1 1
Investment Deciles 22 30 56 4 4 6 0 0 0
Momentum Deciles 56 60 66 18 14 20 1 1 1
Size Deciles 49 90 68 6 23 27 0 0 2
Operating Profitability 48 70 65 4 24 15 0 1 0
Deciles

Average 171.3 160.7 142 9.8 20.2 22.1 0.11 0.95 0.58
Proportion (%) 53.9 50.5 44.6 3.1 6.3 6.9 0.0 0.3 0.2

Notes: (1) The figures are the number of all decisions at the stated significance level for which the test statistic
rejects the model when the correct GRS statistic does not reject, out of a total of 318 possible, with the exception of
the last row for which the proportion is given. The sample periods of five years are sampled over July 1963 to
December 2019 and the number of models tested are 6 for each window, which we sum over to obtain the total
number of over-rejections. These windows overlap, adjusted in a rolling window so that all but 1 year of data
overlaps with the next sample window. This means that there are 53 samples for the 5 year window. (2) For a
detailed description of the factor and test asset construction see Fama and French (2015, 2016).

The asymptotic χ2 statistic fares the worst relative to the correct GRS statistic among
the alternatives, over-rejecting roughly 50% of the time on average relative to W̃, across
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the common significance levels of 1%, 5%, and 10%. This over-rejection is worse when we
consider more test assets.

The W̆ and Ŵ do not display patterns related to the number of test assets or significance
level, with the W̆ (Ŵ) over-rejecting relative to the correct GRS statistic about 5% (0.2%) of
the time on average, across the common significance levels of 1%, 5%, and 10%. The over-
rejection of the Ŵ is unstable across test assets, however, with a few cases displaying close
to 6% over-rejection (three times over 53 subsamples), and some with no over-rejection.

In Table A2, we present the number of cases for which each statistic misranks factor
models relative to the correct GRS statistic ranking. Here, we rank the six models for each
of the 53 five-year windows considered in Table A1. Misranking of models at the five
year horizon by the W̆ statistic displays much worse performance than we saw for test
rejections, with close to 60% of the cases displaying a misranking, and we saw even worse
performance for the Ŵ, with close to 3% of the cases misranked. If we restrict our attention
to cases for which the top model is misranked, the W̆ statistic misranks between 10% and
15% of the time, while the Ŵ misranks the top model less than 0.5% of the time.

Table A2. Number and proportion of subsamples with different ranking outcomes from the GRS
statistic for five year windows sampled during 1963–2019, across 19 sets of test assets.

Test Assets Any Model Mis-Ranked Top Model Mis-Ranked
Nb of Subsamples = 53 W̆ Ŵ W̆ Ŵ

2 × 4 × 4 MExMEBExINV 26 2 5 0
2 × 4 × 4 MExMEBExOP 37 1 6 0
2 × 4 × 4 MExOPxINV 31 1 12 0
5 × 5 AccrualsxME 36 1 12 0
5 × 5 BExME 26 1 7 0
5 × 5 BetaxME 31 1 10 0
5 × 5 MExOP 33 0 10 0
5 × 5 MomentumxME 33 0 14 0
5 × 5 NetIssuexME 27 4 9 2
5 × 5 RVariancexME 32 0 14 0
5 × 5 VariancexME 34 1 10 0
5 × 5 BExInv 35 3 6 0
5 × 5 MExInv 30 3 9 0
Industry 29 2 4 0
Book-to-Market Deciles 28 0 4 0
Investment Deciles 24 2 4 0
Momentum Deciles 30 2 5 0
Size Deciles 27 3 5 0
Operating Profitability 30 0 6 0
Deciles

Average 30.47 1.42 8.00 0.11
Proportion (%) 57.5 2.7 15.1 0.2

Notes: (1) The figures are the number of all misrankings from a particular test statistic value across models relative
to the GRS statistic ranking, out of a total of 53 possible, with the exception of the last row for which the proportion
is given. The sample periods of five years are sampled over July 1963 to December 2019 and the number of models
ranked are 6 for each window. These windows overlap, adjusted in a rolling window so that all but 1 year of
data overlaps with the next sample window. This means that there are 53 samples for the 5 year window. (2) For
detailed description of the factor and test asset construction see Fama and French (2015, 2016).

In Table A3, we present detailed results for the 5 × 5 net share issuance’s crossed
with size portfolio test asset set, for five overlapping five-year windows near the end of
the 1963–2019 sample period, in order to give the reader a finer sense for the results in
Tables A1 and A2. We present the average annualized and raw percentage alpha for each of
the six asset pricing models and each window, as well as values of the correct GRS statistic
W̃, and the W̆ and Ŵ statistics. Beside each test statistic value, we report the ranks of the
six models, from one to six. A model ranked differently by Ŵ or W̆ from W̃ is indicated
by a † next to the factor label and further identified with the appropriate column’s rank
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number being boldfaced. A misranked top model is indicated by an ∗ next to the factor
label and further identified with the appropriate row’s factor label being bolded. A test
method producing different ranks using p-values from test statistic is indicated by a ‡ next
to the window period and further identified with a ⇓ in the appropriate column. This issue
of different ranking using the test statistic versus the p-value will be drawn out below.

Table A3. Summary statistics on factor models and test statistics for five year windows over 2007–2009
financial crisis sample period, for investment 5 × 5 NetIssuexME test assets.

Date/ Average W̃ W̆ Ŵ
Factor Model Annualized Statistic Statistic Statistic

/Raw % α /Rank /Rank /Rank

JAN 2005-DEC 2009
Mkt 2.63/0.219 0.688/1 0.712/1 0.688/1
Mkt SMB HML 2.39/0.199 0.819/2 0.878/2 0.819/2
Mkt SMB HML UMD 2.37/0.198 0.837/3 0.913/3 0.837/3
Mkt SMB RMW CMA 2.54/0.212 0.910/4 0.992/4 0.912/4
Mkt SMB HML RMW CMA 2.52/0.210 0.997/6 1.108/6 0.999/6
Mkt SMB HML RMW CMA UMD 2.57/0.214 0.972/5 1.100/5 0.974/5

JAN 2006-DEC 2010 ‡ ⇓
Mkt † 3.23/0.269 1.114/3 1.152/1 1.114/3
Mkt SMB HML † 2.32/0.193 1.078/2 1.155/2 1.078/1
Mkt SMB HML UMD † 2.41/0.201 1.256/6 1.371/5 1.257/6
Mkt SMB RMW CMA ∗,† 2.64/0.220 1.077/1 1.174/3 1.080/2
Mkt SMB HML RMW CMA 2.65/0.221 1.130/4 1.256/4 1.134/4
Mkt SMB HML RMW CMA UMD † 2.81/0.234 1.253/5 1.418/6 1.257/5

JAN 2007-DEC 2011 ‡ ⇓
Mkt † 3.39/0.283 1.329/2 1.375/1 1.329/1
Mkt SMB HML † 3.11/0.259 1.503/4 1.610/3 1.504/4
Mkt SMB HML UMD 3.26/0.272 1.888/5 2.060/5 1.890/5
Mkt SMB RMW CMA ∗,† 2.89/0.240 1.327/1 1.448/2 1.332/2
Mkt SMB HML RMW CMA † 2.92/0.244 1.478/3 1.643/4 1.484/3
Mkt SMB HML RMW CMA UMD 3.08/0.257 1.947/6 2.204/6 1.955/6

JAN 2008-DEC 2012
Mkt 4.34/0.361 1.299/2 1.344/2 1.300/2
Mkt SMB HML 3.64/0.303 1.500/3 1.607/3 1.500/3
Mkt SMB HML UMD † 3.77/0.314 1.906/6 2.079/5 1.907/6
Mkt SMB RMW CMA 2.98/0.248 1.161/1 1.267/1 1.165/1
Mkt SMB HML RMW CMA 3.15/0.263 1.577/4 1.753/4 1.583/4
Mkt SMB HML RMW CMA UMD † 3.39/0.282 1.896/5 2.146/6 1.904/5

JAN 2009-DEC 2013 ‡ ⇓ ⇓
Mkt 2.74/0.228 1.678/2 1.736/2 1.681/2
Mkt SMB HML 3.05/0.254 2.938/5 3.148/5 2.946/5
Mkt SMB HML UMD 3.12/0.260 3.324/6 3.626/6 3.333/6
Mkt SMB RMW CMA 2.46/0.205 1.402/1 1.530/1 1.406/1
Mkt SMB HML RMW CMA 3.05/0.254 2.723/3 3.026/3 2.734/3
Mkt SMB HML RMW CMA UMD 2.72/0.227 2.733/4 3.093/4 2.745/4

Notes: (1) A test method producing different ranks using p-values versus test statistic is indicated by a ‡ in the
assets label. This is further identified with a ⇓ in the appropriate column. Ranked test statistics different than W̃
test ranked value is indicated by a † on the factor model label. This is further identified with the appropriate
column’s rank being bolded. Top ranked test statistics different than top ranked W̃ test value are indicated by a ∗
in the assets label. This is further identified by the appropriate row’s model being bolded. (2) For a detailed
description of the factor and test asset construction see Fama and French (2015, 2016).

What we see in Table A3 is fairly typical across the full set of empirical findings that
Tables A1 and A2 are based on; the W̆ displays many misrankings, and misrankings of the
top model are rare. Although not tabulated, only the asymptotic χ2 is typically rejecting
factor models in this particular small set of examples, so that the W̆, Ŵ, and correct W̃ test
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statistic are all consistent with each other. Common in studies that seek to rank models
are rankings by the average absolute alpha, whether or not all models are rejected by the
GRS test. See for instance Fama and French (2015). As we can see from Table A3, often the
model with the smallest average absolute alpha is not top-ranked.

Appendix B.2. Summary Results for Longer Windows

We now present evidence for a longer span of data in Tables A4–A7, using two sets
of date windows up to 50 years. In addition to the period of time 1963–2019 that we
considered in Appendix B.1, now we add the period 1926–1962. The pre-1963 period lacks
data for factors and test assets built using operating profitability, accruals etc., so we are
left with six test assets constructed from book-to-market, size, industry classification, and
momentum, and three different factor models, including the CAPM, the Fama–French
three-factor model, and a four-factor model including momentum, all as considered in
Fama and French (2015, 2016). For this restricted set of test assets and factors, we estimate
test rejections and rankings using the entire 1926–2019 sample and we break out results
separately from those constructed using the larger set of test assets and models on the
1963–2019 data alone. It is interesting to do this, as the chance of a misranking declines
with fewer asset pricing models being considered.

In Table A4, we present the percentage of excess test rejections relative to the correct
GRS statistic at each of the 1%, 5%, and 10% levels for each of the alternative test methods,
the asymptotic χ2, the W̆, and the Ŵ. This is performed for overlapping windows of 5, 10,
15, 20, 25, 40, and 50 years, using data that span either 1963–2019 or 1926–2019. Panel A
displays the percentage of over-rejection rates averaged over six asset pricing models and
19 sets of test assets for the period 1963–2019; Panel B displays the same percentages for the
period 1926–2019 using the smaller set of three factor models and six sets of test assets.

Table A4. Percentage of subsamples/models with different decision outcomes from the correct GRS
test W̃.

Window χ2 W̆ Ŵ
(Months) 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: 1963–2019

60 53.9 50.5 44.6 3.1 6.3 6.9 0.0 0.3 0.2
120 27.4 24.8 20.0 3.2 3.7 3.9 0.1 0.0 0.1
180 16.4 13.0 11.4 2.1 2.1 2.2 0.1 0.0 0.0
240 9.7 8.6 6.3 1.4 1.7 1.2 0.0 0.0 0.0
300 6.5 5.7 4.5 0.9 1.3 1.1 0.1 0.1 0.0
480 3.0 2.9 1.9 0.3 0.7 0.4 0.0 0.0 0.0
600 2.9 0.8 1.6 0.3 0.2 0.3 0.0 0.0 0.0

Panel B: 1926–2019

60 34.6 36.1 33.2 2.6 4.3 5.3 0.0 0.1 0.1
120 15.4 15.5 12.6 2.2 3.1 2.5 0.0 0.0 0.0
180 8.8 10.3 9.2 1.0 1.4 1.7 0.1 0.0 0.0
240 8.6 7.7 4.7 1.3 2.0 1.3 0.0 0.0 0.0
300 6.0 4.4 3.1 1.0 0.8 0.6 0.0 0.0 0.0
480 3.9 2.8 0.9 0.7 0.7 0.2 0.0 0.0 0.0
600 2.2 1.7 0.6 0.6 0.1 0.2 0.0 0.0 0.0

Notes: The figures are the percentage of all decisions at the stated significance level for which the test statistic
rejects the model when the correct GRS statistic does not reject. (1) For Panel A, the sample periods cover July
1963 to December 2019, the sample window for the test is either 5, 10, 15, 20, 25, 40, or 50 years, the number
of models tested are 6 for each window, and we average over 19 different sets of test assets, listed in Table A1.
These windows overlap, adjusted in a rolling window, so that all but 1 year of data overlaps with the next sample
window. This means that there are 53 samples for the 5-year window. The rejection rates are aggregated over the
6 models employed, so that a 54% value in the top leftmost cell corresponds to roughly 171 incorrect rejections on
average. The factor models considered are the CAPM, the Fama–French 3 factor model, 4 and 5 factor models, as
well as a six-factor model including momentum, all as considered in Fama and French (2016). (2) For Panel B, the
sample periods cover January 1926 to December 2019. The models considered here number three, as factors for
size, book-to-market, momentum and the market are all that are available. The test assets are constructed from
industry classification, book-to-market crossed with size, momentum crossed with size, book-to-market, size and
momentum decile portfolios. (3) For a detailed description of the factor and test asset construction see Fama and
French (2015, 2016).
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For both Panels A and B, we see a virtually monotonic decline in over-rejections as
sample size increases, albeit at a fairly slow rate. The asymptotic χ2 statistic over-rejects
roughly 5% of the time relative to the W̃ statistic even with a 25-year window. The W̆
over-rejects roughly 5% of the time with 5 years of data, and over 1% of the time even with
a 25-year window. The Ŵ, which is fairly close to the correct W̃ statistic, does not appear to
over-reject with more than 25 years of data, and over-rejects less than 0.1% of the time with
10 or more years of data. The simulations based on models and calibrations described in
Appendix C.1 reveal that Ŵ always over-rejects, at least in this experimental design. The
over-rejection declines with sample size, but at a decreasing (non-linear) rate, increases
with the number of factors, and is largely unrelated to the number of test assets.

In Tables A5 and A6, we present the number of cases for which each statistic misranks
factor models relative to the correct W̃ statistic’s ranking by test value and p-value respec-
tively. Misranking of models by the W̆ statistic is remarkably large, even at a 50-year data
horizon if the set of models is as large as six, for either ranking method (statistic value or
p-value). Replacing the correct form of the GRS test with W̆ scrambles rankings over 15%
of the time even at the 50-year horizon, and over 50% of the time at the 5-year horizon, for
cases with six models (Panel A). When there are only three models (Panel B), misrankings
are naturally fewer, and for data horizons over 15 years misrankings occur mostly less than
5% of the time across methods. The Ŵ is typically consistent with the correct W̃ statistic,
though misrankings occur even at the 40-year window length.

Table A5. Percentage of subsamples/models with different model rank outcomes from the correct
GRS statistic W̃, ranked by test statistic value.

Window Any Model Misranked Top Model Misranked
(Months) W̆ Ŵ W̆ Ŵ

Panel A: 1963–2019

60 57.5 2.7 15.1 0.2
120 37.6 0.9 9.4 0.0
180 21.4 0.0 4.4 0.0
240 12.5 0.0 3.0 0.0
300 9.7 0.2 2.4 0.2
480 14.3 0.3 1.8 0.0
600 15.1 0.0 0.0 0.0

Panel B: 1926–2019

60 17.4 0.7 9.6 0.4
120 10.6 0.2 5.5 0.0
180 5.2 0.2 1.9 0.0
240 3.1 0.0 0.9 0.0
300 1.9 0.0 1.2 0.0
480 1.5 0.3 0.6 0.0
600 1.1 0.0 0.7 0.0

Notes: The figures are the percentage of misrankings from a particular test statistic value across models relative
to the GRS statistic ranking. (1) For Panel A, the sample periods cover July 1963 to December 2019, the sample
window for the test is either 5, 10, 15, 20, 25, 40, or 50 years, the number of models tested is 6 for each window,
and we aggregate over 19 different sets of test assets, listed in Table A1. These windows overlap, adjusted in a
rolling window so that all but 1 year of data overlaps with the next sample window. The factor models considered
are the CAPM, the Fama–French 3-factor model, 4 and 5-factor models, as well as a 6-factor model including
momentum, all as considered in Fama and French (2016). (2) For Panel B, the sample periods cover January 1926
to December 2019. The models considered here number three, as factors for size, book-to-market, momentum and
the market are all that are available. The test assets are constructed from industry classification, book-to-market
crossed with size, momentum crossed with size, book-to-market, size and momentum decile portfolios. (3) For a
detailed description of the factor and test asset construction see Fama and French (2015, 2016).
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Table A6. Percentage of subsamples/models with different model rank outcomes from the correct
GRS statistic W̃, ranked by test p-value.

Window Any Model Mis-Ranked Top Model Mis-Ranked
(Months) W̆ Ŵ W̆ Ŵ

Panel A: 1963–2019

60 54.6 1.9 13.1 0.4
120 37.4 0.5 9.1 0.0
180 21.9 0.4 4.4 0.1
240 11.5 0.1 2.8 0.0
300 9.4 0.2 2.1 0.0
480 13.2 0.3 1.8 0.0
600 13.2 0.0 0.0 0.0

Panel B: 1926–2019

60 15.0 0.7 8.1 0.7
120 10.2 0.0 5.5 0.0
180 5.4 0.0 2.1 0.0
240 3.3 0.2 0.9 0.0
300 1.9 0.0 1.2 0.0
480 1.2 0.0 0.6 0.0
600 1.1 0.0 0.7 0.0

Notes: The figures are the percentage of misrankings from a particular test statistic p-value across models relative
to the GRS statistic ranking. (1) For Panel A the sample periods cover July 1963 to December 2019, the sample
window for the test is either 5, 10, 15, 20, 25, 40, or 50 years, the number of models tested is 6 for each window,
and we aggregate over 19 different sets of test assets, listed in Table A1. These windows overlap, adjusted in a
rolling window so that all but 1 year of data overlaps with the next sample window. The factor models considered
are the CAPM, the Fama–French 3-factor model, 4 and 5-factor models, as well as a 6-factor model including
momentum, all as considered in Fama and French (2016). (2) For Panel B, the sample periods cover January 1926
to December 2019. The models considered here number three, as factors for size, book-to-market, momentum and
the market are all that are available. The test assets are constructed from industry classification, book-to-market
crossed with size, momentum crossed with size, book-to-market, size and momentum decile portfolios. (3) For a
detailed description of the factor and test asset construction see Fama and French (2015, 2016).

If we restrict our attention to cases for which the top model is misranked, the Ŵ
statistic is consistent with the correct W̃ statistic once we have 40 or more years of data, but
W̆ misranks even at 40 years of data. Again, when there are only three models (Panel B),
misrankings are fewer, and for data horizons over 10 years misrankings occur less than 5%
of the time across methods.

Finally, in Table A7, we present evidence on rankings from these different test statistics
compared to rankings based on the p-values of these test statistics, to see if they are
consistent. We can think of ranking by the test statistic as a sort of mean squared error or
model R2 ranking - perhaps helpful if we are interested in minimizing model prediction
error even if models are false (see, for instance, Teräsvirta and Mellin 1986). Here, we see
that all the rankings by test statistics are fragile, even at a 50 year horizon, averaging close
to 10% misranked if we compare three or six asset pricing models to each other. Table A7
highlights that the statistically sound p-values, instead of the raw GRS statistics, should be
used in model ranking.

Considering the case of a true model that includes a subset of the available factors,
an untabulated analysis of the simulated test rankings formed using the magnitude of
the GRS statistic confirms that the probability of an incorrect model, larger than the true
model, achieving a high rank versus other models increases with the number of factors in
the model, when the GRS statistic ranking differs from the p-value ranking. This bias is
stronger when using an incorrect GRS statistic. In cases for which both the GRS statistic
ranking and the p-value ranking agree, there is no such pattern to tilt to larger models than
the true model.

The important insight to take away from these results is that the error in calculating
the GRS statistic can have a material impact on empirical results, particularly when twenty
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or fewer years of data are used, which is not uncommon in empirical asset pricing studies.
For example, Barillas and Shanken (2018) performed model comparisons on a little less
than 15 years of monthly data. Harvey and Liu (2021) considered tests of asset pricing
models and report simulations for 20 and 40 years of monthly data. Sha and Gao (2019)
used 144 months of data and exploited 6 metrics to evaluate factor model performance,
including the GRS statistic. Baek and Bilson (2015) considered 234 months of data in a
subsample estimation. Chiah et al. (2016) used 23 years of data when comparing models
using the GRS statistic. One takeaway from these papers is that many situations involving
specialized data (like Sha and Gao 2019, exploring mutual fund returns in China) or sub-
sample robustness checks (like Baek and Bilson 2015) are necessarily constrained to shorter
samples than fifty or even twenty years, so that the bias from an incorrectly calculated GRS
statistic becomes large.

Table A7. Percentage of subsamples/models with different model rankings if ranked by p-values
rather than test statistics.

Window W̃ W̆ Ŵ
(Months)

Panel A: 1963–2019

60 16.3 21.8 16.8
120 4.9 5.8 5.3
180 4.3 3.9 3.9
240 4.6 5.4 4.4
300 4.8 4.8 4.8
480 2.6 3.8 2.6
600 6.6 7.9 6.6

Panel B: 1926–2019

60 2.2 5.0 2.6
120 0.6 1.2 0.8
180 0.4 0.2 0.6
240 0.4 0.2 0.2
300 0.7 0.7 0.7
480 5.5 5.8 5.8
600 7.4 7.4 7.4

Notes: The figures are the percentage of misrankings from a particular test statistic value across models relative
to the GRS statistic ranking. (1) For Panel A, the sample periods cover July 1963 to December 2019, the sample
window for the test is either 5, 10, 15, 20, 25, 40, or 50 years; the number of models tested are 6 for each window;
and we average over 19 different sets of test assets, listed in Table A1. These windows overlap, adjusted in a
rolling window so that all but 1 year of data overlaps with the next sample window. The factor models considered
are the CAPM, the Fama–French 3-factor model, 4 and 5-factor models, as well as a 6-factor model including
momentum, all as considered in Fama and French (2016). (2) For Panel B, the sample periods cover January 1926
to December 2019. The models considered here number three, as factors for size, book-to-market, momentum and
the market are all that are available. The test assets are constructed from industry classification, book-to-market
crossed with size, momentum crossed with size, book-to-market, size and momentum decile portfolios. (3) For a
detailed description of the factor and test asset construction see Fama and French (2015, 2016).

We do not recommend ranking models with the magnitude of the GRS statistic, and
instead suggest the use of the p-value of the statistic from the exact F-distribution, since
the p-value internalizes the different degrees of freedom of the GRS statistics computed
for models with a different number of factors. We recognize that ranking of models by the
GRS statistic has a desirable economic intuition—this is a direct, easy-to-understand metric
tied to a model’s factors spanning the test asset returns. But researchers need to at least
understand that this ranking might have undesirable statistical properties. The detailed
results that these tables are based on, and additional summary statistics are available
on request.
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Appendix C. Simulation Results

Here, we present simulation results to evaluate the size performance of the alternative
tests W̃, Ŵ, W̆ and χ2. We conducted three sets of simulations, differentiated by the error
generating process. Within each of these three sets of simulations, we look at two different
factor models, one with three factors and one with six factors, and we look at two different
groupings of test assets, one grouping being decile portfolios and one being a five by five
set of twenty five portfolios. For each of these, we consider monthly samples of lengths 5,
10, 15, 20, 25, 40, and 50 years.

The first two sets of simulation results exploit the normal and t-distributions for
the errors, calibrating return moments (mean, volatility, covariance) to French’s portfolio
returns. For the decile returns, we calibrate to the size-sorted decile monthly returns over
1963/7–2019/12, and for the 5 by 5 test asset case, we calibrate to the size by book-to-
market returns, again over 1963/7–2019/12. The last set of simulations employed bootstrap
methods and the French portfolio returns, described fully below.

Appendix C.1. Simulated Normal and t-Distributed Returns

Following the literature, we generate portfolio excess returns r̃pt as normal, indepen-
dent and identically distributed, calibrated to monthly U.S. stock returns. We also consider
the t-distribution with eight degrees of freedom and a bootstrap simulation.

The excess return for test asset i and time t is generated based on model (1), which is
rewritten here:

r̃it = δi0 +
L

∑
j=1

δij r̃jt + η̃it, (A11)

where η̃it ∼ iid normal across t with mean 0 and volatility σii, and r̃jt ∼ iid normal across
t with mean (µj/L), volatility σj and E

[
η̃it r̃jt

]
= 0. We set µj = 0.01, σj = 0.02, σii = 0.08,

δij = 1, ∀ i, j and we explore only the case of δi0 = 0, ∀ i.
We explore the size properties of the correct and incorrect formulas of the GRS statistic

for numbers of portfolios (L) from 3 to 6, test assets (N) from 10 to 25, and sample sizes
(T) from 60 (months) to 600. This spans typical applications of the GRS statistic. Our
simulations show that the performance of the incorrect GRS formula generally suffers
deterioration as the number of firms and factors increases, as one might expect. We present
simulation results for the normal case in Tables A8 and A9 for the t-distribution case.

Table A8. Null rejection rates.

Test Years W̃ Ŵ W̆ χ2

Assets/Portfolios 1% 10% 1% 10% 1% 10% 1% 10%
N/L

10 /3 5 0.010 0.104 0.011 0.106 0.016 0.132 0.062 0.240
10 0.011 0.100 0.011 0.102 0.013 0.119 0.026 0.162
15 0.010 0.099 0.010 0.100 0.012 0.109 0.020 0.135
20 0.008 0.094 0.008 0.096 0.010 0.101 0.016 0.120
25 0.010 0.100 0.010 0.101 0.011 0.107 0.017 0.122
40 0.009 0.102 0.009 0.103 0.010 0.106 0.012 0.113
50 0.009 0.096 0.009 0.096 0.009 0.099 0.012 0.105

10 /6 5 0.009 0.104 0.010 0.110 0.021 0.158 0.065 0.246
10 0.010 0.095 0.010 0.097 0.015 0.124 0.026 0.156
15 0.011 0.105 0.011 0.107 0.014 0.125 0.020 0.143
20 0.009 0.094 0.009 0.096 0.011 0.111 0.015 0.124
25 0.010 0.103 0.010 0.104 0.012 0.114 0.015 0.125
40 0.009 0.097 0.010 0.098 0.011 0.104 0.012 0.111
50 0.009 0.098 0.009 0.099 0.010 0.103 0.011 0.109



J. Risk Financial Manag. 2024, 17, 168 20 of 25

Table A8. Cont.

Test Years W̃ Ŵ W̆ χ2

Assets/Portfolios 1% 10% 1% 10% 1% 10% 1% 10%
N/L

25 /3 5 0.011 0.103 0.011 0.107 0.016 0.141 0.484 0.730
10 0.008 0.101 0.008 0.104 0.011 0.122 0.124 0.367
15 0.010 0.099 0.010 0.101 0.012 0.115 0.062 0.260
20 0.009 0.099 0.010 0.101 0.011 0.110 0.043 0.206
25 0.010 0.097 0.011 0.098 0.012 0.106 0.034 0.180
40 0.009 0.100 0.009 0.101 0.009 0.105 0.020 0.147
50 0.008 0.093 0.008 0.094 0.009 0.098 0.018 0.136

25 /6 5 0.008 0.097 0.009 0.104 0.020 0.163 0.524 0.763
10 0.010 0.102 0.011 0.106 0.018 0.140 0.130 0.378
15 0.011 0.103 0.012 0.107 0.016 0.131 0.069 0.261
20 0.012 0.103 0.012 0.105 0.016 0.124 0.046 0.212
25 0.009 0.100 0.010 0.102 0.013 0.116 0.031 0.181
40 0.009 0.099 0.009 0.100 0.011 0.111 0.020 0.149
50 0.011 0.099 0.011 0.100 0.012 0.107 0.019 0.135

Notes: (1) Bold-faced numbers are rejection rates three standard deviations larger than the nominal values.
(2) These results are based on 10,000 simulations. (3) The models are r̃it = δi0 + ∑L

j=1 δij r̃jt + η̃it, where

r̃jt ∼ iid N
(

µj/L, σ2
j

)
, η̃it ∼ iid N

(
0, σ2

ii
)

and E
[
η̃it r̃jt

]
= 0. For ∀j, µj = 0.01, σj = 0.02, σii = 0.08, and δij = 1.

Table A9. Null rejection rates.

Test Years W̃ Ŵ W̆ χ2

Assets/Portfolios 1% 10% 1% 10% 1% 10% 1% 10%
N/L

10 /3 5 0.009 0.104 0.009 0.107 0.015 0.137 0.061 0.236
10 0.011 0.098 0.011 0.100 0.012 0.113 0.026 0.158
15 0.009 0.100 0.009 0.101 0.011 0.109 0.018 0.135
20 0.010 0.100 0.010 0.101 0.011 0.107 0.017 0.125
25 0.010 0.099 0.010 0.099 0.011 0.106 0.014 0.122
40 0.010 0.106 0.010 0.106 0.010 0.109 0.013 0.120
50 0.009 0.100 0.009 0.101 0.010 0.105 0.012 0.112

10 /6 5 0.010 0.104 0.012 0.110 0.023 0.163 0.068 0.256
10 0.010 0.095 0.010 0.098 0.015 0.122 0.027 0.155
15 0.010 0.099 0.011 0.101 0.014 0.117 0.020 0.136
20 0.009 0.096 0.009 0.098 0.012 0.111 0.016 0.123
25 0.012 0.097 0.012 0.098 0.014 0.109 0.017 0.120
40 0.010 0.099 0.010 0.099 0.011 0.105 0.014 0.111
50 0.010 0.102 0.011 0.103 0.011 0.109 0.012 0.114

25 /3 5 0.009 0.095 0.009 0.098 0.014 0.131 0.477 0.725
10 0.011 0.105 0.011 0.107 0.014 0.127 0.129 0.370
15 0.011 0.103 0.011 0.105 0.013 0.117 0.064 0.254
20 0.011 0.094 0.011 0.096 0.012 0.106 0.041 0.206
25 0.009 0.095 0.009 0.096 0.010 0.104 0.031 0.180
40 0.009 0.098 0.009 0.099 0.010 0.104 0.021 0.145
50 0.010 0.097 0.010 0.098 0.011 0.102 0.017 0.137

25 /6 5 0.009 0.100 0.010 0.106 0.022 0.169 0.533 0.772
10 0.010 0.103 0.011 0.108 0.020 0.140 0.131 0.380
15 0.011 0.104 0.012 0.108 0.015 0.132 0.069 0.266
20 0.010 0.101 0.010 0.103 0.015 0.117 0.044 0.209
25 0.010 0.099 0.010 0.100 0.012 0.114 0.032 0.180
40 0.009 0.102 0.010 0.104 0.011 0.114 0.021 0.150
50 0.009 0.101 0.010 0.101 0.011 0.109 0.019 0.141

Notes: (1) Bold-faced numbers are rejection rates three standard deviations larger than the nominal values. (2) The

results are based on 10,000 simulations. (3) The models are r̃it = δi0 + ∑L
j=1 δij r̃jt + η̃it, where r̃jt ∼ iid

(
µj/L, σ2

j

)
,

t with 8 df, η̃it ∼ iid
(
0, σ2

ii
)
, t with 8 df, and E

[
η̃it r̃jt

]
= 0. For ∀j, µj = 0.01, σj = 0.02, σii = 0.08, and δij = 1.
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The correct formula of the GRS statistic generally presents no evidence of incorrect
size in Table A8, as our simulation setting is one in which it should have the correct small-
sample exact size. Even with the t-distribution, the GRS performs well. The Ŵ formula
shows some evidence of over-rejection with the t-distribution and a small sample size. The
W̆ formula of the GRS statistic and the χ2 show strong over-rejection under 20 years of data
and the χ2 shows evidence of over-rejection even with 50 years of data.

Table A10. Null rejection rates.

Test Years W̃ Ŵ W̆ χ2

Assets/Portfolios 1% 10% 1% 10% 1% 10% 1% 10%
N/L

10 /3 5 0.097 0.290 0.097 0.292 0.115 0.333 0.228 0.458
10 0.140 0.344 0.140 0.344 0.153 0.367 0.204 0.425
15 0.167 0.372 0.167 0.372 0.176 0.385 0.210 0.417
20 0.189 0.395 0.189 0.395 0.198 0.405 0.222 0.433
25 0.202 0.408 0.202 0.408 0.207 0.417 0.230 0.436
40 0.234 0.431 0.234 0.431 0.237 0.435 0.250 0.447
50 0.249 0.450 0.249 0.450 0.251 0.455 0.261 0.465

10 /6 5 0.080 0.266 0.080 0.268 0.114 0.342 0.213 0.451
10 0.124 0.323 0.124 0.324 0.146 0.361 0.183 0.402
15 0.148 0.356 0.149 0.357 0.164 0.381 0.192 0.406
20 0.173 0.374 0.173 0.374 0.184 0.394 0.203 0.415
25 0.186 0.387 0.186 0.387 0.194 0.403 0.208 0.418
40 0.213 0.417 0.213 0.417 0.218 0.425 0.227 0.434
50 0.234 0.437 0.234 0.437 0.239 0.444 0.246 0.450

25 /3 5 0.021 0.144 0.021 0.145 0.031 0.184 0.546 0.776
10 0.023 0.156 0.024 0.157 0.031 0.182 0.185 0.452
15 0.026 0.167 0.026 0.167 0.031 0.183 0.113 0.349
20 0.032 0.175 0.032 0.176 0.036 0.188 0.091 0.304
25 0.037 0.177 0.037 0.177 0.039 0.188 0.082 0.279
40 0.042 0.188 0.042 0.188 0.044 0.196 0.069 0.248
50 0.044 0.192 0.044 0.192 0.047 0.197 0.067 0.235

25 /6 5 0.018 0.132 0.018 0.134 0.034 0.208 0.583 0.793
10 0.022 0.145 0.023 0.146 0.032 0.194 0.185 0.449
15 0.023 0.150 0.023 0.151 0.033 0.183 0.103 0.329
20 0.025 0.158 0.025 0.158 0.032 0.182 0.078 0.288
25 0.027 0.160 0.027 0.161 0.031 0.179 0.067 0.255
40 0.030 0.167 0.030 0.167 0.033 0.181 0.056 0.228
50 0.034 0.167 0.034 0.167 0.036 0.176 0.052 0.209

Notes: (1) Bold-faced numbers are rejection rates three standard deviations larger than the nominal values. (2) The
results are based on 10,000 simulations. (3) The models are r̃it = δi0 + ∑L

j=1 δij r̃jt + η̃it, where the data were
generated through a block-bootstrap approach.

Appendix C.2. Bootstrap Simulation

There are two main categories of bootstrapping in the regression context, the ran-
dom X approach, which resamples the complete set of variables including the dependent
variable for each observation, and the fixed X approach, which resamples residuals and
explanatory variable values and forms simulated dependent variable values. That is, the
fixed X approach builds simulated dependent variable values from the explanatory vari-
ables and either simulated or resampled regression residuals. The choice of using either
simulated or resampled residuals is what distinguishes the major variations of the fixed X
bootstrap approach. The non-parametric fixed X bootstrap approach, which we employ,
uses resampled regression residuals.

Suppose we have a sample of T observations of a dependent variable ri,t, (i = 1, . . . , N),
a K × 1 vector of factor portfolios rp,t, and a regression model E[ri,t] = αi + β′

irp,t. Define
α̂i and β̂i as the OLS estimates of αi and βi and, noting that we wish to explore the null
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hypothesis that αi = 0, define r̂∗i,t = β̂irp,t and êi,t = ri,t −
(
α̂i + β̂irp,t

)
. We then form R

resamples of r̂∗i,t, (i = 1, . . . , N), and rp,t with each resample containing T observations. Sep-
arately and independently, we form R resamples of êi,t with each resample also containing
T observations, and finally we form r∗i,t = r̂∗i,t + êi,t for each of the R resamples. Using
r∗i,t and rp,t, we fit the model E[r∗i,t] = αi + βirp,t on each of these resampled datasets, and
retrieve the various GRS test statistics for each resampled dataset.

To deal with a well-documented property of financial returns, lack of independence
across time, we also employ block bootstrap resampling which allows for data dependence.
See, for instance, Politis and Romano (1994), White (2000), and Gonçalves and White (2002,
2005). It is the resampling in (random-length) blocks from the original data that produces
results incorporating data dependence. Politis and Romano (1994) used blocks of data with
lengths distributed according to the geometric distribution. The mean block length b is
data-dependent. Politis and Romano (1994) recommended a length proportional to T1/3,
where T = sample size, which is what we use.

Again, we exploit French’s portfolio returns. For the decile returns, we resample
from the size-sorted decile monthly returns over 1963/7–2019/12, and for the 5 by 5 test
asset case we resample from the size by book-to-market returns, over 1963/7–2019/12.
Bootstrap simulations show persistent over-rejection of the null hypothesis in all these tests,
though the correct GRS F test shows the smallest over-rejection. Similarly to Harvey and
Liu (2021), we find little or no over-rejection when we evaluate t-tests on the intercept with
bootstrapped data, rather than a joint test across intercepts of the test assets, but joint tests
appear much more fragile than the one-at-a-time t-tests on intercepts.

Appendix D. Software Packages

The SAS and R packages used to implement our generalized GRS test can be found at
the authors’ websites: http://markkamstra.com/data.html (accessed on 31 August 2023)
(SAS) and https://ruoyaoshi.github.io/ (accessed on 31 August 2023) (R). A Stata package
grsftest coded by Mengnan (Cliff) Zhu can be found at https://ideas.repec.org/c/boc/
bocode/s458828.html (accessed on 31 August 2023). See Zhu (2020).
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Appendix F. Summary Statistics
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Notes
1 See, for instance, Cakici et al. (2013, eq. (4)) and Mosoeu and Kodongo (2022, eq. (2)).
2 Asymptotic versions are commonly employed or promoted. See, for instance, MacKinlay and Richardson (1991), Cochrane (2005,

p. 234), Zaremba and Czapkiewicz (2017), Demaj et al. (2018), Belimam et al. (2018), Qin (2019), and Verbeek (2021, Sct. 2.3).
3 We acknowledge that it is difficult to take seriously the assumption of normality of returns—returns are bounded below by

−100% due to limited liability in financial markets for publicly traded assets and returns are known to be heteroskedastic and
dependent over time. Here we adopt the Gibbons et al. (1989) setting for comparison purposes and to develop small sample
results. Knez and Ready (1997) develop some interesting approaches for factor model estimation allowing for non-normality.

4 For related analysis on an extension to the GRS test, see Kleibergen and Zhan (2020) and Kleibergen et al. (2023).
5 Cochrane (2005, eq. (12.6)) uses Ω̃ for Ω and Σ̃ for Σ, but pre-multiplies by T−N−L

N , so that the resulting GRS statistic equals to W̃
in this paper. The d.f. adjustment (or lack of it) in the estimators of Σ can be easily offset by pre-multiplying an appropriate factor,
but this is not the case for Ω.

6 Perhaps another outcome of Cochrane (2005), the Stata packages pre-multiply the ratio T−N−L
N used by Cochrane (2005), but fail

to use the corresponding Σ̃.
7 We need to point out that the argument here is based on an approximation, as E(r̄′pΩ̃−1r̄p) is a non-linear function of r̄p and Ω̃.

Moreover, r̄′pΩ̃−1r̄p may deviate from its mean for a particular sample. Therefore, it is entirely possible that the incorrect formula
of the GRS statistic favors larger models in some cases.

8 See Tharyan (2009) and Ibert (2014).
9 For comparison, the generalized GRS statistic formula given in Cochrane (2005, p. 230) uses Ω̃ and Σ̃, but Cochrane (2005) is

careful to properly pre-multiply the ratio T−N−L
N so that the statistic equals W̃ in this paper.

10 This is because the Fd1,d2 and the χ2
d1

distributions are related through d1Fd1,d2

d.−→ χ2
d1

as d2 → ∞, where d1 and d2 are the degrees
of freedom.

11 Several different statistics are all commonly used in empirical research. For example, the usual Wald statistic equals

T
(

1 + r̄′pΩ̃−1r̄p

)−1
δ̂′0Σ̂−1δ̂0, which deviates from NW̃ by a factor of T−L−1

T−N−L . Another example is the χ2 statistic formula

in Cochrane (2005, p. 230), which deviates from NW̃ by a factor of T
T−N−L . Both factors are larger than 1, meaning that both χ2

statistics are larger than NW̃ for any sample size, with Cochrane’s (2005, p. 230) formula being the largest. Note that Cochrane
(2005, p. 230), like Gibbons et al. (1989), only gives the formula for the L = 1 case, and here we refer to its generalized version for
the L ≥ 1 case.

12 In Section 3, we only report empirical results using the Wald statistic for the asymptotic χ2 test. Since the formula in Cochrane
(2005, p. 230) is even larger, it will lead to worse over-rejection.

13 We thank Ken French for making this valuable resource freely available.
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