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Abstract: A general methodology for loan amortization under arbitrary discount functions is dis-
cussed. It is shown that it is always possible to uniquely define a scheme for constructing the loan
amortization schedule with an arbitrary assigned discount function. It is also shown that, even if
the loan amortization is carried out from the sequence of principal payments and the sequence of
accrued interest, the underlying discount function can be uniquely determined at the maturities
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derive the amortization method according to the law of simple interest.
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1. Introduction

The past decade has seen a renewed interest in Italy in the valuation of amortizing
loans, following an important debate on the consistency of the law of compound interest,
also known as the law of exponential capitalization, with the principle, enshrined in Italian
law, that interest produced in one period of time cannot produce interest in subsequent
periods, a phenomenon called "anatocism".

In recent years, many Italian courts have produced conflicting rulings, in some cases
accepting and in others denying the presence of anatocism in certain amortization schemes
widespread in operating practices, such as, for example, the French amortization method,
which is characterized by constant installments under the law of compound interest (for
a review, see Annibali et al. (2017)). These conflicting rulings have animated an intense
debate involving jurists, economists and mathematicians in an attempt to arrive at a shared
solution that reconciles the financial mathematics of loan amortization with Italian law.
Two main points are debated. The first is whether anatocism is present when amortizing
loans are evaluated according to the law of compound interest (Fersini and Olivieri 2015).
The second point concerns the possibility of exploring different amortization methods, with
a focus on amortization methods consistent with the law of simple interest, also called the
law of linear capitalization (Annibali et al. 2018; Mari and Aretusi 2018, 2019).

In Italy last year (2023), the issue landed in the Corte Suprema di Cassazione, the
highest court in the judicial system established to ensure the correct application of the law,
which will have to rule in the coming months on the compatibility with Italian law of the
loan amortization techniques most widely used in operating practices (key documents are
downloadable at www.cortedicassazione.it).

The problem also has international significance. Several international disputes have
shown a general tendency not to accept compound interest (for a comprehensive review
see Sinclair (2016)). This is motivated by the fact that the exponential nature of the law
of compound interest has an explosive effect in the medium to long term, a factor that
greatly affects the risk of default and, therefore, the ability to efficiently plan investments
(Cerina 1993).
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In an attempt to guide the debate, some authors (Pressacco et al. 2022) proposed two
different amortization schemes based on different inputs but sharing the same accrued
interest calculation rule. In the first scheme, with no apparent reference to an underlying
discount function, the input is the principal amount, the sequence of principal payments
and the sequence of accrued interest is calculated by multiplying the interest rate by the
outstanding balance. In the second scheme, the input is given by the principal amount,
the sequence of installments calculated according to the law of compound interest and the
sequence of accrued interest is calculated, as in the first scheme, by multiplying the interest
rate by the outstanding balance. They claim that, in both of these amortization schemes,
which are widespread in operating practices, there is no generation of interest on interest if
and only if the principal payments are non-negative.

However, it is well known in the financial literature that the first amortization scheme
proposed by Pressacco et al. (2022) includes the second as a special case of a single standard
scheme under the law of compound interest (Ottaviani 1988). The authors probably do
not realize that the presence of the law of compound interest is due to the assumption of
the rule for calculating accrued interest and that, regardless of the positivity or negativity
of principal payments, both proposed schemes involve the phenomenon of generating
interest from interest (as we will show explicitly below).

The purpose of this paper is to provide a unified theoretical framework in which to
find useful elements and insights for discussion. We focus on the possibility of establishing
a general methodology for evaluating amortizing loans according to arbitrary financial
laws and discuss a versatile methodology for loan amortization that allows for the unam-
biguous construction of a loan amortization schedule with any assigned discount function.
Moreover, to monitor the interest generation process and understand the interest flow over
time, an extended amortization schedule is introduced. Like a macro lens to uncover the
intimate structure of the amortizing loan, the extended amortization schedule contains
all the information needed to fully understand the loan repayment process. This level
of customization is noteworthy because it can be adapted to various environments and
financial scenarios. Different amortization methods can have varying effects on borrowers,
including the total cost of borrowing, the distribution of interest payments over time and
the pace of debt repayment. Research in this area can inform policymakers and consumer
advocacy groups about the potential impacts on borrowers and help develop regulations
that promote fair lending practices.

The approach we propose is fully consistent with the general Heath–Jarrow–Morton
(HJM) methodology for pricing interest rate-sensitive contingent claims (Heath et al. 1992).
Starting from the initial discount function, the HJM methodology provides a no-arbitrage-
based pricing approach consistent with any assigned initial discount function. In our
approach, the loan amortization methodology is developed starting from the initial discount
function, i.e., the observed discount function at the evaluation time, with the support of
some basic no-arbitrage arguments and without any reference to the decomposability
property (Castellani et al. 2005), which plays no role in this context. In particular, it will be
shown that the dynamic evolution of the outstanding balance during the lifetime of the
loan is time-consistent and does not imply arbitrage.

As a consequence of the proposed methodology, two significant results are presented.
The first result allows us to design loan amortization using two different but equivalent

schemes under any assigned discount function. In the first scheme, loan amortization is
carried out starting from the knowledge of the discount function and the sequence of the
loan installments; in the second scheme, loan amortization is performed starting from the
sequence of principal payments and the sequence of accrued interest. It will be shown that,
even if the second scheme is adopted, the underlying discount function can be uniquely
determined at the maturities corresponding to the installment payment dates. These
findings will be presented more formally in Theorems 1 and 2.

As a second result, we derive the amortization method under the law of simple interest
as a particular case of the proposed methodology. In this method, the generation of interest
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on interest is precluded. In fact, we will show that, under the law of simple interest,
accrued interest is calculated on the present value of the outstanding balance and not
on the outstanding balance itself as in the compound interest method of amortization.
In this way, the interest component is removed from the outstanding balance and the
interest compounding over time is avoided. The method of loan amortization according
to the law of simple interest derived in this paper from the first principles of financial
mathematics reproduces that obtained by Mari and Aretusi (2018, 2019). The inclusion of a
loan amortization scheme under the law of simple interest, in which the interest-on-interest
phenomenon is avoided, could be particularly useful for financial practitioners interested
in alternative amortization methods that preclude compound interest.

This study provides a conceptual framework for evaluating amortization methods
based on arbitrary financial laws, which appropriately extends the most common method
of loan amortization, based on the law of compound interest, by including the latter as a
special case. This paper could improve our understanding of loan amortization and its
potential flexibility with the aim of providing a new perspective on traditional financial
methods. We believe that one of the strengths of this paper is its ability to not only propose
a unifying methodology, but also provide a detailed comparison with established practices
that can be useful for both academic and professional audiences.

This paper is organized as follows. Section 2 outlines the general methodology for
loan evaluation. Section 3 illustrates the standard amortization method. Section 4 presents
the extended amortization schedule. In Section 5, Theorems 1 and 2 are stated and proved.
Section 6 presents the loan amortization method under the law of compound interest
as a particular case of our methodology. As a further special case, Section 7 provides
the loan amortization method under the law of simple interest. The interest-on-interest
question is discussed in both Sections 6 and 7. The interest-on-interest phenomenon
under arbitrary discount functions is discussed in Section 8. Finally, Section 9 provides
some conceptual insights into a different method of loan amortization under a linear
capitalization scheme proposed in the literature (Annibali et al. 2018), showing that there is
one and only one method of loan amortization under the law of simple interest, the one
described in this study.

2. Methods

In this section, we provide a general methodology to design amortizing loans. The
main goal is to show how to amortize a loan and properly construct amortization schedules
under arbitrary discount functions.

2.1. Some Basic Results

Let us denote by v(0, T) the discount function observed at the current time t = 0 (the
present). It denotes the value at time t = 0 of one unit of money payable at a later time
T and can incorporate credit risk (Duffie and Singleton 1999; Mari and Renò 2005). By
standard no-arbitrage arguments, it follows that the discount function must be a strictly
positive function (Duffie and Singleton 1999), i.e.,

v(0, T) > 0, T ≥ 0, (1)

with
v(0, 0) = 1. (2)

Following the HJM methodology (Heath et al. 1992), the discount function is indepen-
dent of the amount: if xT denotes a monetary amount payable at time T (T ≥ 0), its value
at time t = 0, x0, is given by

x0 = xTv(0, T). (3)

The monetary amount x0 is the present value of the amount xT available at time T.
The amount x0 can be viewed as the spot price at time t = 0 of a contingent claim paying
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the amount xT at time T (spot evaluation). Hence, the amounts x0 and xT can be transformed
into each other and, therefore, are said to be financially equivalent.

The knowledge of the discount function allows us to define an equivalence relationship
between monetary amounts due at different future times. Indeed, let us denote by xT1 a
sum of money due at time T1 (T1 > 0) and by xT2 a sum of money due at time T2 (T2 > 0),
which are financially equivalent if and only if they have the same present value,

xT2 v(0, T2) = xT1 v(0, T1). (4)

In fact, to avoid arbitrage opportunities, the following forward pricing formula must
hold (Brigo and Mercurio 2006; Heath et al. 1992):

xT1 = xT2

v(0, T2)

v(0, T1)
. (5)

In this regard, the amount xT1 can be viewed as the forward price at time T1 of
a contingent claim paying the amount xT2 at time T2 (forward evaluation). Therefore, if
the amounts xT1 and xT2 satisfy Equation (4) or, equivalently, Equation (5), they can be
transformed into each other.

Stated in a different way, xT1 and xT2 are financially equivalent if and only if they
differ only in the interest component. Indeed, Equation (5) shows that xT2 , the financially
equivalent amount of xT1 , can be determined by first discounting xT1 from time T1 to
current time t = 0, thus eliminating the interest component, and then imputing accrued
interest in the time interval [0, T2] by capitalizing the obtained value from time t = 0 to
time T2.

The binary relation defined by Equation (5) is an equivalence relation. Indeed, it is
trivially reflexive and symmetric. It is also a transitive relation because if xT1 v(0, T1) =
xT2 v(0, T2) and xT2 v(0, T2) = xT3 v(0, T3), it follows that xT1 v(0, T1) = xT3 v(0, T3), regard-
less of the temporal ordering of T1, T2 and T3. The binary relation defined by Equa-
tion (5), being reflexive, symmetric and transitive, provides an equivalence relation between
amounts of money due at different times.

The extension of the definition of financial equivalence to cash flows is straightforward.
Indeed, let us consider the cash flow,

x = {xt1 , xt2 , · · · , xtn}, (6)

where 0 < t1 < t2 < · · · < tn. The amount ST at time T ≥ 0 is financially equivalent to the
cash flow x if and only if the present value of ST is equal to the present value of x, that is, if
and only if the following relationship holds:

STv(0, T) =
n

∑
k=1

xtk v(0, tk). (7)

In fact, the following forward pricing formula must hold to avoid arbitrage opportuni-
ties (Brigo and Mercurio 2006; Heath et al. 1992):

ST =
1

v(0, T)

n

∑
k=1

xtk v(0, tk), (8)

which extends by linearity to Equation (5). Again, the rationale is that, if Equation (8) is
satisfied, the amount ST can be transformed into the cash flow x and vice versa, because
each term in the r.h.s. of Equation (8), i.e., xtk v(0, tk)/v(0, T), has only one financially
equivalent amount xtk at time tk.

Equation (8) has a very interesting financial interpretation: each term xtk is first
discounted from time tk to time t = 0 to eliminate the interest component; then, it is
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capitalized from time t = 0 to time T to include the interest accrued in the time interval
[0, T]. In the case T = 0, Equation (8) becomes

S0 =
n

∑
k=1

xtk v(0, tk). (9)

Finally, we close this section by pointing out that the equivalence relationship is
established at time t = 0 on the basis of the information contained in the discount function
at time t = 0 and that it is not necessarily preserved over time. Due to the unpredictability
of the time evolution of the discount function, monetary amounts that are financially
equivalent at time t = 0 may no longer be financially equivalent at a later time.

2.2. Designing Amortizing Loans

The methodology outlined in the previous section can be employed to value amor-
tizing loans under arbitrary discount functions. To show this, let us consider at time
t = 0 a loan with a principal amount S0 that will be repaid with a series of non-negative
future installments,

r = {R1, R2, · · · , Rn}, (10)

scheduled at regular time intervals 1, 2, · · · , n, with Rn > 0. If we denote by v(0, T) the
discount function at time t = 0, the following relationship must hold, as a consequence
of Equation (9):

S0 =
n

∑
k=1

Rkv(0, k). (11)

Let us denote by Mk the outstanding balance after the payment of the k-th installment.
By definition, Mk, k = 1, 2, · · · , n − 1, is the monetary amount due at time k that is finan-
cially equivalent to receiving the stream of future installments rk = {Rk+1, Rk+2, · · · , Rn}.
To avoid arbitrage opportunities, it can be computed from Equation (8), thus obtaining

Mk =
1

v(0, k)

n

∑
j=k+1

Rjv(0, j), k = 1, 2, · · · , n − 1. (12)

Equation (12) ensures that the dynamic evolution of the outstanding balance during
the lifetime of the loan is time-consistent and does not imply arbitrage.

The values of the outstanding balance, Mk, k = 1, 2, · · · , n − 1, are strictly positive. Of
course it must be Mn = 0 because, after the last payment at time n, the outstanding balance
is zero. Moreover, since at time t = 0 the outstanding balance coincides with the principal
amount, we pose M0 = S0. We note that each term Rj in Equation (12) is first discounted at
time t = 0 to eliminate the interest component; then, it is capitalized from time 0 to time
k to include the interest accrued in the time interval [0, k]. In this sense, the outstanding
balance can be thought of as a mixture of principal and interest.

Equation (12) provides the so-called prospective method for computing the outstanding
balance. In addition, since from Equation (11) we obtain

n

∑
j=k+1

Rjv(0, j) = S0 −
k

∑
j=1

Rjv(0, j), k = 1, 2, · · · , n − 1, (13)

we can recast Equation (12) in the following useful form:

Mk =
1

v(0, k)

(
S0 −

k

∑
j=1

Rjv(0, j)
)

, k = 1, 2, · · · , n − 1, (14)

that provides the so-called retrospective method for computing the outstanding balance.
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The dynamics of the outstanding balance can also be determined recursively by
comparing the outstanding balance at time k − 1 with the outstanding balance at time k,
thus obtaining

Mk−1 =
v(0, k)

v(0, k − 1)
(Mk + Rk), k = 1, 2, · · · , n. (15)

It should be noted that Equation (15) could have been obtained directly as a conse-
quence of the financial equivalence between the outstanding balance Mk−1 at time k − 1
and the amount Mk + Rk at time k, which is the sum of the outstanding balance at time k
and the k-th installment. Finally, it is worth pointing out that Equation (12) can be recovered
as the only solution of Equation (15) under the terminal condition Mn = 0, thus proving
the equivalence of the above representations of the outstanding balance.

3. The Standard Amortization Schedule

Equation (15) can be cast in a more expressive form1:

Mk = Mk−1 + i(0, k − 1, k)Mk−1 − Rk, (16)

where

i(0, k − 1, k) =
v(0, k − 1)

v(0, k)
− 1, (17)

is the one-period forward rate and quantifies the interest accrued in the time interval
[k − 1, k] (Berk and De Marzo 2014). In this regard, we note that the dynamics of the
outstanding balance has a simple structure driven by two components, namely accrued
interest and loan repayments. If we recast Equation (16) in the following form:

Rk = Mk−1 − Mk + i(0, k − 1, k)Mk−1, (18)

we can see that each installment Rk can be decomposed into two components, namely

Rk = Ck + Ik, (19)

where
Ck = Mk−1 − Mk, (20)

and
Ik = i(0, k − 1, k)Mk−1. (21)

Equation (20) shows that Ck quantifies the change in the outstanding balance over the
time interval [k − 1, k] and Equation (21) shows that Ik is the interest accrued over the same
time interval. Finally, it is straightforward to show that the outstanding balance, Mk, can
also be expressed as

Mk = S0 −
k

∑
j=1

Cj, (22)

and that the following relationship holds:

n

∑
k=1

Ck = S0. (23)

For this reason, in the literature the numbers Ck (k = 1, 2, · · · , n) are called princi-
pal payments.

The standard amortization schedule is a table that shows all the financial information
of the loan mentioned above (Broverman 2017; Pressacco et al. 2022). In particular, the
amortization schedule exhibits for each k the vector

ϕk = {k, Rk, Ck, Ik, Mk}, (24)
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starting from the initial vector ϕ0 = {0, 0, 0, 0, S0} which is reported in the first row of the
table. All the financial quantities contained in ϕk can be easily computed in the proposed
approach. For example (but this is not the only way), under an assigned discount function,
the amortization schedule can be constructed iteratively as follows: starting from the
principal amount M0 = S0 and the loan repayment plan, Rk, obtained as a solution of
Equation (11) with Rk ≥ 0 and Rn > 0, accrued interest Ik can be calculated by using
Equation (21); then, Ck can be obtained from Equation (19) by taking the difference

Ck = Rk − Ik, (25)

and, finally, Mk can be computed from Equation (20),

Mk = Mk−1 − Ck. (26)

A Numerical Example

To illustrate the standard amortization method, consider a loan with principal amount
S0 = 100 repaid with an annuity consisting of n = 5 equal installments due at regular
intervals k = 1, 2, · · · , 5. The values of the discount function at time t = 0 are reported in
Table 1.

Table 1. The discount function.

k 1 2 3 4 5

v(0, k) 0.9346 0.8573 0.7513 0.7084 0.6560

The amount of each payment can be computed by using Equation (11), thus obtaining

R =
S0

∑n
k=1 v(0, k)

. (27)

The standard amortization schedule, obtained by following the iterative procedure
discussed above, is given in Table 2.

Table 2. The standard amortization schedule.

k Rk Ck Ik Mk

0 0 0 0 100
1 25.59 18.59 7.00 81.41
2 25.59 18.25 7.34 63.16
3 25.59 16.68 8.91 46.47
4 25.59 22.78 2.81 23.70
5 25.59 23.70 1.89 0

4. The Extended Amortization Schedule

Before proceeding further, it is necessary to explore one aspect that is definitely
relevant to our analysis. Is it correct to identify accrued interest with paid interest? Looking
at Equation (11), we can see that each term Rk is discounted at time t = 0. Discounting
removes the interest component from Rk, thus providing the portion of the principal that is
actually repaid with the k-th installment (in concordance also with the decomposition of a
loan into single-payment loans). In this picture, the interest content of each installment is
then given by the difference Rk − Rkv(0, k). Let us pose, therefore,

S0,k = Rkv(0, k), (28)

and
Jk = Rk

[
1 − v(0, k)], (29)
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to indicate, respectively, the portion of principal and the portion of interest actually paid
with the k-th installment. In addition to the representation provided by Equation (19), Rk
also admits, therefore, the following decomposition:

Rk = S0,k + Jk. (30)

Of course, S0,k ̸= Ck and Jk ̸= Ik; however, the following equalities hold:

n

∑
k=1

S0,k =
n

∑
k=1

Ck = S0, (31)

n

∑
k=1

Jk =
n

∑
k=1

Ik. (32)

as a consequence of Equations (11) and (19). Since S0,k is the present value of Rk, it contains
no interest and is, therefore, pure capital. For this reason, we will refer to the amounts S0,k
(k = 1, 2, · · · , n) as principal “bare” payments.

The financial quantities we have just introduced, namely S0,k and Jk, allow for a
meaningful representation of outstanding balance. In fact, by substituting Equation (30)
into Equation (16), we obtain

Mk = Mk−1 − S0,k + Ik − Jk. (33)

Since Ik is the interest accrued in the time interval [k − 1, k] and Jk is the amount of
interest actually paid with the k-th installment, it follows that whenever Jk < Ik, the interest
component of Mk increases by the amount Ik − Jk; if Jk > Ik, the interest component of Mk
decreases by the amount Jk − Ik. Furthermore, since Ck = Mk−1 − Mk, Equation (33) also
provides the relationship between Ck and S0,k, namely

Ck = S0,k + Jk − Ik, (34)

showing that Ck, despite being called principal payment, contains a well-defined interest
component. Moreover, let us denote by D0,k the value of the principal not yet actually
repaid with the first k installments, i.e, the difference between S0 and the sum of the first k
principal bare payments,

D0,k = S0 −
k

∑
j=1

S0,j =
n

∑
j=k+1

S0,j, k = 1, 2, · · · , n − 1. (35)

By substituting Equation (28) into Equation (12) we obtain a very expressive relation-
ship between Mk and D0,k, namely

Mk =
D0,k

v(0, k)
, (36)

or, equivalently,
D0,k = Mkv(0, k), (37)

showing that D0,k is the present value of the outstanding balance Mk. Of course, it is
D0,n = 0 and D0,0 = S0. Since D0,k is the present value of Mk, it contains no interest and is,
therefore, pure capital2. As a consequence, the difference Mk − D0,k quantifies the interest
component in the outstanding balance. It is given by

Mk − D0,k =
k

∑
j=1

(Ij − Jj), (38)
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as it is straightforward to prove by recursively applying Equation (33).
Finally, since Ck = Mk−1 − Mk and S0,k = D0,k−1 − D0,k, we also obtain the following

interesting picture: Ck is given by the difference between the outstanding balance at
time k − 1 and the outstanding balance at time k; S0,k is given by the difference between
the present value of the outstanding balance at time k − 1 and the present value of the
outstanding balance at time k.

In the extended amortization schedule, we will provide synoptically all relevant
financial information about the loan, showing explicitly for each k the vector

ϕext
k = {k, Rk, Ck, Ik, Mk, S0,k, Jk, D0,k}, (39)

starting from the initial vector ϕext
0 = {0, 0, 0, 0, S0, 0, 0, S0} reported in the first row of the

table. In the extended amortization schedule, the traditional schedule is shown to the left of
the vertical bar. On the right-hand side, some additional information is given concerning,
for each epoch k, the financial quantities S0,k, Jk and D0,k. Like a macro lens to uncover the
intimate structure of the amortizing loan, the part to the right of the vertical bar contains
all the information needed to monitor the interest generation process and understand the
interest flow over time.

A Numerical Example

Referring to the numerical example discussed in the previous section, the extended
amortization schedule is shown in Table 3.

Table 3. The extended amortization schedule.

k Rk Ck Ik Mk S0,k Jk D0,k

0 0 0 0 100 0 0 100
1 25.59 18.59 7.00 81.41 23.92 1.67 76.08
2 25.59 18.25 7.34 63.16 21.94 3.65 54.14
3 25.59 16.68 8.91 46.47 19.23 6.36 34.92
4 25.59 22.78 2.81 23.70 18.13 7.46 16.79
5 25.59 23.70 1.89 0 16.79 8.80 0

5. Uncovering the Financial Law behind an Amortizing Loan

In this section, we discuss a loan amortization technique that can be configured as
a second well-defined amortization scheme (Pressacco et al. 2022). With no apparent
reference to an underlying discount function, in this scheme the input is given by the
principal amount, S0, the sequence of principal payments, Ck, and the sequence of accrued
interest, Ik. To simplify the notation, let us pose

Bk = S0 −
k

∑
j=1

Cj, B0 = S0. (40)

We assume that the sequences of numbers Ck and Ik satisfy the following conditions:

(G1) Bn = 0;
(G2) Ik = f (k)Bk−1

(
f (k) > −1

)
, k = 1, 2, · · · , n;

(G3) Ck + Ik ≥ 0, k = 1, 2, · · · , n − 1, Cn + In > 0.

From this figure, the loan installments and outstanding balance are calculated as follows:

Rk = Ck + Ik, (41)

and
Mk = Mk−1 − Ck, M0 = S0. (42)
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Condition (G1) ensures that Mn = 0, i.e.,

n

∑
k=1

Ck = S0, (43)

and that Mk = Bk; condition (G2) also allows for negative rates to be taken into account;
condition (G3) ensures that the installments, Rk, are non-negative with Rn > 0. Moreover,
conditions (G1)–(G3) imply that

Mk > 0, k = 1, 2, · · · , n − 1. (44)

Indeed, if there is k̄ such that Mk̄ ≤ 0, k̄ = 1, 2, · · · , n − 1, it follows that

Mk̄+1 = (1 + f (k̄ + 1))Mk̄ − Rk̄ ≤ 0

and so on until time n where Mn < 0 since Rn > 0.
We will show that, even if this second scheme is adopted, the underlying discount

function can be uniquely determined at the maturities corresponding to the installment
payment dates. In addition, we will show that this second amortization scheme is equiva-
lent to the scheme discussed in Section 3. These results are more formally described by the
following Theorems 1 and 2. In particular, Theorem 1 summarizes the findings obtained
in Section 3.

Theorem 1. Let S0 a strictly positive number and consider for k = 1, 2, · · · , n: (i) a sequence
of strictly positive numbers v(0, k); (ii) a sequence of non-negative numbers Rk, with Rn > 0,
such that

S0 =
n

∑
k=1

Rkv(0, k). (45)

If Mk is computed according to

Mk =
1

v(0, k)

n

∑
j=k+1

Rjv(0, j), k = 1, 2, · · · , n − 1, (46)

and Mn = 0, then there exist a unique sequence of numbers Ck and a unique sequence of numbers
Ik, k = 1, 2, · · · , n, satisfying conditions (G1)–(G3), such that the amortizing schedule can be
computed according to the following rules:

Rk = Ck + Ik, (47)

and
Mk = Mk−1 − Ck, M0 = S0. (48)

Proof of Theorem 1. Under the assumptions of Theorem 1, the sequences of numbers Ck
and Ik are given by Equations (20) and (21), respectively. Then, it is straightforward to
verify that conditions (G1)–(G3) hold with f (k) = i(0, k − 1, k).

The converse is also true. Indeed, we will prove that the following proposition holds.

Theorem 2. Let S0 a strictly positive number and consider for k = 1, 2, · · · , n: (i) a sequence of
numbers Ck and (ii) a sequence of numbers Ik satisfying conditions (G1)–(G3). If the amortizing
schedule is computed according to the following rules:

Rk = Ck + Ik, (49)

and
Mk = Mk−1 − Ck, M0 = S0, (50)
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there exists a unique sequence of numbers,

v(0, k) =
k

∏
j=1

1
1 + f (j)

k = 1, 2, · · · , n, (51)

such that the following relationships hold:

S0 =
n

∑
k=1

Rkv(0, k), (52)

Mk =
1

v(0, k)

n

∑
j=k+1

Rjv(0, j), k = 1, 2, · · · , n − 1. (53)

Moreover, the numbers v(0, k), k = 1, 2, · · · , n, are strictly positive.

Proof of Theorem 2. Preliminarily, we note that, from condition (G2), the numbers v(0, k)
defined by Equation (51) are strictly positive since f (k) > −1. By substituting Equation (49)
into Equation (50), we obtain

Mk = Mk−1 + f (k)Mk−1 − Rk, (54)

where condition (G2) has been used. Solving with respect to Mk−1, we obtain

Mk−1 =
Rk + Mk
1 + f (k)

. (55)

By using Equation (51), we can rewrite Equation (55) in the following recursive form:

Mk−1 =
v(0, k)

v(0, k − 1)
(Rk + Mk), k = 1, 2, · · · , n, (56)

with v(0, 0) = 1. Equations (52) and (53) can be then recovered by backward induction
starting from Mn = 0 and recalling that M0 = S0. To prove the uniqueness, we observe
that the system of n linear equations in the n unknowns v(0, k), k = 1, 2, · · · , n, described
by Equation (56), admits one and only one solution.

As Theorem 2 clearly shows, the rule for calculating interest, expressed by condition
(G2), plays a crucial role in identifying the discount function, allowing it to be uniquely de-
termined. Moreover, we note that Equation (51) can be cast in the following recursive form:

v(0, k) =
v(0, k − 1)
1 + f (k)

, k = 1, 2, · · · , n, (57)

with v(0, 0) = 1.
As an example, it is easy to verify that the discount function represented in Table 1 can

be easily discovered from the amortization schedule shown in Table 2 by using Equation (51)
or, equivalently, Equation (57).

6. Amortizing Loans under the Law of Compound Interest

As a special case of the general approach proposed in this paper, we derive the
amortization method according to the law of compound interest, which is the most common
way of amortizing loans. In such a case, the discount function at time t = 0 is expressed
as follows:

v(0, T) =
1

(1 + i)T , (58)
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where i denotes the interest rate level at time t = 0. Within this framework, one-period
forward rates are constant, namely

i(0, k − 1, k) = i. (59)

6.1. The Amortization Method

Let us consider at time t = 0 a loan with a principal amount S0 which will be repaid
with a series of future non-negative installments,

r = {R1, R2, · · · , Rn}, (60)

scheduled at regular time intervals 1, 2, · · · , n, with Rn > 0. From Equation (11), the
following relationship must hold:

S0 =
n

∑
k=1

Rk

(1 + i)k . (61)

According to the law of compound interest, the dynamics of the outstanding balance,
described by Equation (16), becomes

Mk = Mk−1 + iMk−1 − Rk, (62)

so that each installment can be decomposed in the following form:

Rk = Ck + Ik, (63)

where
Ck = Mk−1 − Mk, (64)

quantifies the change in the outstanding balance in the time interval [k − 1, k], and

Ik = iMk−1, (65)

is the interest accrued over the same time interval. Then, the amortization method is
uniquely defined according to the schemes provided by Theorem 1 or Theorem 2.

Finally, we emphasize that, under the law of compound interest, the outstanding
balance has a very appealing representation. In fact, applying Equation (12) we obtain,

Mk =
n

∑
j=k+1

Rj

(1 + i)j−k . (66)

However, attention should be paid to financial interpretations of this formula. It does
not represent the present value at time k of the installments not yet repaid at that time.
Since k is a future time instant, the discount function at that epoch is unknown (it is a
random variable).

Numerical Examples

To illustrate the amortization method, consider a loan with a principal amount of
S0 = 100 repaid with an annuity consisting of n = 5 equal installments due at regular
intervals k = 1, 2, · · · , 5. We assume that the interest rate level is i = 10%. The amount of
each installment is computed according to Equation (61),

R =
S0

∑n
k=1 v(0, k)

, (67)
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where
v(0, k) =

1
(1 + i)k . (68)

The extended amortization schedule is depicted in Table 4.

Table 4. Constant installments.

k Rk Ck Ik Mk S0,k Jk D0,k

0 0 0 0 100 0 0 100
1 26.38 16.38 10.00 83.62 23.98 2.40 76.02
2 26.38 18.02 8.36 65.60 21.80 4.58 54.22
3 26.38 19.82 6.56 45.78 19.82 6.56 34.40
4 26.38 21.80 4.58 23.98 18.02 8.36 16.38
5 26.38 23.98 2.40 0 16.38 10.00 0

Looking at Table 4, we note the correspondence Ik = Jn−k+1 (and Ck = S0,n−k+1).
However, such a relationship is accidental. In fact, if we consider the loan described in the
previous example but with constant principal payments, Ck = S0/n, this correspondence
disappears, as the amortization schedule presented in Table 5 clearly shows.

Table 5. Constant principal payments.

k Rk Ck Ik Mk S0,k Jk D0,k

0 0 0 0 100 0 0 100
1 30.00 20.00 10.00 80.00 27.27 2.73 72.73
2 28.00 20.00 8.00 60.00 23.14 4.86 49.59
3 26.00 20.00 6.00 40.00 19.53 6.47 30.05
4 24.00 20.00 4.00 20.00 16.39 7.61 13.66
5 22.00 20.00 2.00 0 13.66 8.34 0

6.2. The Interest-on-Interest Phenomenon

Under the law of compound interest, the interest accrued in the time interval [k − 1, k]
is computed on the outstanding balance at time k − 1 according to

Ik = iMk−1. (69)

We recall that Mk−1 is related to D0,k−1 by Equation (36) which, in the law of compound
interest, becomes

Mk−1 = (1 + i)k−1D0,k−1. (70)

The interest accrued in the time interval [k − 1, k] can be, therefore, expressed as

Ik = i(1 + i)k−1D0,k−1. (71)

Since D0,k−1 is pure capital, Equation (71) shows that the phenomenon of generating
interest on interest is implicit in the law of compound interest and arises as a consequence of
calculating accrued interest according to Equation (69), i.e., by multiplying the outstanding
balance at each epoch k − 1 by the interest rate i.

Equation (71) allows us to quantify the amount of the interest-on-interest component
at each epoch. It is given by

Ak = i(1 + i)k−1D0,k−1 − iD0,k−1 = iD0,k−1
[
(1 + i)k−1 − 1

]
, (72)

or, in terms of the outstanding balance, by

Ak = iMk−1
[
1 − (1 + i)−(k−1)]. (73)
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Table 6 shows, in the first and second rows, respectively, the interest-on-interest
component of the loan amortization examples depicted in Tables 4 and 5.

Table 6. The interest-on-interest component.

k 1 2 3 4 5

Ak 0 0.76 1.14 1.14 0.76
Ak 0 0.73 1.04 0.99 0.63

As discussed below, amortizing loans designed under the law of simple interest are
not affected by this mechanism of interest compounding over time.

Finally, we show that the law of compound interest is the only financial law charac-
terized by the property that accrued interest in each time interval [k − 1, k] is calculated
as a given percentage, say i, of the outstanding balance at time k − 1, as described by
Equation (69). This result is a consequence of Theorem 2, with f (k) = i. In fact, from
Equation (51) we obtain

v(0, k) =
1

(1 + i)k . (74)

Therefore, adopting Equation (69) as the rule for calculating accrued interest (Pressacco
et al. 2022) uniquely identifies the law of compound interest with its interest-on-interest
component.

7. Amortizing Loans under the Law of Simple Interest

As a special case of the general approach proposed in this paper, we derive the
amortization method under the law of simple interest. In this case, the discount function is
given by

v(0, T) =
1

1 + iT
, (75)

where i denotes the interest rate level at time t = 0. Within this framework, one-period
forward rates are not constant and are given by

i(0, k − 1, k) =
i

1 + i(k − 1)
. (76)

7.1. The Amortization Method

Let us consider at time t = 0 a loan with a principal amount S0 which will be repaid
with a series of future non-negative installments,

r = {R1, R2, · · · , Rn}, (77)

scheduled at regular time intervals 1, 2, · · · , n, with Rn > 0. From Equation (11), the
following relationship must hold:

S0 =
n

∑
k=1

Rk
1 + ik

. (78)

Under the law of simple interest, the dynamics of the outstanding balance, described
by Equation (16), becomes

Mk = Mk−1 +
iMk−1

1 + i(k − 1)
− Rk, (79)

so that each installment can be decomposed in the following form:

Rk = Ck + Ik, (80)
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where
Ck = Mk−1 − Mk, (81)

quantifies the change in the outstanding balance in the time interval [k − 1, k], and

Ik =
iMk−1

1 + i(k − 1)
, (82)

is the interest accrued over the same time interval. Then, the amortization method is
uniquely defined according to the schemes provided by Theorem 1 or Theorem 2. It is
worth noting a very important difference from the amortization method based on the law
of compound interest. Indeed, looking at Equation (82), we observe that, under the law of
simple interest, the interest accrued in the time interval [k − 1, k] is calculated multiplying
by i the present value of the outstanding balance at time k − 1. In this way, the interest
component of the outstanding balance is removed, thus preventing interest compounding
over time.

As a final remark, consider a single-payment loan, i.e., a loan with a principal amount
of S0 repaid with a single strictly positive installment Rn = S0(1+ in) at time n. In this case,
the dynamics of the outstanding balance can be determined by applying Equation (12),
thus obtaining

Mk = (1 + ik)S0, k = 1, 2, · · · , n − 1, (83)

and Mn = 0. Therefore, the outstanding balance grows linearly over time until time n and
then equals 0 due to the payment of the n-th installment. By applying Equation (82), we
see that accrued interest is constant over each time interval, namely

Ik = iS0, (84)

just as required by the law of simple interest. The significant implications of Equation (82)
will be further discussed below.

Numerical Examples

To illustrate the amortization method with simple interest, consider a loan with a
principal amount of S0 = 100 repaid with an annuity consisting of n = 5 equal installments
due at regular time intervals k = 1, 2, · · · , 5. We assume that the interest rate level is i = 10%.
The amount of each installment is computed by using Equation (78), thus obtaining

R =
S0

∑n
k=1 v(0, k)

, (85)

with
v(0, k) =

1
1 + ik

. (86)

The extended amortization schedule is depicted in Table 7.

Table 7. Constant installments.

k Rk Ck Ik Mk S0,k Jk D0,k

0 0 0 0 100 0 0 100
1 25.69 15.69 10.00 84.31 23.35 2.34 76.65
2 25.69 18.03 7.66 66.29 21.41 4.28 55.24
3 25.69 20.17 5.52 46.12 19.76 5.93 35.48
4 25.69 22.14 3.55 23.98 18.35 7.34 17.13
5 25.69 23.98 1.71 0 17.13 8.56 0

In the case of constant principal payments, the amortization schedule is shown in
Table 8.
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Table 8. Constant principal payments.

k Rk Ck Ik Mk S0,k Jk D0,k

0 0 0 0 100 0 0 100
1 30.00 20.00 10.00 80.00 27.27 2.73 72.73
2 27.27 20.00 7.27 60.00 22.73 4.55 50.00
3 25.00 20.00 5.00 40.00 19.23 5.77 30.77
4 23.08 20.00 3.08 20.00 16.48 6.59 14.29
5 21.43 20.00 1.43 0 14.29 7.14 0

7.2. The Absence of the Interest-on-Interest Phenomenon

Under the law of simple interest, the interest accrued in the time interval [k − 1, k]
is computed on the present value of the outstanding balance Mk−1, as expressed by
Equation (82), namely

Ik =
iMk−1

1 + i(k − 1)
, (87)

and not on Mk−1 as required by the law of compound interest, i.e., Ik = iMk−1. In this way,
the interest compounding over time, i.e., the generation of interest on interest, is precluded.
Indeed, we recall that Mk−1 is related to D0,k−1 by Equation (36) which, in the law of simple
interest, becomes

Mk−1 = (1 + i(k − 1))D0,k−1. (88)

The accrued interest in the time interval [k − 1, k] is, therefore, given by

Ik = iD0,k−1. (89)

Since D0,k−1 is pure capital and, therefore, contains no interest, capitalization of interest
over time is avoided.

Moreover, we show that the law of simple interest is the only financial law in which
interest accrued in each time interval [k − 1, k] is calculated as a given percentage, say i, of
the present value of the outstanding balance at time k − 1, namely

Ik = iv(0, k − 1)Mk−1. (90)

This result is a consequence of Theorem 2, with

f (k) = iv(0, k − 1). (91)

In fact, by substituting Equation (91) into Equation (51), we obtain

v(0, k) =
1

1 + ik
. (92)

Finally, we emphasize that an appealing formula similar to Equation (66) also applies
to the outstanding balance computed according to the law of simple interest. In fact, from
Equation (12) we obtain

Mk =
n

∑
j=k+1

Rj

1 + ik(j − k)
, (93)

where
ik = i(0, k, k + 1) =

i
1 + ik

. (94)

Again, attention must be paid to financial interpretations of this formula. It does not
represent the present value at time k of the installments not yet repaid at that time. Since
k is a future time instant, the discount function at that epoch is unknown (it is a random
variable). However, Equation (93) has its own relevance in that the parameters ik can play
the role of a strategic variables in early repayment decisions.
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8. The Interest-on-Interest Phenomenon under Arbitrary Discount Functions

What about the phenomenon of interest on interest when a loan is designed according
to an arbitrary discount function? The answer depends on the parameterization adopted
to represent the discount function. Consider the following generalized compound inter-
est representation:

v(0, k) =
1

∏k
j=1(1 + ic

j )
. (95)

We note that, given an arbitrary discount function, the sequence of rates {ic
k} is

uniquely determined. In this representation, the interest accrued in the time interval
[k − 1, k], computed using Equation (21), is given by

Ik = ic
k Mk−1. (96)

To describe the same discount function, we could have used a different parameteriza-
tion such as, for example, the following generalized simple interest representation:

v(0, k) =
1

1 + ∑k
j=1 is

j

. (97)

Again, the sequence of rates {is
k} is uniquely determined. In this new representation,

the interest accrued in the time interval [k − 1, k], computed using Equation (21), is given by

Ik = is
k

Mk−1

1 + ∑k−1
j=1 is

j

. (98)

Of course, both representations produce the same amortization schedule, but with
different sequences of rates {ic

k} and {is
k}. However, in the generalized compound interest

representation, the phenomenon of interest on interest occurs, which results from mul-
tiplying the outstanding balance Mk−1 by the interest rate ic

k, as shown in Equation (96),
the outstanding balance being a mixture of principal and interest. On the other hand, in
the generalized simple interest representation, Equation (98) shows that the generation of
interest on interest is avoided, since in this case accrued interest is computed multiplying
the present value of the outstanding balance Mk−1 by the interest rate is

k.
To provide some numerical examples, let us first consider the discount function given

in Table 1. The rate sequences {ic
k} and {is

k} are depicted in Table 9.

Table 9. The discount function and the rates {ic
k}, {is

k}.

k 1 2 3 4 5

v(0, k) 0.9346 0.8573 0.7513 0.7084 0.6560
ic
k 7.00% 9.02% 14.11% 6.06% 7.99%

is
k 7.00% 9.65% 16.46% 8.06% 11.28%

The same amortization schedule given in Table 3 can be obtained by using both
the generalized compound interest representation provided by Equation (95) and the
generalized simple interest representation provided by Equation (97) with the sequence of
rates {ic

k} and {is
k}, respectively, shown in Table 9.

Table 10 gives the sequences of the rates {ic
k} and {is

k} in the case of the numerical ex-
amples discussed in Section 6, where the law of compound interest was used (with constant
interest rate i = 10%). The same amortization schedules depicted in Tables 4 and 5 can be
obtained by using the generalized simple interest representation provided by Equation (97)
with the sequence of rates {is

k} shown in Table 10.
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Table 10. The discount function and the rates {ic
k}, {is

k}.

k 1 2 3 4 5

v(0, k) 0.909091 0.826446 0.751315 0.683013 0.620921
ic
k 10% 10% 10% 10% 10%

is
k 10.00% 11.00% 12.10% 13.31% 14.64%

Table 11 gives the sequences of the rates {ic
k} and {is

k} in the case of the numerical
examples discussed in Section 7 where the law of simple interest was used (with constant
interest rate i = 10%). The same amortization schedules depicted in Tables 7 and 8
can be obtained by using the generalized compound interest representation provided by
Equation (95) with the sequence of rates {ic

k} shown in Table 11.

Table 11. The discount function and the rates {ic
k}, {is

k}.

k 1 2 3 4 5

v(0, k) 0.909091 0.833333 0.769231 0.714286 0.666667
ic
k 10.00% 9.09% 8.33% 7.69% 7.14%

is
k 10% 10% 10% 10% 10%

The ability to design amortizing loans with arbitrary discount functions increases the
level of customization and can have varying effects on borrowers, including the total cost of
borrowing, the distribution of interest payments over time and the pace of debt repayment.
However, great care should be taken to use financial representations that are consistent with
the law and provide consumers with accurate information about the representation of the
financial scheme and the rates used, so as to avoid the phenomenon of interest-on-interest
generation where this is not permitted. Research in this area can inform policymakers and
consumer advocacy groups about the potential impacts on borrowers and help develop
regulations that promote fair lending practices.

9. Discussion and Concluding Remarks

In this paper, we have provided a general methodology for valuing amortizing loans
with arbitrary discount functions. The proposed approach is fully consistent with the
general Heath–Jarrow–Morton methodology (Heath et al. 1992) for pricing interest rate-
sensitive contingent loans. The entire methodology was developed from the knowledge
of the initial discount function and using some basic no-arbitrage arguments. It is valid
whatever stochastic model is used to describe the evolution of the discount function. No
reference is made to the decomposability property (Castellani et al. 2005), which plays no
role in this context. This approach is perfectly consistent with the fundamental theorems of
asset pricing (Delbaen and Schachermayer 1994).

Although we have discussed loans with installment payments at regular time intervals,
the extension to the case of time intervals of variable amplitude is straightforward.

As a special case of the proposed methodology, we have illustrated the amortization
method based on the law of simple interest and shown that, in this case, the phenomenon
of generating interest on interest is precluded. Some authors proposed a different method
for valuing amortizing loans under a linear capitalization scheme (Annibali et al. 2018). To
illustrate their procedure, let us consider at time t = 0 a loan with a principal amount S0
that will be repaid with a series of future non-negative installments,

r = {R1, R2, · · · , Rn}, (99)
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scheduled at regular time intervals 1, 2, · · · , n, with Rn > 0. The starting point of their
analysis is that the loan principal and each installment are linearly capitalized at loan
maturity n, using the interest rate i observed at time t = 0, thus obtaining

S0(1 + in) =
n

∑
k=1

Rk
[
1 + i(n − k)

]
. (100)

We point out that this approach can be considered as a special case of the methodology
proposed in this study with the following discount function:

v(0, k) =
1 + i(n − k)

1 + in
. (101)

However, it should be noted that this procedure produces spurious results that are not
consistent with the law of simple interest. Consider, for example, a loan with a principal
amount S0 at time t = 0 that will be repaid with a single strictly positive installment
Rn = S0(1 + in) at time n. Following this approach, the dynamics of the outstanding
balance is given by

Mk =
1 + in

1 + i(n − k)
S0, (102)

showing that the outstanding balance does not follow a linear behavior, as it should be
according to the law of simple interest and as obtained from Equation (83). In a different
but equivalent way, interest does not accrue linearly over time. For these reasons, we
believe that there is one and only one method of loan amortization under the law of simple
interest, the one described in this study.
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Notes
1 Unless otherwise stated, the index k takes values from 1 to n.
2 We remark that, in the case of early repayment at time k, Mk (and not D0,k, which is its present value) is the amount the borrower

is required to repay to the lender.
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