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ABSTRACT 

         A challenge in enterprise risk measurement for diversified financial institutions is 

developing a coherent approach to aggregating different risk types.  This has been motivated 

by rapid financial innovation, developments in supervisory standards (Basel 2) and recent 

financial turmoil.  The main risks faced - market, credit and operational – have distinct 

distributional properties, and historically have been modeled in differing frameworks.   We 

contribute to the modeling effort by providing tools and insights to practitioners and 

regulators.  First, we extend the scope of the analysis to liquidity and interest rate risk, 

having Basel Pillar II of Basel implications.  Second, we utilize data from major banking 

institutions’ loss experience from supervisory call reports, which allows us to explore the 

impact of business mix and inter-risk correlations on total risk.  Third, we estimate and 

compare alternative established frameworks for risk aggregation (including copula models) 

on the same data-sets across banks, comparing absolute total risk measures (Value-at-Risk –  
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VaR and proportional diversification benefits-PDB), goodness-of-fit (GOF) of the model as 

data as well as the variability of the VaR estimate with respect to sampling error in 

parameter.  This benchmarking and sensitivity analysis suggests that practitioners consider 

implementing a simple non-parametric methodology (empirical copula simulation- ECS) in 

order to quantify integrated risk, in that it is found to be more conservatism and stable than 

the other models.  We observe that ECS produces 20% to 30% higher VaR relative to the 

standard Gaussian copula simulation (GCS), while the variance-covariance approximation 

(VCA) is much lower.  ECS yields the highest PDBs than other methodologies (127% to 

243%), while Archimadean Gumbel copula simulation (AGCS) is the lowest (10-21%).  

Across the five largest banks we fail to find the effect of business mix to exert a directionally 

consistent impact on total integrated diversification benefits.  In the GOF tests, we find 

mixed results, that in many cases most of the copula methods exhibit poor fit to the data 

relative to the ECS, with the Archimadean copulas fitting worse than the Gaussian or 

Student-T copulas.  In a bootstrapping experiment, we find the variability of the VaR to be 

significantly lowest (highest) for the ECS (VCA), and that the contribution of the sampling 

error in the parameters of the marginal distributions to be an order or magnitude greater than 

that of the correlation matrices.   

 

KEYWORDS: Risk Aggregation, Enterprise Risk Management, Economic Capital, Credit 

Risk, Operational Risk, Market Risk, Copula.   
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INTRODUCTION AND SUMMARY 

 

A modern diversified financial institution, engaging in a broad set of activities (e.g., banking, 

brokerage, insurance or wealth management) is faced with the task of measuring and 

managing risk across all of these.  It is the case that just about any large, internationally 

active financial institution is involved in at least two of these activities, and many of these 

are a conglomeration of entities under common control.  Therefore, we have the necessity of 

a framework in which disparate risk types can be aggregated.  However, this is challenging, 

due to the varied distributional properties of the risks1.  It is accepted that regardless of 

which sectors a financial institution focuses upon, they at least manage credit, market and 

operational risk.  The corresponding supervisory developments - the Market Risk 

Amendment to Basel 1, Advanced IRB to credit risk under Basel 2 and the AMA approach 

for operational risk (BCBS 1988, 1996, 2004) – have given added impetus for almost all 

major financial institutions to quantify these risks in a coherent way.   

 

Furthermore, regulation is evolving toward even more comprehensive standards, such 

as the Basel Pillar II Internal Capital Adequacy Assessment Process (ICAAP) (BCBS, 2009).  

In light of this, institutions may have to quantify and integrate other risk types into their 

capital processes, such as liquidity, funding or interest income risk.  A quantitative 

component of such an ICAAP may be a risk aggregation framework to estimate economic 

capital (EC)2.  A key contribution of our paper is providing analytical techniques around 

several activities that are supervisory expectations in the context of ICAAP for institutions 

having EC models.  First, we employ sensitivity analysis3, and accuracy testing of the EC 

model, in both cases assessing the likely ranges of the EC model quantile estimates.  These 

two are accomplished through quantifying the variability in EC risk measures resulting from 

sampling error in the estimation of key parameters (estimation of marginal distributions and 

                                                           
1  This is not unique to enterprise risk measurement for financial conglomerates, as it appears in several areas of 
finance, including corporate finance (e.g., financial management), investments (e.g., portfolio choice) as well as 
option pricing (i.e., hedging). 
2 However, in the U.S. supervisors are not requiring all institutions to model EC, only the largest and most 
systemically important (BCBS, 2009).   
3 This is one form of a form of stress testing, the other is scenario analysis (BCBS, 2009). 
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correlations).  We also conduct benchmarking of models4, a type of validation exercise for 

an EC framework, by comparing EC risk measures across different frameworks for 

aggregating risks (or copula model) for a given bank, as well as across banks for a given 

modeling framework. 

          

The central technical and conceptual challenge to risk aggregation lies in the 

diversity of distributional properties across risk types.  In the case of market risk, a long 

literature in financial risk management has demonstrated that portfolio value distributions 

may be adequately approximated in a Gaussian, due to the symmetry and thin tails that tend 

to hold at an aggregate level in spite of non-normalities at the asset return level (Jorion, 

2006).5  In contrast, credit loss distributions are characterized by pronounced asymmetric 

and long-tailed distributions, a consequence of phenomena such as lending concentrations or 

credit contagion, giving rise to infrequent and very large losses.  This feature is magnified 

for operational losses, where the challenge is to model rare and severe losses due to 

exogenous events, such failures of systems or processes, litigation or fraud (e.g., the Enron 

or Worldcom debacles, or more recently Societe Generale).6  While the literature abounds 

with examples of these three (Crouhy et al., 2001), little attention has been paid to the even 

broader range of risks faced by a large financial institution (Kuritzkes et al., 2003), including 

liquidity and asset / liability mismatch risk.    

 

Certain risk types are more amenable to estimation, such as market risk, while others 

present a greater challenge, such as operational risk.  In the case of the former, there is richer 

data available and well established methodologies, in order to estimate distributions.  

Unfortunately, for the latter we deal with a paucity of data, and the techniques available for 

fitting such distributions are just recently being developed.  Furthermore, little is known 

about how these risk types relate to one another.  In order to address this, we build upon the 

method of copulas, an approach that has become popular within the operational risk realm 

itself, stemming from the necessity of having to combine a large number of risk types.  This 

                                                           
4 Another name for this is hypothetical portfolio analysis (BCBS, 2009). 
5 Even in this context, there are anomalies such as the stock market crash of 1987, which is an event which 
should never have occurred under the normality of equity returns. 
6 However, this does not cover catastrophic losses, e.g., the terrorist attacks of 9/11. 
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methodology combines separate marginal distributions in a coherent and plausible manner, 

preserving key distributional features such as skewness and excess kurtosis.  Furthermore, 

this technique has the advantage of handling situations in which little is known about 

relationships amongst random variables, requiring only some measure of codependence 

(such as correlation).  We compare various copula models, as well as other methods for the 

construction of a joint distribution of losses, such as simple addition or the correlation matrix 

approach.7 

 

The empirical exercise uses regulatory call report data to proxy for the losses from 

the various risk types.  The empirical analysis focuses upon five of the largest financial 

conglomerates (JP Morgan Chase, Citigroup, Wells Fargo, Wachovia and Bank of America), 

available on a quarterly frequency, commencing in the 1st quarter of 1984.  The rationale for 

concentrating on large banks is motivated in large part by the intense policy debate 

surrounding the New Basel Capital Accord (BCBS, 2004).  The most recent incarnation of 

Basel incorporates operational risk, a new risk type to the regulatory calculation, which 

differs substantially in distributional characteristics from market and credit risk.   The 

importance of this is highlighted by the conclusions of the BCBS Joint Forum (2001, 2003), 

which highlights quite clearly how banks and insurers are actively wrestling with this.  While 

the focus herein is upon the banking sector, our methodology could just as easily extend any 

other kind of financial conglomerate such as an insurer. 

 

This study is part of a burgeoning literature that performs a comprehensive analysis 

around how to combine a set of underlying risk factors influencing the total risk of large 

financial institutions.  Furthermore, our work is among first to utilize publicly available, 

industry-wide data to perform to this end8.  In particular, we are able to study enterprise-wide 

risk across alternative risk aggregation measures (or dependence structures) and across 

institutions.  We analyze actual data from a set of large financial institutions, in contrast with 

                                                           
7 We may extend this framework to a more recently developed more general setting, where different subsets of 
risk types can have different dependency structures, through nested and pair copula constructions (Aas et al 
2004 a,b, 2007). 
8 For a study in this area very much in this spirit of our research program, see Rosenberg and Schuermann 
(2006). 
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many of the previous studies that have used simulated data to model risk distributions.  

Furthermore, as these institutions have varying business mixes, we are able to examine the 

sensitivity of risk estimates to this.  Such analysis is relatively rare in the literature, and even 

among the studies conducting such, this has generally involved either a rather limited set of 

risk factors, or has been limited to the loss experience of a single institution, which creates 

challenges for generalizing the results.  A notable exception to this trend in the literature is 

Rosenberg and Schuermann (2006), who analyze a panel of quarterly data for a set of large 

banks, developing empirical proxies for different risk types (credit, market and operational), 

and employ the method of copulas to aggregate these.  We follow a similar empirical 

strategy, utilizing the same type of data extracted from regulatory filings, giving us 

confidence that results obtained are representative of a typical institution.  We propose to 

extend this framework in several ways.  First, we consider a wider range of risk types.  

Second, we investigate both the magnitudes of risk measures and the goodness-of-fit to the 

data of alternative risk aggregation methodologies.  Finally, we perform sensitivity analysis 

by studying the variability of different risk measures that is a consequence of sampling error, 

through a bootstrap experiment. 

 

Our main results are as follows.  Through differences observed across the five largest 

banks by book value of assets as of 4Q089, we find in regard to different risk aggregation 

methodologies significant variation amongst absolute measures of risk.  Dollar 99.97th 

percentile Value-at-Risk (VaR) is increasing in size of institution, but expressed as a 

proportion of book value it appears to be decreasing in size of the entity.  Across different 

risk aggregation methodologies and banks we observe that the empirical copula simulation 

(ECS) and Archimadean-Gumbel copula simulations (AGCS) to produce the highest 

absolute magnitudes of VaR as compared to the Gaussian copula simulation (GCS), Student-

T copula simulation (STCS) or any of the other Archimadean copulas.  The variance-

covariance approximation (VCA) produces the lowest VaR.  The proportional diversification 

benefits, as measured by the relative VaR reduction vis a vis the assumption of perfect 

correlation, exhibit radical variation across banks and aggregation techniques.  The ECS 

                                                           
9 These are, in order of decreasing size: JP Morgan Chase, Bank of America, Citibank, Wells Fargo and PNC. 
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generally yields the highest values than the other methodologies (127% to 243%), the GCS 

“benchmark” (41-58%) and VCA (31-40%) toward the middle to lower end of the range, 

while the AGCS is the lowest (10-21%).  We conclude that while ECS (VCA) may over-

state (under-state) absolute (relative) risk, on the order of about 20% to 30% across all banks, 

proportional diversification benefits are generally understated (overstated) by the VCA 

(ECS) relative to standard copula formulations on the order of about 15% to 30% (3 to 6) 

across all banks and frameworks, respectively.  Through differences observed across the five 

largest banks, we fail to find business mix10 to exert a directionally consistent an impact on 

total integrated risk or proportional diversification benefits above and beyond exposure to, 

and correlation amongst, underlying risk factors.  In an application of the goodness-of-fit 

tests for copula models, developed by Genest et al (2009), we find mixed results and in many 

cases that commonly utilized parametric copula models fail to fit the data.  In a 

bootstrapping experiment, we are able to measure the variability in the VaR integrated risk 

and proportional diversification benefit measures, which can be interpreted as a sensitivity 

analysis (Gourieroux et al, 2000.)  In this experiment we find the variability of the VaR to be 

significantly lower for the EC, and significantly greater for the VCA, as compared to other 

standard copula formulations.  However, amongst copula models we find that the 

contribution of the sampling error in the parameters of the marginal distributions to be an 

order or magnitude greater than that of the correlations.  Taken as a whole, our results 

constitute a sensitivity analysis that argues for practitioners to err on the side of conservatism 

in considering a non-parametric copula alternative in order to quantify integrated risk.           

 

The remainder of the paper is organized as follows.  Section 2 presents a brief 

overview of the related literature.  Section 3 follows with a discussion of various risk 

aggregation frameworks.  Section 4 presents the data analysis: descriptive statistics and the 

marginal risk distributions by risk type.  In Section 5, we present our analytical results by 

examining the impact of alternative aggregation methodologies on the integrated risk 

measure across banks, both in absolute terms and also its variability.  Section 6 provides 

final comments and directions for future research.     

                                                           
10 As measured by the relative proportion of trading to lending assets. 
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1. REVIEW OF THE LITERATURE 

 

Risk management as a discipline in its own right, distinct from either general finance or 

financial institutions, is a relatively recent phenomenon.  It follows that the risk aggregation 

question has only recently come into focus.  To this end, the method of copulas, which 

follows from a general result of mathematical statistics due to Sklar (1956), readily found an 

application.  This technique allows the combination of arbitrary marginal risk distributions 

into a joint distribution, while preserving a non-normal correlation structure.  Among the 

early academics to introduce this methodology is Embrechts et al. (1999, 2002).  This was 

applied to credit risk management and credit derivatives by Li (2000).  The notion of copulas 

as a generalization of dependence according to linear correlations is used as a motivation for 

applying the technique to understanding tail events in Frey and McNeil (2001).  This 

treatment of tail dependence contrasts to Poon et al (2004), who instead use a data intensive 

multivariate extension of extreme value theory, which requires observations of joint tail 

events.  

 

Most of the applications of copula theory seen in finance have been in the domain of 

portfolio risk measurement, examples including Bouye (2001), Longin and Solnik (2001) 

and Glasserman et al (2002)11.  In a notable paper, Embrechts et al. (2003) reviews and 

extends some of the more recent results for finding distributional bounds for functions of 

dependent risks, with the main emphasis on Value-at-Risk as a risk measure.  On the other 

hand, it is rare to find papers in the financial institutions area, where the application would 

be for risk aggregation.  The joint distribution of market and credit risk in a banking context 

is analyzed by Alexander and Pezier (2003), who instead of a copula use a common risk 

factor model.  In the setting of an insurance company, Wang (1998) lays a theoretical 

framework and surveys various modeling approaches to enterprise-wide risk, in the setting of 

                                                           
11 Patton (2002) uses copulas to model exchange rate dependence.  Rosenberg (2003) accomplishes multivariate 
contingent claims pricing through application of copulas.    Fermanian and Scaillet (2003) analyze copula 
estimation and testing methods. 
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heterogeneous risk types.  In the case of a diversified insurer with both property & casualty 

and life insurance business segments, Ward and Lee (2002) model the joint loss distribution 

using pair-wise roll-ups with a Gaussian copula 12 .  Notable here is that marginal 

distributions are computed both analytically as well as numerically, for example in the cases 

of credit (a beta distribution) and life insurance / mortality (Monte Carlo simulation), 

respectively. Furthermore, a rather broad set of risks are analyzed relative to the previous 

literature, in this case non-catastrophe liability, catastrophe, mortality, asset-liability 

mismatch (ALM), credit, market and operational risk.  In another study, similar to Ward and 

Lee (2002) in that risks are modeled in a pairwise fashion, Aas and Dimakos (2004) estimate 

the joint loss distribution in the setting of a bank having a life insurance subsidiary.  In this 

model, total risk is sum of the conditional marginal risk and unconditional credit risk, which 

is achieved by imposing conditional independence through a set of sufficient conditions, 

such that only pair-wise dependence remains. Simulation experiments indicate that while 

total risk measured using “near tails” (i.e., 95–99%) is only about 10% less than addition of 

individual risks, using “far” tail (i.e., 99.97%) is about 20% less, suggestive of the 

importance of diversification effects for accurate risk aggregation in the tails. 

 

Kuritzkes et al. (2003), in the setting of a financial conglomerate and in a Gaussian 

copula framework having analytic solutions, arrive at a large set of diversification results by 

through varying a range of input parameters.  Similarly to Dimakos and Aas (2004), addition 

of individual risks is found to overstate total diversified risk, although the differences are less 

than the former study (about 15% across market, credit, and operational risk for a bank; 20–

25% for insurers; and 5–15% for a “bank-assurance” style financial conglomerate.)  

 

In are recent study, Schuermann and Rosenberg (2006) study integrated risk 

management for typical large, internationally active financial institution.  They develop an 

approach for aggregating three main risk types (market, credit, and operational) where the 

distributional properties amongst them varies widely.  The authors build the distribution of 

total risk using the method of copulas, which allows them to incorporate realistic features of 
                                                           
12 Ward and Lee (2002) also apply a risk-adjusted return on capital (RAROC) framework to analyze financial 
performance of the institution. 
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the marginal distributions (e.g., well documented empirical skewness and leptokurtosis of 

financial returns and credit losses), while at the same time preserving a flexible dependence 

structure.  Exploring the impact of business mix and inter-risk correlation on total risk, the 

former are found to be more important than the latter, which is interpreted as “good news” 

for financial supervisors.  They also compare the copula methodology with various 

approaches simplified applied by practitioners, such as the variance-covariance and the 

simple addition approaches, thereby documenting how the latter may overstate total risk. 

 

Aas et al (2007) present a new approach to determining the risk of a financial 

institution, including components for the standard risk types (credit, market, operational and 

business), and additional ownership risk faced in the context of owning a life insurance 

subsidiary.  Due to lack of appropriate data for certain risk types, this model combines a 

base-level with top-level aggregation mechanisms.  Economic risk factors used in the 

bottom-up component are described by a multivariate GARCH model with Student-t 

distributed errors, and the loss distributions for different risk types determined by non-linear 

functions of these factors.  This implies that these marginal loss distributions are correlated 

indirectly through the relationship between risk factors.  The model, originally developed 

DnB Nor (the largest financial institution in Norway), is adapted to the requirements of Basel 

II.  

 

Aas and Berg (2007) review models for construction of higher-dimensional 

dependence that have arisen recent years.  The authors argue that in a multivariate data-set, 

which exhibits complex patterns of dependence (particularly in the tails), risk can be 

modeled using a cascade of lower-dimensional copulae.  They examine two such models that 

differ in their construction of the dependency structure, the nested Archimedean and the pair-

copula constructions (also referred to as “vines”).  The constructions are compared, and 

estimation and simulation techniques are examined.  The fit of the two constructions is tested 

on two different four-dimensional data sets, precipitation values and equity returns, using a 

state of the art copula goodness-of-fit procedure.  The nested Archimedean construction is 

strongly rejected for both data-sets, while the pair-copula construction provides an 
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appropriate fit.  Through VaR calculations, they show that the latter does not over-fit data, 

but works very well even out-of-sample. 

 

Several proposals have been made recently of goodness-of-fit tests for copula 

models.  Genest et al (2009) briefly and critically review this literature and propose a 

“blanket test”, which requires neither arbitrary categorization of the data, nor “strategic” 

choices of non-parametric settings such as smoothing parameters, weight functions, kernels, 

windows, etc.  The null distribution is the empirical copula and does not depend upon the 

choice of marginal distributions.  They describe the results of a large-scale Monte Carlo 

experiment designed to assess the effect of sample size and strength of dependence on the 

level and power of the blanket tests for various combinations of copula models under the null 

hypothesis and the alternative.  In order to circumvent problems in the determination of the 

limiting distribution of the test statistics under composite null hypotheses, they recommend 

the use of a double parametric bootstrap procedure, whose implementation is detailed and 

practical recommendations rendered.    

         

2. ESTIMATION METHODOLOGY: ALTERNATIVE RISK AGGREGATION 

FRAMEWORKS 

 

The concept of risk is conventionally framed in terms of a divergence between an expected 

outcome and an adverse result with respect to some phenomenon of interest.  Depending 

upon the application or risk type, these quantities may include valuations, cash flows, levels 

of loss or the severities associated with an event of default.  Conventionally, this profile has 

been characterized by a mathematical object known as a probability distribution, which 

quantifies potential outcomes and their associated relative likelihoods of occurrence13.  Risk 

can, and has commonly been, described by the some measure of the entropy or dispersion of 

a probability distribution such as a standard deviation (or variance).14  However, unless one 

                                                           
13 It follows that this description of risk is not of the Knightian variety, wherein we do not have knowledge nor 
means of inferring this mathematical description, also known as “uncertainty”.  
14 If a random variable X has a distribution function F, this is defined as ( ) [ ]PrF x X x≡ ≤ .  
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is dealing with a normal or Gaussian distribution 15 , this measure is not sufficient to 

characterize risk as we conceptualize it both in economics as well as herein.  Once we depart 

from normality, then simple measures of dispersion such as the standard deviation fail to 

provide a complete description of risk as we understand it.  There may exist arbitrarily many 

distributions having the same such measure but also having very different shapes, such that 

risk could vary dramatically.  When particularly concerned with adverse outcomes and the 

tails of the distribution, directly connected to the concept of downside risk, we may find 

these to be divergent for distributions having the same standard deviation.  In that case, one 

must attempt to quantify higher moments of the probability distribution, such as skewness or 

kurtosis.  A popular way to cope with non-normality, which has been long documented as a 

feature of asset prices (Mandelbrot, 1963) and more recently for varied risk types, is to 

analyze a quantile of a distribution as in a “Value-at-Risk” measure (VaR).  This is usually 

framed in a statement that we can, with a certain probability (or percent of the time), expect 

some risk factor of interest to not exceed an extreme value.  Such an approach, while subject 

to severe criticism from a theoretical perspective regarding it as not being a “coherent” 

measure of risk (Artzner et al, 1997, 1999), has nevertheless become standard in the 

industry16.  Setting aside this debate for now, we will briefly describe the VaR, or what we 

prefer to term the “risk quantile approach” (RQA) to quantifying adverse financial or 

economic outcomes.     

                           

2.1 Value-at-Risk (VaR) 

 

VaR is one of the industry standard approaches for measuring risk due to adverse outcomes.  

A basic description of this risk measure is as a high quantile of a loss distribution, whereby 

convention levels of risk are defined as higher realizations of a vector of risk factors; if the 

context involves profit and loss (“P&L”), then it is understood that we are taking the 

negative of the dollar amounts, so that higher values indicate losses.  Let us denote a vector 

of K risk factors at time t by ( )1 ,..,t t KtX X=X , having joint distribution function 

                                                           
15 In fact, this extends more broadly to the class of elliptical distributions, of which the normal is a member. 
 
16 A classic example is J.P. Morgan’s RiskMetrics™ (Phelan, 1995). 
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( ) ( )1 1Pr ,.., K KF X x X x≡ ≤ ≤X X .  Let us consider a single-valued function of the risk 

factors : KR RΠ → , which could be the aggregate losses on a set of dollar positions from 

time t to time t + ∆  (where ∆ is the horizon 17 ), such as the simple sum of losses 

( ), ,
1

k

t t t t i
i

X+∆
=

Π =∑X  that we consider herein.  The VaR at the thα  confidence level between 

times t and t + ∆, denoted as ( ) ( ),ttVaR α
+∆

∆ X , is related to the thα quantile of ( ) ( )( )FΠ ΠX X  by18: 

( ) ( ) ( )( ) ( )
( ) ( )( ), ,

Pr 1 1
t t t tt VaR F VaRα α α
+∆ +∆

Π Π
+∆ ΠΠ ≥ = − = −X X

XX                (1) 

This implies that the VaR is given by19: 

( ) ( ) ( ) ( )
,

1
t t

VaR Fα α
+∆

Π −
Π=X

X                                                 (2) 

VaR is meant to provide a compact summary measure of the risk with respect to a set 

of factors, analogously to the concept of a sufficient statistic that characterizes the 

distribution of a random variable.  While there are many compelling arguments that this 

analogy is strained, and that in managing and measuring risk one should focus on the entire 

distribution rather than a summary measure (Diebold et al, 1998; Christoffersen and Diebold, 

2000; Berkowitz, 2001), nevertheless interest in a simpler summary measure continues.  

Artzner et al. (1997, 1999) lay out a set of criteria necessary for what they term a 

‘‘coherent’’ measure of risk.  The first such criterion is homogeneity, which is the 

requirement that risk be increasing in the size of positions.  Second, monotonicity, is the 

notion that we consider a portfolio having systematically lower returns than another, for all 

states of the world, to have greater risk.  Subadditivity is the condition that the risk of a 

collection of positions (such as a weighted average or a simple sum) cannot be greater than 

the collection of such risks.  Finally, the risk-free condition stipulates that as the proportion 

of a portfolio invested in the risk-free asset increases, the risk of the portfolio risk should not 

                                                           
17 In the case of market risk, we consider daily changes in P&L on the positions,, whereas for credit or 
operational risk the horizon is conventionally 1 year.  The latter is also the supervisory horizon under Basel II 
for credit and the Advanced Measurement Approach (AMA) for operational risk. 
18 Note the conventions: we have oriented X such that losses are in the positive direction and 1 α− is the tail 
probability. 
19 It may be the case that the distribution function is not everywhere differentiable, in which case we have to 
deal with the theory of generalized inverses. 
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be increasing.  It is well-known that unless the underlying risk factors come from the family 

of elliptical distributions, which subsumes the Gaussian, then VaR does not satisfy 

subadditivity.  The implication of this is that in such a situation it is possible to take 

concentrated positions in one exposure in such a way that the risk of that exposure is just shy 

the overall portfolio VaR threshold (Embrechts et al. 1999, 2002).  A risk metric closely 

related to VaR, which is coherent, is the expected shortfall (ES).  This measures the 

expectation of the risk exposure conditional upon exceeding a VaR threshold: 
( ) ( ) ( ) ( ) ( ) ( )

, ,E
t t tt t t tES VaRα α
+∆ +∆

Π Π
+∆ +∆

⎡ ⎤= Π Π >⎣ ⎦
X XX X                            (3) 

  The issue that arises with the ES risk measure is the choice of the VaR cutoff.  We 

will report ES results corresponding to a conventional confidence level of 0.99, which yields 

magnitudes close to the conventional level of 0.9997 for economic or regulatory capital.   

 

An interesting and ubiquitous special case that we consider here, motivated by the 

mean-variance investment theory of Markowitz (1959) and seen in many economic capital 

frameworks amongst banking practitioners, is where risk factors have a valid variance-

covariance matrix and either risk factors are multivariate Gaussian, or risk managers and 

investors do not care about moments higher than the 2nd 20:   

[ ] [ ]( ) [ ]( )V
T

t t t t t t t t t t+∆ +∆ +∆ +∆ +∆ +∆
⎡ ⎤= = − −
⎣ ⎦

Σ X E X E X X E X                     (4) 

Where [ ]Vt t+∆X  is the time t variance of vector t+∆X .  Note that we are assuming the risk 

factors to be dollar exposures, so that we do not have the portfolio weights of the familiar 

expression for portfolio variance.  That is, our total time t risk exposure at ,t t+∆Π is simply 

the sum of the constituent risks: 

, , ,
1

K
T

t t K t i t i
i

X+∆
=

Π = =∑i X                                                    (5)  

It follows from (3.1.4) and (3.1.5) that the standard deviation of the position is given 

by the square-root of quadratic form:  

                                                           
20  The later case would hold under rather restrictive assumptions, such as a quadratic utility function 
(Markowitz, 1959).  Still, it has been considered a useful approximation in many situations. 
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2
, , , , , ,

1

2
K K

T
t t t k t t k t i t ij t i t j

i i j

S σ ρ σ σ+∆ +∆
= ≠

⎡ ⎤Π = = +⎣ ⎦ ∑ ∑i Σ i                          (6) 

Where ( ) 2
, ,t t i t iVar X σ=  and 

( ) ( )
, ,

,

, ,

( , )t t i t j
t ij

t t i t t j

Cov X X

Var X Var X
ρ = are the univariate variance and 

linear (Pearson) correlation coefficients, respectively.  Note that we retain the time subscript 

in the 2nd moments to remind ourselves of the dynamic nature of this problem in  a general 

context. To illustrate, suppose that we have 3 risk factors ( )1 2 3, ,t t t tX X X=X 21.  In this case 

we get the familiar expression: 

 ( )
3

2 2 2
, ,1 ,2 ,3 ,12 ,1 ,2 ,13 ,1 ,3 ,23 ,2 ,3

1

2t i t t t t t t t t t t t t t
i

S X σ σ σ ρ σ σ ρ σ σ ρ σ σ+∆
=

⎡ ⎤ = + + + + +⎢ ⎥⎣ ⎦
∑        (7) 

Under these assumptions, that minimizing the variance of the total loss is the object of the 

exercise, the VaR of we simply proportional to the standard deviation of the position 

,t t tS +∆⎡ ⎤Π⎣ ⎦  according to the thα quantile of the standard normal distribution22:   

 ( ) ( ) ( ) ( )1
, ,tt t t tNVaR Sα α
+∆

Π −
+∆Π ⎡ ⎤= Φ Π⎣ ⎦

X
X                                     (8) 

Where "NVaR" denotes "normal” VaR and ( )
21

21
2

x
z

z

x e
π

−

=−∞

Φ = ∫ is the standard normal 

distribution function.   Let us consider a special case of this, in which the standardized (i.e., 

mean zero and unitary variance) distribution of the positions is the same as that of the total 

loss: 

( ) ( ) ( ) ,
iXF Z F Z i ZΠ= ∀ ∈ ∀X                                     (9) 

where [ ]i i
i

i

X E X
X

σ
−

=  is the normalized risk factor.  In such a case, which holds under a 

Gaussian assumption, we can write the “Hybrid Value-at-Risk” (HVaR) as follows:  

                                                           
21 These are perhaps credit, market and operational losses; but we would abstracting from the fact that credit 
and operational losses – which are non-negative and highly skewed – would not be modelled as Gaussian (but 
perhaps log-normal.) 
22 In the case of 1 0.9997α− = , the  Basel Pillar II capital calculation, we get ( )1 1 3.06α−Θ − = .   
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( ) ( ) ( ) ( ) ( )
, , , ,

2
1 1 1

,
1

2
t t t i t i t j

K K

t ijX X X
i i j

HVaR F F Fα α α α ρ
+∆

Π − − −

= ≠

⎡ ⎤= +⎣ ⎦∑ ∑X                   (10) 

The content of equation (3.1.10) is that we may compute VaR for the total exposure 

using the same formula as that common in Markowitz portfolio theory, but with the 

volatilities replaced by the VaRs of each risk factor.  Note that in calculation of HVaR when 

the marginals are not distributed according to a single density family, it is likely that we are 

not placing the proper weights on the various risk factors.  Furthermore, the net effect of this 

approximation – i.e., whether or not we are over- or underestimating the true VaR – is 

indeterminate, as it will depend on the relations among the marginal quantiles, the 

corresponding volatilities and the quantile of the total loss.   However, a nice advantage of 

this formulation is that HVaR does allow the tail shape of the margins to affect the total loss 

VaR estimate.  Finally, in concluding our discussion of VaR, there are 2 more special cases 

worth noting.  First, the case in which we assume risk factors or losses to be uncorrelated, 

i.e., , 0 ,t ij i jρ = ∀ , which we call “Uncorrelated Value-at-Risk” (UVaR): 

( ) ( ) ( )
,

2
1

,
1

t t i

K

t X
i

UVaR Fα α
+∆

Π −

=

⎡ ⎤= ⎣ ⎦∑X                                           (11) 

The case in which we assume risk factors or losses to be perfectly 

correlated, , 1 ,t ij i jρ = ∀ , we call “Perfectly-correlated Value-at-Risk” (PVaR): 

( ) ( ) ( )
, ,

1

1
t t t i

K

X
i

PVaR Fα α
+∆

Π −

=

= ∑X                                              (12) 

It should be obvious that in the framework of assumption (3.1.9) and in a mean-

variance world, PVaR (UVaR) forms an upper (lower) bound on the HVaR measure of risk 

(3.1.10), i.e.  
( ) ( ) ( ) ( ) ( ) ( ) ( )

, , ,
, 0,1

t t t t t t

KUVaR HVaR PVaRα α α α
+∆ +∆ +∆

Π Π Π≤ ≤ ∀ ∈ ∀ ∈X X X X       (3.1.13) 
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3.2 The Method of Copulas 

 

 The essential idea of the copula approach is that any joint distribution can be 

factored into a set of marginal distributions and a dependence function called a copula.  

While the dependence structure is entirely determined by the copula, distributional features 

of the risk components (location, scaling and shape) are entirely determined by the specified 

marginal distributions.  In this way, marginal risks that are initially estimated separately (or 

“predetermined”) can then be combined in a joint risk distribution that preserves the original 

characteristics of the underlying risks. 

 

An important application in which the method of copulas is a powerful tool is the 

case where distributions of risk variables are estimated using heterogeneous dynamic models 

(e.g., a GARCH type model for security return) that are not amenable to combination into a 

single dynamic model.  This may be due to explanatory variables, measurement frequencies 

or classes of models that differ across risk types.  In such a case, we may view the marginal 

distributions as pre-determined and therefore we may estimate them in a first step.  In a 

second stage, a dependence function is then fit to in order to combine these time-varying 

marginal risk distributions, resulting in a time-varying joint risk distribution. 

 

However, there are cases in which marginal risks are not estimated using time series 

data, examples being implied density estimation, survey data, or the combination of 

frequency and severity data.  In these situations there is way to directly estimate a 

multivariate dynamic model that incorporates all of the risk types.  In these contexts the 

copula method can incorporate these marginal risks into a joint risk distribution.  This 

method is also useful when multivariate densities inadequately characterize the joint 

distribution of risks, as is often the case when employing vendor models.  It is well known in 

risk management applications that the multivariate Gaussian framework provides a poor fit 

the skewed, fat-tailed properties of market, credit, and operational risk.  Through use a 

copula, combined with either parametric or nonparametric margins with quite different tail 
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shapes, we can combine these into a joint risk distribution that adequately fits the data.  

Furthermore, such joint risk distributions derived by the method of copulas can also span a 

range of dependence types beyond linear correlation, such as tail dependence.  

 

As we have seen in the previous section, in order to compute the correct VaR of total 

losses (or of our total position), it is required that we first obtain the joint return distribution 

of total risk exposure.  Even in the simplest of cases, where we are additively aggregating 

losses denominated in the same unit of measure, it is highly unlikely that we could come up 

with this object.  Only in special cases, such as the Gaussian, do we have that sums (or more 

generally linear combinations) or normal random variables results in a normal variate as 

well.  The method of copulas allows us to in a sense solve this problem through a 2-step 

procedure.  First, we specify the distributions of the underlying risk factors, or the 

“margins”.  Second, we combine these through the specification of a “dependence function”, 

in order to produce the joint distribution.  Then from the latter we are able to compute 

quantiles of the loss distribution, since the aggregate losses are nothing more than weighted 

averages of the individual losses.  This exercise not only provides a practical prescription to 

quantifying risk in a multivariate context, but also provides theoretical perspective into 

modelling risk in such a context (Nelsen, 1999).  

 

A fundamental result underpinning copula methodology is Sklar’s theorem (Sklar, 

1956).   Simply stated, this is the proof that (under the appropriate, and sufficiently general, 

mathematical regularity conditions) any joint distribution can be expressed in terms of a 

composite function, a copula and a set of marginal distributions.  This representation 

suggests the possibility of a 2-step procedure, first the specification of each variable’s 

marginal distribution, and then a dependence relationship that joins these into a joint 

distribution.  A copula is a joint distribution function in which the arguments are each 

normalized to lie in the unit interval, and without loss of generality these can be taken to be 

univariate cumulative distribution functions.  If we have a k-vector of risk factors 

( ) ( ),.., ~T
i KX X F= XX x , then a copula is a multivariate joint distribution defined on the K-
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dimensional unit cube, such that each marginal distribution is uniformly distributed on the 

unit interval, :[0,1] [0,1]KC → .  Thus we may write:    

( ) ( )1 1( ),.., ( )
KX X KF C F x F x=X x                                           (13) 

where ( ) 1,..,
iX iF x i K=  are the marginal cumulative distribution functions and 

( ) [ ]. . 0,1 KC s t ∈u u is the copula function.  This also admits a density function 

representation (in the case that all the underlying risks come from continuously differentiable 

distributions): 

( ) ( )
1

( ) ( ) ( ),.., ( )
i K i K

K

X i X K X i X K
K

f f x f x F x F x
x x
∂

= ⋅⋅⋅
∂ ⋅⋅⋅∂X x                 (14) 

where 
1

( )
( ) 1,..,i

i

X i
X i

F x
f x i K

x
∂

= =
∂

 is the density function of the ith risk factor.  We see that 

the copula is a relation between the quantiles of a set of random variables, rather than the 

original variables, and as such is invariant under monotonically increasing transformations of 

the raw data.  As summarized by Nelson (1999), there are four technical conditions that are 

sufficient for a copula to exist.  First, ( )0 0iu C∃ = ⇒ =u .  Second, we require 

that ( ) ( )1 1 1 1,.., , ,.., , 1i i K K i iu u u u u C u− + −= < ⇒ =i u .  Third, ( )C u  must be k-increasing on 

the sub-space [ ] [ ]1 , 0,1 KK
i i iB x y== × ⊆ .  Finally, the so-called C-volume of B should be non-

negative, ( ) ( )
{ }1

( )

,

1 ( ) 0
K
i i i

N
C

x y

V B C
=∈×

− ≥∑ z

z

z , where ( ) { }card K KN K z x= =z .   It has also 

been proven (Nelson, 1999) that there exist theoretical bounds to any given copula, which 

are important in that they represent generalizations to the conventional concepts of perfect 

inverse and perfect positive correlation. These are called the Frechet-Hoeffding boundaries 

for copulas.  The minimum copula, the case of perfect inverse dependence amongst random 

variables, is given by: 

( ) ( )
1

max 1
k

i
i

W k u C
=

⎧ ⎫− + ≤⎨ ⎬
⎩ ⎭

∑u u                                       (15) 

The maximum copula, the case of perfect positive dependence (or comonotonicity) 

amongst random variables, is given by:    
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( )
{ }

( )
1,..

min jj k
C u M

∈
≤u u                                                (16) 

Note that, as established by Sklar (1956), while for a random vector having a valid 

joint distribution function the copula will always exist, there is no guarantee that it will be 

unique.   We may always construct a copula for any multivariate distribution according to 

the method of inversion.  Intuitively, this is a means of removing the effects of the marginal 

distributions upon the dependence relation by substituting in the marginal quantile functions 

in lieu of the arguments to the original distribution function.  If we denote a random vector in 

the kth hyper-unit interval by ( ) [ ]1,.., 0,1 K
Ku u= ∈u , then we may write the copula as a 

function as this as follows:   

( ) ( )1 1( ),.., ( )
X Xi Ki KC F F u F u− −= Xu                                         (17) 

Consider a rather common choice of copula function, the Gaussian copula.  This is 

simply a multivariate standard normal distribution:    

( ) ( )
( )

1
1

1 11
2 2

1,.., ; exp
2

Kx x
T

K KKx x dx dx
π

−

−∞ −∞

⎡ ⎤Φ = Φ = ⋅⋅⋅ ⋅ ⋅⋅⎣ ⎦∫ ∫X Xx Ρ x Ρ x
Ρ

     (18) 

where Ρ  is the correlation matrix and we assume that the variates are zero-mean.  Given 

arbitrary marginal distribution functions 1 1( ),.., ( )
X Xi Ki KF u F u− − , we can write the Gaussian 

copula as: 

( ) ( )1 1( ),.., ( );
X Xi KG i KC F u F u− −= ΦXu Ρ                                          (19) 

It is important to note that Ρ  is not necessarily the correlation matrix of the risk 

factors ( ),..,i KX X=X .  In this context, Ρ is the rank-order correlation of the transformed 

variables ( ) ( )( ),..,
X Xi Ki KF x F x .  In cases of other copula functions, it may be some different 

measures of dependence that characterizes the copula.  An example is another commonly 

employed and closely related choice of copula in the elliptical family, the t-copula (Demarta 

and McNeil, 2005):   

( ) ( )1 1( ),.., ( ); ,
X Xi KT i KC T F u F u ν− −=u Q                                    (20) 
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where in addition to the measure of dependence Q we have the degrees-of-freedom 

parameter ν , which controls the thickness of the tails.  We use separate notation for Q for 

the reason that it may not coincide with P23.     

An often neglected but very fundamental and quite interesting type of copula is the 

empirical copula.  This is a useful tool in cases where analyzing data with an unknown 

underlying distribution.  The procedure involves transform the empirical data distribution 

into an "empirical copula" by warping such that the marginal distributions become uniform 

(Fermanian and Scaillet, 2003.)  Mathematically the empirical copula frequency function has 

the following representation : 

( ) ( )
1

1
1

1,.., # ,.., . .
j

K
K

E K j i
j

i iC x x s t x x
K K K =

⎧ ⎫⎪ ⎪⎛ ⎞ = ≤⎨ ⎬⎜ ⎟
⎝ ⎠ ⎪ ⎪⎩ ⎭

∩                        (21) 

where ( )ji
x represents the ith order statistic of jx .  An interesting computational property of 

(3.2.9) is that this corresponds to the historical simulation method of computing VaR, which 

involves simply resampling the observed history of joint losses with replacement (or 

bootstrapping).  Historically, this was one of the standard methods for computing VaR for 

trading positions amongst market risk department practitioners.  

 

Finally, we will consider an important class of copulas, the Archimadean family.  

Many of these have a simple form, with properties such as associativity, and have a variety 

of dependence structures.  Unlike elliptical copulas (e.g., Gaussian or T), most of the 

Archimedean copulas have closed-form solutions and are not derived from the multivariate 

distribution functions using Sklar’s Theorem.  One particularly simple form of k-

dimensional Archimadean copula is given by:  

( ) ( )1

1

( )
i

K

A X i
i

C F x−

=

⎛ ⎞= Ψ Ψ⎜ ⎟
⎝ ⎠
∑x                                          (22) 

                                                           
23 We may estimate its components jointly by maximum likelihood. 
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where :[0,1] +Ψ →  is known as the generator function, which satisfies the following 

properties in order to be the basis of a valid copula:  ( )1 0Ψ = ,  ( )
0

lim
x

x
→
Ψ = ∞ , ( ) 0

d x
dx
Ψ

<  

and ( )2

2 0
d x

dx
Ψ

> .  There are several special cases of note here.  In the product copula, also 

called the independent copula, there is no dependence between variates (i.e., its density 

function is unity everywhere):  

( )
1

( )
i

K

AI X i
i

C F x
=

=∏x                                                  (23) 

It is easily seen that this is equivalent to ( ) ( )lnx xΨ = −  in (3.2.10).  Where the 

generator function is indexed by a parameter θ , a whole family of copulas may be 

Archimedean, as in the Clayton copula24: 

( )
1

1

( ) 1
i

K

AC X i
i

C F x
θ

θ

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑x                                            (24) 

Note that the Clayton copula exhibits negative tail dependence, which is to say that 

realizations of extreme low quantiles of random vectors are more likely, relative the case of 

elliptical copulas such as Gaussian or Student-T.  In this case the generator is given by 

( ) 1x xθΨ = − .  Note that where parameter 0θ =  we have the case of statistical 

independence.  Another commonly employed copula in this family, considered by Gumbel 

(1960) in the context of extreme value theory, includes the Gumbel copula:  

( ) ( )
1

1
exp ln ( )

i

K

AG X i
i

C F x
θθ

=

⎛ ⎞
⎛ ⎞⎜ ⎟= − −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠
∑x                                     (25) 

in which case the generator is given by ( ) ( )( )lnx x
θ

Ψ = − 25.  Note that the Gumbel copula 

exhibits positive tail dependence, which is to say that realizations of extreme high quantiles 

                                                           
24 This is related to the gamma frailty models of survival analysis (Clayton, 1978). 
25 Note that some authors change notation on the Archimadean parameter to α , as in that context has the 
interpretation as the tail parameter. 
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of random vectors are more likely, relative the case of elliptical copulas such as Gaussian or 

Student-T.  Finally, we consider the Frank copula (Nelsen, 1986):  

( ) ( )
( )

1

1 1ln 1 exp ln 1
1

X iiF xK

AF
i

eC e
e

θ
θ

θθ =

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟= − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
∑x                    (26) 

in which case the generator is given by ( ) 1ln
1

xex
e

θ

θ

⎛ ⎞−
Ψ = ⎜ ⎟−⎝ ⎠

.  Note that the Frank copula 

exhibits neither negative nor positive tail dependence. 

 

  We find a loss distribution by fitting these models to the data (e.g., MLE) and then by 

simulating realizations from a multivariate distribution by generating independent random 

vectors.  We can make our independent random vectors correlated (by means of a Cholesky 

decomposition, for instance).  In particular, we first estimate the marginal distributions of 

each risk (e.g., central tendency, scale and degrees-of-freedom of a t- distribution) and then 

through inversion have uniform variates.  Next, we fit the dependence structure of the copula 

model by maximum likelihood, e.g. the dependence matrix in t-distribution case, or the 

dependence parameter in the Archimedean case.  Finally, we simulate long history of losses 

using independent random variables (e.g., 4 quarters of losses in each run for 100,000 

iterations) 26 .  For example, in the Gaussian copula case, it is standard normal and 

independent random variables that we generate.  With knowledge of the marginal 

distributions of the risk factors (which can be estimated either parametrically or non-

parametrically), we can derive a rank-order correlation matrix of the transformed marginal 

data, from which we can make our independent random vectors correlated (by means of a 

Cholesky decomposition, for instance). 

 

 We implement conservative marginals.  First, in the case of operational and credit 

risks, we estimate a truncated generalized extreme value (GEV) distribution27.  In the general 

case, this has distribution function given by (Bradley and Taqqu, 2003): 

                                                           
26 In this study we use mainly the library “Copula” in R and the Statistics Toolbox in Matlab.  
27 In probability theory and statistics the GEV is a family of continuous probability distributions developed 
within extreme value theory to combine the Gumbel, Fréchet and Weibull families.  By the extreme value 
theorem the GEV distribution is the limit distribution of properly normalized maxima of a sequence of 
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( )
1

, , exp 1GEV
xF x

ξµµ σ ξ ξ
σ

−⎛ ⎞⎡ ⎤−⎛ ⎞⎜ ⎟⎢ ⎥= − + ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎜ ⎟⎣ ⎦⎝ ⎠

                                 (27) 

 where , Rµ ξ ∈ are the location and tail parameters and σ +∈  is the scale parameter.  Since 

for Rξ +∈ it is the case that ,x σµ
ξ

⎡ ⎞
∈ − ∞⎟⎢
⎣ ⎠

, in order to model non-negative operational28 or 

credit losses, we impose the restriction σµ
ξ

= , which yields:  

( )
1

1, exp 1
GEV

F x x
ξ

σ ξ ξ σ
ξ+

−⎛ ⎞⎡ ⎤
⎛ ⎞⎜ ⎟⎢ ⎥= − + −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

                                 (28) 

  In the case of the symmetric risks – market, liquidity and interest income – we 

estimate Student’s T distributions for the margins:  

( )

2

1
22 2

1 , ,
2 222 1

,
2 2 2

x

T

x x
B

xuF x du
B

υ
υ υ υυ
υ

υ
υ υ υυυπ

+
−

−∞

⎛ ⎞+ ++⎛ ⎞ ⎜ ⎟Γ⎜ ⎟ ⎜ ⎟+⎛ ⎞⎝ ⎠ ⎝ ⎠= + =⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫                 (29) 

where Rυ +∈ is the degrees of freedom, : R R+ +Γ → is the standard gamma-function, and 

[ ] [ ]: 0,1 0,1B → is the standard beta function, so that the left-hand-side of (3.2.17) is the 

regularized incomplete beta function. 

 

4. DATA ANALYSIS: SUMMARY STATISTICS AND MARGINAL 

DISTRIBUTIONS 

 

In Tables 1.1 and 1.2, and in Figures 1.1.1-1.2.3, we summarize basic characteristics of our 

data-set.  The bank sample is from the top 200 banks by book value assets (BVA), as of the 

                                                                                                                                                                                   
independent and identically distributed random variables.  Therefore, the GEV distribution is used as an 
approximation to model the maxima of long (finite) sequences of random variables. 
28 See De Fountnouvelle et al (2003) for an alternative way to model operational risk. 
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year-end 2008, from quarterly Call Reports.  More precisely, we have quarterly data from 

1Q84 to 4Q08, obtained from the “Consolidated Reports of Condition and Income for a 

Bank with Domestic and Foreign Offices - FFIEC 031” regulatory reports, expressed on a 

pro-forma basis that go back in time to account for mergers29.  

 

Table 1.1 and Figures 1.1.1-1.1.6 summarize characteristics of the data-set as of the 

4th quarter of 2008 for the 200 largest banks (the “Top 200") in aggregate that represents a 

hypothetical “super-bank” (“AT200”) and individually for the top 5 banks in BVA  or the 

“Top 5".  The five largest banks by BVA as of 4Q08, in descending order, are as follows: JP 

Morgan Chase – “JPMC” (BVA = $1.85T), Bank of America – “BofA” (BVA = $1.70T), 

Citigroup – “CITI” (BVA = $1.32T), Wells Fargo –WELLS (BVA = $1.24T) and Pittsburg 

National Corporation – “PNC” (BVA = $290B).  As of 4Q08 the AT200 represented $10.8T 

in BVA, and of this the Top 5 banks represents $6.4T, or 59.4% of the total.  The skew in 

this data is extreme, as the average (median) banks amongst the Top 200 has $53.8B 

($7.04B) in BVA, reflected in a skewness coefficient of 6.8 that indicates an very elongated 

right tail relative to a normal distribution.  Indeed, our Top 5 banks reside well into the upper 

5th percentile of the distribution of book value of assets (BVA = $162.9B).  This distribution 

is shown graphically in Figure 1.1.1. 

 

The distribution of the book value of equity (BVE) is similarly skewed toward the 

largest banks, as the Top 200 (5) have aggregate BVE = $1.01T (= $563.8B, or 56.0% of the 

Top 200), as compared to the average (median) bank having MVE = $5.04B (= $70M).  We 

see that the distribution of the book value of total debt (BVTD) is even more extremely 

skewed toward the Top 5 banks, the Top 200 (5) having BVTD = $9.75T (= $5.83T, or 60% 

of the Top 200), as compared to the average (median) bank having BVTD = $48.1B ($6.4B). 

 

Various fields in the Call Reports allow us to construct accounting ratios that are 

informative regarding various dimensions of financial state, such as leverage, profitability 

                                                           
29 In order to illustrate, if a bank in 2008 is the result of a merger in 2008, pre-2008 data is merged on a pro-
forma basis (i.e., the other non-surviving bank’s data will be represented as part of the surviving bank going 
back in time.) 
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and loss rates.  Book leverage ratios (BLR, the distribution of which is shown in Figure 

1.1.2) – defined as the ratio of the BVTD to BVA - in the Top 5 ranges rather narrowly in 

the range of 89.5% for BofA to 92.3% for CITI, which is reflective of the broader sample 

having mean (median) of 89.4% (90.1%), and overall it varies modestly from 83.7% (5th 

percentile) to 93.8% (95th percentile).  

 

We have available from the Call Reports the book or mark-to-market values of assets 

classified as residing in either the lending (“LA”) or trading (“TA”) books,  respectively.  

Taking the ratios of these to BVA, we are able to compute the corresponding proportions of 

lending (“PLA”) or trading (“PTA”) assets, which are quantities of interest in that they 

convey a sense of the business mix.  The distributions of these are shown graphically in 

Figures 1.1.3 and 1.1.4, respectively.  Amongst the broader sample, the median bank has 

PLA = 69.5%, not far above the average of PLA = 66.6%.  The Top 5, as well the AT200, 

fall into the lower half of this distribution.  JPMC and CITI are notably on the low side, 

having respective PLA’s of 39.9% and 47.0%, while WELLS and PNC come closer to the 

center of the distribution (PLA = 64.1% and 62.4%, respectively).  In contrast, the 

distribution of PTA is both quite skewed as well as more highly variable amongst the Top 5 

banks: the mean (median) in the Top 200 is 1.4% (0.0%), while within the Top 5 and AT200 

PTA ranges in 2.1-19.8%.  JPMC and CITI are far ahead at respective PTAs of 19.8% and 

15.2%, while WELLS and PNC are at the lower end (PTA = 4.2% and 2.1%, respectively), 

and BofA (AT200) are middling at PTA = 9.2% (9.0%). 

 

A measure of credit losses, the ratio of gross charge-offs to the amount of lending 

assets (“GCOR”, shown graphically in Figure 1.1.5), is clearly elevated for the largest 3 

banks amongst the Top 5 relative to a typical bank in the Top 200 as of year-end 2008.  The 

median (mean) GCOR = 0.76% (1.27%) in the broader sample; in contrast, in the case of 

JPMC, BofA and CITI it is 1.46%, 1.95% and 2.51%, respectively.  In contrast, WELLS and 

PNC are to the middle or lower half of this distribution, having respective GCORs of 0.95% 

and 0.34%.  On the other hand, for the ratio of non-performing loans to total lending assets 

(“NPAR”), with the exception of PNC (NPAR = 16.2%) the remaining banks in the Top 5 

are not far from the experience of a representative bank amongst the Top 200.  While 
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NPARs of the average and median banks are 3.4% and 2.4%, respectively, we observe 

NPARs of 3.3%, 4.0%, 3.1%, 4.6 and 3.2 for AT200, JPMC, BofA, CITI and WELLS, have 

respectively.  Finally, we consider the widely cited net-interest margin measure of bank core 

profitability, defined as the ratio of the difference between interest income and expense to 

book value of total lending assets (“NIM”, shown graphically in Figure 1.1.6).  This ratio 

exhibits a very high degree of skew toward the largest banks by book value in the sample: 

while the median (mean) bank in the Top 200 has NIM = 1.1% (1.2%), this ranges in 4.0% 

(PNC) to 5.9% (JPMC) amongst the Top 5, which is far into the tail of the distribution in for 

the broader sample (95th percentile of NIM = 1.85% for the Top 200).               

 

We gather equity price information from the Center for Research in Security Prices 

(CRSP) database as of 4Q08, extracting firms defined as financial institutions.  In Table 1.2 

and Figures 1.2.1-1.2.3, we summarize some equity market information for the banks in our 

sample, 123 of the Top 200 (which includes all the Top 5) for which we could make a 

definitive match to CRSP.  This sample of banks for which we have equity price data (the 

“Top 123 CRSP”) allows us to compute various economically meaningful quantities, such as 

the “market leverage ratio” (defined as the ratio of the book value of total debt to itself plus 

the market value of equity – “MLR”), or the market-to-book ratio (defined as the ratio of the 

sum of the book value of total debt plus the market value of equity to the book value of 

assets - “MTBR”).  We observe that the distributions of BLR and MLR are quite similar in 

the broader sample: respective medians of 90.3% and 90.7%.  However, most of the Top 5 

are somewhat more leveraged according to the MLR measure, ranging in 91.1% (WELLS) to 

97.1% (CITI) by this metric, as compared to 91.31% (PNC) to 92.3% (CITI) for the BLR.  

This is reflective of the beating that the stocks of the largest banks had been subject to by 

year-end 2008.  It is also worth noting that the Top 5 generally sell at a discount to book 

value according tom the MTBR, and lag the broader Top 123 CRSP sample where median 

(average) MTB is 98.8% (103.0%), and the Top 5 ranges from 95.1% (CITI) to100.4% 

(WELLS).   

 

Table 1.3 and Figures 2 through 5 summarize distributional properties of and 

correlations amongst our 5 accounting based proxies for corresponding risk types.  These 
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calculated from quarterly Call Reports in the period 1Q84-4Q08, for the AT200 and Top 5 

banks.  We measure credit risk (“CR”) as gross charge-offs (“GCO”).  We measure 

operational risk (“OR”) as other non-interest expense (“ONIE”).  Market risk (“MR”) is 

proxied for by the deviation to the trailing 4-quarter average in net-trading revenues (“NTR-

4QD”); such a measure is discussed in Jorion (2006).  Whereas our proxy to CR of GCO is 

the same as in Rosenberg and Schuermann (2006), we deviate from that in estimating OR 

and MR, for which the authors used external operational risk data and a GARCH factor 

model fit to macro data, respectively.  In our extension of capturing Liquidity Risk (“LR”) 

and Interest Rate (or Income) Risk (“IR”), we also follow the Jorion (2006) prescriptions.  

LR is approximated by the liquidity gap, defined as total loans minus total deposits, as a 

deviation from a moving 4-quarter trailing average ("LG-4QD").  Similarly, IR is 

approximated by the interest rate gap, defined as total interest expense minus total interest 

income, as a deviation from a moving 4-quarter trailing average ("IRG-4QD"). 

 

First considering quarterly GCO, we observe in Table 1.3 that median quarterly GCO 

ranges from $1.00B-$1.91B amongst the 4 largest of the Top 5, with PNC much lower at 

$270M.  The range over time across the Top 5 is wide from $10M to $5.81B.  In all cases 

GCO exhibits high positive skew.  Median (mean) GCO for the AT200 is $6.66B ($7.89B), 

with a wide range of $1.92B to $31.16B, and significantly positive excess skewness.  

Median NIE ranges in $2.90B-$4.08B amongst the 4 largest of the Top 5, with PNC much 

lower at $84M.  The range over time across the Top 5 is wide from $42M-$33.1B.  In the 

case of 4 out of 5 of the 5 largest banks, GCO exhibits high positive skew, the exception 

being PNC.  Median (mean) NIE for the AT200 is $6.66B ($7.89B), with a wide range of 

$1.92B to $31.16B, and significantly positive excess skewness.  Median NTR-4QD ranges in 

$-88M to $4.08B amongst the Top 5.  The range over time across the Top 5 is wide in -

$0.88M to $9.09B.  In the case of 4 out of 5 of the 5 largest banks, NIE exhibits high 

positive skew, with the exception of PNC.  Median (mean) NTR-4QD for the AT200 is -

$130M (-$10M), with a wide range of -$7.20B to $16.13B, and significantly positive excess 

skewness.  Median LG-4QD ranges in -$6.85B to -$760M amongst the Top 5.  The range 

over time across the Top 5 is wide in -$82.9B to $90.05B.  LG-4QD exhibits less excess 

positive skewness than the other variables.  Median (mean) LG-4QD for the AT200 is -
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$20.5B (-$20.1B), with a wide range of -$159.7B to $375.8B, and significantly positive 

excess skewness.  Median IRG-4QD ranges in  -$910M to $920M amongst the Top 5.  The 

range over time across the Top 5 is wide in -$35.0B to $31.7B.  Unlike the other variables, 

IRG-4QD exhibits mild negative skewness.  Median (mean) IRG-4QD for the AT200 is -

$2.62B (-$7.34B), with a wide range of -$171.72B to $153.01B, yet not having significantly 

negative excess skewness. 

 

In Figures 2.1.1 through 2.1.6 are displayed the smoothed kernel distributions of 

historical losses for each risk type, our accounting based proxies.  We observe from these 

figures that indeed there is wide variation in the distributional properties of the different risk 

types.  In the case of GCO, for AT200 and for all of the Top 5, we see the familiar right 

skewed and long tailed distribution of historical credit losses, as well as of theoretical loss 

distributions such as the Basel asymptotic single risk factor model.  In some case however, 

we observe bi-modality, such as for JPMC and CITI.  The distribution of ONIE, the OR 

proxy, is similarly non-negative and right-skewed with an elongated tail.  Additionally, the 

mode appears shifted rightward relative to that of GCO (and not as peaked), the tails appear 

somewhat heavier and do not exhibit the multi-modality as in the distribution of GCO.  On 

the other hand, the proxies for MR, LR and IR are all symmetric.  However, there are subtle 

differences amongst these that are worthy of note.  NTR-4QD exhibits the greatest degree of 

peakedness amongst these, while IRG-4QD the least.  In the lower-left panel for each of 

these we show the distribution of the proxy for “Total Risk”, which is simply the sum of the 

5 proxies.  These are generally closer to symmetric than GCO and ONIE, but are heavier 

tailed and more skewed to the right than the remaining 3 proxies.     

 

Given these distributional features, when we implement the copula models, we 

choose to model the marginal distributions of GCO and ONIE as 2-paramter GEV (equations 

3.2.15 and 3.2.16), having non-negative support; and that of the remaining risk proxies 

(NTR-4QD, LG-4QD and IRG-4QD) as Student’s T distributions (equations 3.2.17), 

symmetric and with degrees of freedom determined  by the data.  We could fit alternative 

marginal distributions, potentially giving a better fit to the empirical distributions or better 
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modeling the tails30, but we wish to make the simplest parametric choices possible that are 

still conservative, in that these exhibit heavy tails relative to normal or log-normal.  This is 

for the purpose of making this exercise easily replicable by practitioners. 

 

In Figures 2.2.1 through 2.2.6 are displayed the quarterly time series of historical 

losses for accounting loss proxies of each risk type.  We observe from these figures that 

indeed there is wide variation in the time series properties of the different risk types.  In the 

case of GCO, for AT200 and for all of the Top 5, we see the familiar long cycling 

characteristic of annual loss rates in rating agency publications.  In particular, note the peaks 

during the downturns of the early 1990’s and 2000’s, as well as most recently at the end of 

2008 during the height of the financial crisis.  It is more difficult to detect the cyclical effect 

in the time series of the OR proxy ONIE, and there appear to be greater differences across 

banks.  In the case of AT200 and 3 of the Top 5, something like a smooth upward trend is 

evident, but not so for WELLS and PNC.  In aggregate and across the most of the Top 5, the 

MR proxy NTR-4QD appears to fluctuate mildly around zero, with the exception of JPMC 

where the degree fluctuation is greater and appears to be increasing over time. And in all 

cases, there is an upward blip in the MR measure sometime in 2008, which is (with the 

exception of JPMC) a change of historically unprecedented magnitude.  LG-4QD seems to 

lie somewhere between GCO and NTR-4QD in its time series behavior, having more 

variation over time than the latter, and faintly some of the long cycling of the former.  One 

can see slight elevation in the liquidity risk measure in the last downturn and recently for 

JPMC, BofA and WELLS.  On the other hand, IRG-4QD behaves quite differently than the 

other risk proxies, in all cases exhibiting very clear autocorrelation, having a saw-tooth 

pattern with much greater variability than but with no detect sensitivity to the cycle nor any 

discernable “blip” as compared with NTR-4QD.  However, in most cases we can detect that 

the variability in this measure has mildly decreased over time (especially from early on in the 

sample period), possibly reflecting then use of derivatives on the part of banks to better 

manage this risk.             
                                                           
30 A relatively straightforward choice would be to use these fitted kernel density estimates, at a modest but 
material increase in computational burden.  A more computationally expensive approach would be to model the 
body and the tails separately, say through a “conventional” distribution (e.g., lognormal or students-t) and 
something like a Generalized Pareto Distribution, respectively. 
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In Table 1.4, and in Figures 3.1 through 3.6 (4.1 through 4.6), we show the linear 

Pearson (rank-order Spearman31) correlations amongst the 5 proxies of the risk types.  First, 

we observe some wide disparities across banks in the signs and magnitudes of the 

correlations.  The second general observations is that magnitudes are generally on the low 

side, and in some cases negative, which would support the presence of substantial 

diversification benefits.  Finally, the Spearman rank order correlations also exhibit wide 

disparity in signs and magnitudes across risk pairs, and moreover are not in generally in-line 

with the results of the linear correlation analysis.         

 

In the case of CR and OR, Pearson correlations range from large and positive (0.65 

and 0.77 for AT200 and CITI, respectively), to modest and positive (0.10 and 0.29 for 

WELLS and PNC, respectively), and then to small and negative (-0.06 and -0.04 for JPMC 

and BofA, respectively).  The Spearman correlations are the same in sign and generally close 

to the Pearson correlations in magnitude for this pair, albeit significantly larger for PNC 

(41%).  This runs counter to some empirical evidence that operational and credit risk losses 

may be positively correlated (Chernobai et al, 2008).  Possibly this reflects the heterogeneity 

in control processes across banks that are better captured in this analysis.   

 

In the case of CR and MR, in almost all cases Pearson correlations are positive and of 

modest magnitude, ranging from 0.16 (CITI) to 0.22 (AT200) in the 4 out of 5 cases, but is 

only 0.05 (0.09) for BofA (PNC).   The Spearman correlations are close in most cases, 

except that it is negative (much smaller) for AT200 (CITI), -0.05 vs. 0.22 (0.08 vs. 0.16).  

These observations may be considered in line with empirical evidence and theoretical 

arguments that support a positive correlation between credit and market risks (Jarrow and 

Turnbull, 2000).   

 

While CR and LR are all positively correlated by the Pearson measure, we observe 

that the magnitudes vary widely across banks: from large (0.53 and 0.48 for AT200 and 
                                                                                                                                                                                   
 
31 Note that these are the ordinary Pearson correlation amongst the rank transformed variables. 
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BofA, respectively), to modest (0.19, 0.31 and 0.21 for JPMC, CITI and PNC, respectively), 

and to small (0.02 for WELLS).  However, Spearman correlations agree neither in sign nor 

magnitude, being negative and small to modest in most cases: -0.12, -0.17, -0.03, -0.15 and -

0.15 for JPMC, BofA, CITI, WELLS and PNC, respectively; only in the case of AT200 do 

we get a positive sign on the Spearman correlation, but of diminished magnitude (0.10) 

relative to the Pearson (0.53).  Again, this is partly consistent with various empirical studies 

and models which have found or purport a positive relationship between credit and liquidity 

risk (Ericsson and, 2005), as well as certain theoretical models (Cherubini and Lunga, 2001.)   

 

In the case of CR and IR, Pearson correlations are all negative, ranging in magnitude 

rather narrowly from small (-0.08 and -0.09 for JPMC and CITI, respectively) to modest (-

0.13, -0.18, -0.14 and -0.13 for AT200, BofA, WELLS and PNC, respectively).   But again 

we are in a situation in which the Spearman correlations are radically different, all positive 

and of relatively large, ranging from 0.17 to 0.33.  While certain credit risk models in the 

structural class suggest a negative correlation (Merton, 1974), empirically we do not have a 

firm sense a priori of what the sign on this correlation ought to be. 

 

In 4 out of 6 cases, OR and MR have modest positive Pearson correlations, ranging 

from 0.11 for JPMC to 0.20 for AT200, but are negative and have small (modest) values of -

0.04 (-0.09) for WELLS (PNC).  The Spearman correlations are also positive in most cases, 

but of diminished magnitude, ranging from 0.01 for WELLS to 0.10 for both JPMC and 

BofA; but as in the Pearson measure it is still negative for PNC (-0.07).  There is really no 

empirical evidence of theory that can guide us in forming a prior on what the sign of this 

correlation should be.  One may speculate that during market dislocations, strains on systems 

and personnel may increase the likelihood of an operational risk event, such as a trading 

error or the revelation of a fraud (e.g., see Jorion 2006 for the Barrings and Daiwa case 

studies). 

 

Considering the Pearson correlation between our proxies for OR and LR, we see 

much diversity in sign and magnitude, while the Spearman correlations are all negative and 

of modest size.  In the cases of JPMC, CITI and AT200 we observe Pearson correlations of 



H. Inanoglu, M. J. Jr / Journal of Risk and Financial Management 2(2009) 118-189 

 

 150

small to modest magnitude (0.07, 0.12 and 0.15, respectively).  On the other hand, the 

respective negative Pearson correlations of -0.05, -0.09 and -0.10 for WELLS, BofA and 

PNC tend to lie on the low range.  The Spearman correlations are all negative and range 

from small (-0.02 for AT200) to modest (-0.24 and -0.26 for BofA and WELLS, 

respectively).  Here we not only don’t have any research precedent to go on, but cannot offer 

much in the way of speculation about what the sign should be.  It may very well be that 

during periods of a liquidity crunch internal controls are tightened in order to maximize 

available sources of funds, thereby mitigating the likelihood of an operational risk event, 

implying a negative relationship.  Similarly, to the extent that liquidity may be more 

favorable during times of favorable credit quality or rising markets, when internal controls 

may be lax, this also supports a direct relation.  And further supporting a positive 

dependence, we can imagine that the onset of an adverse operational loss may precipitate a 

loss of liquidity for a bank, which supports a direct relationship.            

 

All of the Pearson correlations between OR and IR are negative and generally modest 

in magnitude: -0.09, -0.12, -0.14,-0.16, -0.16 and -0.23 for CITI, AT200, JPMC, WELLS, 

PNC and BofA, respectively.  But the Spearman correlations are split in sign between 

positive (0.07, 0.10 and 0.12 for AT200, JPMC and CITI, respectively) and negative (-0.30, -

0.05 and -0.04 for BofA, WELLS and PNC, respectively).  Again here it is challenging to 

explain what these result should be.  One may speculate that to the extent operational losses 

may occur in periods where bank margins are healthier (and not necessarily in economic 

upturns or good parts of the credit cycle) and controls are lax, the positive correlations 

observed in some cases may make sense.  

 

We observe a wide range of in the signs and magnitudes of the Pearson correlations 

between MR and LR, while in 4 out of 6 cases Spearman correlations are moderately sized 

and negative.  AT200 (BofA) has a modestly sized positive (negative) Pearson correlation of 

0.11 (-0.18), and CITI (PNC) has a small positive (negative) correlation of 0.06 (-0.03), 

while JPMC (WELLS) has an insignificant positive (negative) correlation of 0.02 (-0.01).  

On the other hand, JPMC, BofA, CITI and WELLS have substantial negative Spearman 

correlations of -0.36, -0.23, -0.23 and -0.25, respectively; while AT200 and PNC stand out 
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by this measure with insignificant positive correlations of  0.02 and 0.002.  We find the 

Pearson results a little surprising, since it may be natural to think that liquidity measures 

would tend to be higher during downward market moves, as is more consistent with the 

Spearman measure results. 

 

In the case of the MR-IR pair, the Pearson correlations are generally negative, while 

the Spearman correlations are for the most part positive.  While for AT200 the Pearson 

correlation between MR and IR is positive and reasonably large (0.25), in the case of 4 out of 

the Top 5 it is moderately negative: -0.28, -0.19, -0.18 and -0.17 for JPMC, CITI, WELLS 

and BofA, respectively.  And for the smallest of the Top 5, PNC, it is insignificantly positive 

at 0.03.  But the Spearman measures tell a slightly different story: ranging from modestly 

(0.19 for AT200) to small (0.07 and 0.09 for WELLS and BofA, respectively) and positive 

on the one hand, to negative in one case (-0.09 for JPMC) and insignificant and positive in 

another (0.04 for PNC).  Therefore, by the Pearson measure we observe that for the very 

largest of banks, adverse moves in our market risk proxy tend to coincide with favorable 

shocks to our interest rate risk measure.  A possible explanation is that in periods of down 

markets, banks benefit from rising credit spreads on its loan book, while the rate on deposits 

is lagging.  But we are not seeing this in the Spearman measure of dependence.  

 

Finally, the correlation between IR and LR is consistently positive for both measures 

of correlation.  In the Pearson case, these range from small (0.09 for both BofA and WELLS) 

to moderate (0.12, 0.13, 0.19 and 0.20 for CITI, PNC, AT200 and JPMC, respectively).  The 

Spearman correlations are similar, albeit slightly larger: 0.08, 0.13, 0.15, 0.18, 0.21 and 0.26 

for WELLS, AT200, BofA, PNC, JPMC and CITI, respectively.  As with many of these 

results, we have little to go on in the way of prior expectations other than reasoned 

speculation.  It is possible that in periods in which deposits are growing faster than 

expansion in loans happen to coincide with periods in which banks are competing for 

deposits, and hence the interest rate gap is widening.   

 

In Table 1.5 and in Figures 5.1-5.6 we present results group-wise tests of multivariate 

stochastic independence amongst our risk proxies developed by Genest et al (2004, 2009).  
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The p-values of Table 1.5, derived under the null-hypothesis of independence with respect to 

each group, are based upon a comparison to the empirical copula process.  Figures 5.1-5.6 

are the dependograms of the test statistics and the corresponding critical values32.  We find 

that across all the possible 26 sub-sets and 6 entities under consideration, in the majority of 

cases we fail to reject independence.  For example, in only 14, 10, 5, 9, 9 and 6 groups do we 

reject the null hypothesis of independence at better than the 10% level for Top 200, JPMC, 

BofA, CITI, WELLS and PNC, respectively.  At better than the 1% level, this drops off 

dramatically:  8, 3, 1, 3, 3 and 1 groups for the Top 200, JPMC, BofA, CITI, WELLS and 

PNC, respectively.  It seems that we are able to reject independence in the most cases for 

Top 200, and the least for either BofA or PNC.  However, in the case of the broad tests of the 

5 risk types together in the second to last row, as well as the global test of at least one subset 

being independent in the final row, in all cases we are able to reject at the 10% level or better 

for all banks.      

 

5. ESTIMATION RESULTS: INTEGRATED RISK THROUGH ALTERNATIVE 

AGGREGATION METHODOLOGIES 

 

The main results of this paper are tabulated in Tables 2.1, 2.2, 3.1 and 3.2; and shown 

graphically in Figures 6.1-7.  In Table 2.1 we report the 99.97th percentile VaR (Equation 

3.1.2) for alternative risk aggregation methodologies for each AT200 and the Top 5 in row-

wise panels, and in Table 2.2 we replicate this for the Expected Shortfall (ES) at the 99th 

percentile  (Equation 3.1.3).  The different techniques are arrayed by column as “Gaussian 

Copula Simulation” (Equations 3.2.6-3.2.8; henceforth "GCS") 33 , “Gaussian (Variance-

Covariance) Approximation” (Equations 3.2.6-3.2.8; henceforth "VCA"), “Historical 

Bootstrap (Empirical Copula) Simulation” (Equation 3.2.9; henceforth "ECS"), “T - Copula 

Simulation” (Equation 3.2.8 henceforth "TCS"), “Archimadean Copula (Gumbel) 
                                                           
32 As outlined by Genest and Remillard (2004), this test is composed of two steps.  First, for all sub-sets of the 
variables, the distributions of the test statistics arte simulated, under the null hypothesis of mutual independence 
and for the given sample size.  In the second step, the approximate p-values are computed, based upon the 
distribution in step one.      
 
33 Results for H-VaR were nearly identical to the N-VaR, which is the output of the VCA methodology. 
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Simulation” (Equation 3.2.13; henceforth "AGCS"), “Archimadean Copula (Clayton) 

Simulation” (Equation 3.2.12; henceforth "ACCS") and “Archimadean Copula (Frank) 

Simulation” (Equation 3.2.14; henceforth "AFCS").  The 1st row in each panel labeled 

“Magnitude of Risk – Fully Diversified” represents the 99.97th percentile (ES at the 99th 

percentile) of the loss distribution, either simulated in the case of the copula methods or 

analytic in normal approximation, in Table 2.1 (2.2).  The second rows of each panel labeled 

“Magnitude of Risk – Perfect Correlation” represents the simple sum of the 99.97th 

percentiles (ES at the 99th percentile) of the simulated loss distributions for each risk type in 

the case of the copula methods, or the sum of the standard deviations of the loss in the 

analytic normal approximation (in either case, “simple summation” of risks), in Table 2.1 

(2.2).  In the corresponding 3rd rows we show the “Proportional Diversification Benefit” 

(henceforth PDB), which is defined as the difference in the risk measure between the perfect 

correlation and fully diversified cases, expressed as a proportion of fully diversified VaR or 

ES for the respective tables:    
99.97% 99.97%

99.97%

99.97%
%

VaR VaR
PerfectCorrelation Fully DiversifiedVaR

VaR
Fully Diversified

VaR VaR
Diversification Benefit

VaR
−

=               (30) 

   

99.9% 99.9%

99.9%

99.9%
%

ES ES
PerfectCorrelation Fully DiversifiedES

ES
Fully Diversified

VaR VaR
Diversification Benefit

VaR
−

=                  (31) 

In the second-to-bottom rows we tabulate the p-values of the Genest and Remillard 

(2009) goodness-of-fit tests for the copula models.  Approximate p-values for this test are 

based upon the a comparison of the empirical copula (EC) to a parametric estimate of the 

copula in question, that is generated through a parametric bootstrap, under the null 

hypothesis the data is generated through the EC process34.    

 

                                                                                                                                                                                   
 
34 Genest and Remillard (2008) note that if the parametric bootstrap is used, then the vector of dependence 
parameters for the copula family in question can be estimated by maximizing the pseudo-maximum likelihood 
(PML), inverting Spearman’s rho or by inverting Kendal’s tau.  On the other hand, if the multiplier method is 
used, any of these may be used in the bivariate case, but in higher dimensional problems only PML may be 
used.         
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In the bottom row of each panel in Tables 2.1 and 2.2 we show the diversified VaR 

and ES as a proportion of the book value of total assets (BVTA), for AT200 and each Top 5 

institution as of the year-end 2008.  We observe wide variation in all risk and diversification 

measures across aggregation methodologies for a given institution, as well as across banks 

for a given technique.   

 

First we shall discuss the VaR results in Table 2.1.  The dollar VaR (shown 

graphically in Figure 6.1) is increasing in size of institution, ranging cross diversification 

methodologies: $688B-$930B for AT 200, $187B-$392B for JPMC, $182B-$207B for 

BofA, $132B-$277B for CITI, $104B-$199B for WELLS, and finally a big drop-off $46.6B-

$57.8B for PNC.  We show these graphically in Figure 5.1.   

 

VaR expressed as a proportion of BVA (shown graphically in Figure 2.2) also shows 

much variation across both aggregation techniques and institutions, ranging from the mid 

single-digits to just below 20%.  These percentages generally decrease with the size of the 

institution, although the relationship is not strictly monotonic.  We observe percentages 

lowest for the hypothetical aggregate AT200 (6%-9%), highest for PNC (16%-18%), and 

generally hovering just north of 10% for the middle 4 banks: 10%-20%, 11%-12%, 10%-

15%, 8%-16% for JPMC, BofA, CITI and WELLS, respectively.  Note that the ranges of 

VaR/BVA across methodologies appear to be increasing from JPMC down to WELLS.  We 

are cautious to conclude much from this, such as a “business line diversification story”, due 

to the small sample size.  Comparing different risk aggregation methodologies across banks, 

we observe that VCA produces consistently the lowest VaR, and that either the ECS or the 

AGCS produce the highest VaR, across all institutions.  ECS and ACGS is followed by TCS 

in terms of conservativeness, while the GCS “benchmark” is usually somewhere in the 

middle, and ACCS is toward the low side.  AFGS tends to be closest to GCS, albeit usually 

just a little lower.  While TCS is always higher than GCS, in some cases it is not by a very 

wide margin.  

 

  In the case of AT200, VaR under ECS (VCA) is $859B ($688B), $392B ($187B), 

$205B ($182B), $277B ($132B) , $187B ($104B) and $57.8B ($46.6B) for AT200, JPMC, 
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BofA, CITI, WELLS and PNC, respectively; and this brackets the respective GCS VaRs of 

$764B, $230B, $194B, $162B, $163B and $47.9B.  AGCS is in some cases close to ECS, 

and in others still higher than GCS (understandably, with the property of upper tail 

dependence), with VaRs of $930B, $247B, $207B, $200B, $199B and $52.3B for AT200, 

JPMC, BofA, CITI, WELLS and PNC, respectively.  On the other hand, TCS is always 

higher than GCS, but in some cases by only a modest amount (and generally less than AGCS 

or ECS): VaRs of $812B, $238B, $200B, $172B, $171B and $50.1B for AT200, JPMC, 

BofA, CITI, WELLS and PNC, respectively.  The ACCS is generally second-place to VCA 

in lack of conservativeness, understandably so given its property of lower tail dependence: 

VaRs of $728B, $219B, $182B, $149B, $152B and $46.6B for AT200, JPMC, BofA, CITI, 

WELLS and PNC, respectively.  Finally, we see that the AFCS (the Archimadean copula 

characterized by neither upper nor lower tail dependence) is middling and often close to 

GCS in VaR magnitude as compared to its brethren methodologies: VaRs of $752B, $232B, 

$203B, $160B, $158B and $47.1B for AT200, JPMC, BofA, CITI, WELLS and PNC, 

respectively.     

 

The proportional diversification benefits, or PDBs (shown graphically in Figure 6.3), 

exhibit a great deal variation across banks and aggregation techniques, range from 10% to 

50%, with the ECS (AGCS) yielding clearly higher (lower) values than the other 

methodologies. PDBs ECS ranges in 40% to 50%, while they range in 10% to 25% for 

AGCS.  Across banks, the GCS “benchmark” tends to lie in the middle (41-58%), and the 

VCA to the lower end of the range (31-41%), while AGCS is the lowest (10-21%). 

 

Looking at the range of the PDBs across aggregation methodologies for a given bank, 

we attempt to measure the impact of business mix.  However, we cannot observe a 

directionally consistent pattern. The 2 banks with the highest proportion of trading have 

diversification benefits lying in a low and wide (11.2% to 46.1% for CITI) to a high and 

narrow range (20.3% to 36.6% for JPMC).  On the other hand, considering banks with 

proportionately more lending assets, BofA has a range similar to JPMC (25.2% to 38.3%), 

while Wells and PNC more closely resemble CITI (10.4% to 49.1% and 21.1% to 37.0%, 

respectively).  We shall not discuss the 99th percentile expected shortfall (ES) results in 
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Table 2.2, as generally the results are quite in both absolute quantities and in comparisons 

across institutions or aggregation methodologies.   

 

The results of the Genest et al (2009) GOF tests (shown graphically in Figure 6.4) are 

highly mixed (we reject the null in just under one-half of cases, 14 out of 30) and do not lend 

themselves to the extraction of a clear pattern.  Generally, the rejections of fit to the 

empirical processes are not at very high levels of significance, so that perhaps we can say 

that the models are doing a decent job.  There are only 3 rejections at better than the 1% 

level (AGCS for AT200 and JPMC, AGCS for JPMC), only one at the 5% level (AFCS for 

AT200), and the remaining 9 at only the 10% level (and in one case, the p-value is just above 

0.10).  AT200 has the most rejections (in all cases, models are rejected at the 10% level), 

followed by JPMC (2 rejections for TCS and AGCS), CITI and WELLS (2 rejections each at 

the 10% level), with BofA and PNC having the least (only 1 each at the 10% level).  Across 

banks, the GCS and AGCS models fail to reject a fit to the data most often (1 and 2 

rejections, respectively; however, AGCS has the 2 lowest p-value), while the TCS (4 at the 

10% level) and AFCS (3 at the 10% level and 1 at the 5% level) have the most rejections.    

 

The object of the second analysis that we perform, a bootstrap (or resampling) 

exercise, is to measure the uncertainty in the VaR and PDB estimates.  This is now a widely 

used technique in finance and economics, originating mainly in the statistics literature, which 

has the potential to develop estimates of standard errors or confidence intervals for complex 

functions of random variables for which distribution theory is undeveloped (Efron and 

Tibshirani, 1986).  The type of bootstrap that we implement is the so-called non-parametric 

version, in which the data is resampled with replacement.  In each iteration, the function of 

interest is recalculated, yielding a distribution of the latter which can be analyzed.  As the 

VaR estimate in any of the aggregation frameworks depends upon a random sample of 

observations, and in the case of the VCA or the copulas parametric estimates of the marginal 

distributions or of the correlation matrices, the uncertainty in the latter flows through to the 

former.  This manner of analysis is of keen importance to regulators, as they must seek to 

understand how we may decompose the volatility of capital from year-to-year into that 
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driven by the variability in model inputs, from that stemming from changes to a bank’s risk 

profile.    

 

The results of this experiment are tabulated in Tables 3.1 and 3.2 for the VaR and 

PDB estimates, respectively.  We resample with replacement 10,000 times, and in each 

bootstrap we run a simulation of 100,000 years as in the main results.  The numerical 

coefficients of variation (NCV) of VaR and PDB across banks and techniques are shown in 

the final rows of each panel in Tables 3.1-3.2, as well as graphically in Figures 7.1-7.4.  We 

define the NCV as the ratio of the 95% confidence interval in the bootstrapped sample to the 

estimate in the historical sample: 

97.5% 2.5%99.97%

95%

99.97% 99.97%

99.97%
Q Q

SMPL

BTSTRP BTSTRPVaR
VaR VaR

NCV
VaR

−
=                                     (32) 

97.5% 2.5%99.97%

95%

99.97% 99.97%

99.97%
Q Q

SMPL

BTSTRP BTSTRPPDB
PDB PDB

NCV
PDB

−
=                                   (33) 

We do this bootstrap in two ways:  holding the estimates of the marginal distributions 

constant, and re-estimating the correlations, and vice-versa (i.e., assuming that we know the 

true correlation matrix, but that the parameters the marginal distribution is measured with 

error), shown in the left and right panels of the tables, respectively.  However, in the case of 

ESC, we cannot do either of these and simply draw a new sample from which we estimate an 

empirical copula from the resampled data.  And in the case of the VCA, we can only do the 

correlation resampling, as that methodology does not depend upon fitting marginal 

distributions. 

 

There are several clear conclusions that we can draw based upon these results.  First, 

we fail to observe a consistent pattern in the variability of VaR or PDB across size or types 

of banks (i.e., business mix).  Second, regarding which model is most or least stable, we 

observe that for either the bootstrap of VaR or PDB, the ECS and GSC techniques yields 

generally the lowest NCVs as compared to other methodology.  Third, we see that in contrast 

to this, the VCA is consistently the most variable in the bootstrap, having for the most part 

the highest NCVs.  In the comparison between VCA and the copula methods (excluding 
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ECS) this is somewhat surprising, since VCA does not require estimation of marginal 

distribution parameters, yet nonetheless has much higher NCVs in the resampling of 

correlations for any of the copula methodologies.  In the bootstrap of VaR, NCV ranges in 

6.4%-13.6% for ECS and 27.9%-45.3% for VCA, while in the resampling of correlations 

(margins) for GCS they range in 7.1%-9.0% (35.4%-48.2%).  Fourth, for either the bootstrap 

of VaR or PDB, NCVs are an order of magnitude higher for the resampling of margins as 

compared to the resampling or correlations, and this difference is accentuated for the 

bootstrapping of VaR as compared to PDB.  Five, NCVs are higher for the PDB as compared 

to the VaR statistics.  In the case of VaR, NCVs in the bootstrap of correlations (margins) 

range in 5.9%-45.3% (25.2%-69.6%), while in the case of PDB the corresponding numbers 

are 9.9%-158.2% (22.7%-118.2%).  Finally, according to the NCV criterion, the PDB is 

much more imperfectly estimated than the VaR, across methodologies or banks.  

 

In the case of the VaR bootstrapping in Table 3.1, the NCV for ECS is 8.1%, 6.4%, 

13.6%, 9.1%, 9.1% and 8.9% for AT200, JPMC, BofA, CITI, WELLS and PNC, 

respectively.  The corresponding NCV of VaR numbers for VCA in the bootstrap of 

correlations are much higher: 28.2%, 30.3%, 27.9%, 45.3%, 27.0% and 32.9%, respectively.  

However, in the case of GCS, the corresponding NCVs for the correlation bootstrap of VaR 

are slightly lower than ECS at 7.1%, 7.8%, 8.9%, 8.0%, 8.1% and 9.0% for AT200, JPMC, 

BofA, CITI, WELLS and PNC, respectively.  In this exercise of varying the correlations, the 

NCVs of both the Student-T (8.5%, 7.5%, 11.1%, 12.0%, 16.4% and 10.9%) and AGCS 

(10.6%, 7.5%, 10.8%, 9.6%, 9.3% and 10.0%) slightly higher for AT200, JPMC, BofA, 

CITI,WELLS and PNC, respectively.  Finally, ACCS is slightly lower in NCV across banks: 

6.6%, 7.0%, 6.5%, 6.5%, 6.0% and 5.9% for AT200, JPMC, BofA, CITI, WELLS and PNC, 

respectively. 

 

In the bootstrapping of margins for VaR in the right panel of Table 3.1, we observe 

that the NCVs of all the copula models are higher than VCA and far exceed ECS, but it is 

hard to tell which of these is consistently greater or less.  In the case of GCS the NCVs for 

the margin bootstrap of VaR are 35.4%, 41.4%, 48.2%, 38.4%, 40.0% and 44.8% for AT200, 

JPMC, BofA, CITI, WELLS and PNC, respectively.  The NCVs of Student-T are all higher 
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than those for GCS:  43.6%, 46.6%, 56.1%, 62.2%, 46.0% and 47.4% for AT200, JPMC, 

BofA, CITI, WELLS and PNC, respectively.  But the comparison to of GCS or TCS to either 

AGCS (39.3%, 33.5%, 37.8%, 52.7%, 45.7% and 44.9% for AT200, JPMC, BofA, CITI, 

WELLS and PNC, respectively) and ACCS (44.36%, 50.0%, 25.2%, 54.4%, 62.1% and 

69.6% for AT200, JPMC, BofA, CITI,WELLS and PNC, respectively) is mixed across 

banks. 

 

As with the VaR bootstrapping, in the resampling of PDB in Table 3.2, we observe 

that overall NCVs are higher than in the estimation of VaR, across methodologies and 

institutions.  The estimation of PDB is least precise for VCA, and generally most accurate 

for ECS, followed closely by GCS in having low NCVs.  In the resampling of correlations, 

the GCS and CCS are notably more variable, in that order, as compared with the VaR 

estimation.  As with the case of VaR, the resampling of margins has higher NCVs, although 

the difference as compared to the correlation bootstrapping is not as stark as in VaR 

estimation. 

 

In Table 3.2 for PDB  in the resampling of correlations we observe that the NCV for 

ECS is 14.2%, 12.4%, 18.1%, 12.5%, 9.9% and 18.1% for AT200, JPMC, BofA, CITI, 

WELLS and PNC, respectively.  The corresponding NCVs for GCS are significantly higher 

in most cases at 23.5%, 34.3%, 24.4%, 29.0%, 17.3% and 24.5%.  The NCV of PDB 

numbers for VCA are much higher: 112.2%, 111.2%, 100.3%, 98.4%, 83.4% and 118.2% for 

AT200, JPMC, BofA, CITI, WELLS and PNC, respectively.  In the exercise of varying the 

correlations, the NCVs of PDB is slightly higher for TCS than GCS (31.3%, 36.0%, 39.5%, 

42.4%, 28.4% and 22.5% for AT200, JPMC, BofA, CITI, WELLS and PNC, respectively).  

On the other hand, AGCS is much higher than GCS or TCS in some cases:  75.5%, 44.1%, 

46.8%, 88.5%, 87.9% and 53.9% for AT200, JPMC, BofA, CITI, WELLS and PNC, 

respectively.  And ACCS is somewhere between GCS and TCS:  23.9%, 30.0%, 24.9%, 

24.2%, 22.7% and 28.3% for AT200, JPMC, BofA, CITI, WELLS and PNC, respectively.  

 

In Table 3.2 for PDB in the resampling of margins we observe that the NCVs for 

GCS are quite a bit higher than in the resampling of correlations, now 46.4%, 55.6%, 38.6%, 
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45.1%, 43.9% and 56.7% for AT200, JPMC, BofA, CITI, WELLS and PNC, respectively.  

While always higher, in contrast with the exercise of varying the correlations, the NCVs of 

PDB are in some cases much higher for TCS than for GCS: 61.4%, 69.4%, 39.5%, 83.9%, 

58.2% and 60.9% for AT200, JPMC, BofA, CITI, WELLS and PNC, respectively.  On the 

other hand, AGCS is now generally lower than TCS but not for from GCS:  36.8%, 38.8%, 

44.5%, 48.6%, 53.1% and 43.0% for AT200, JPMC, BofA, CITI, WELLS and PNC, 

respectively.  And ACCS is still somewhere between GCS and TCS:  35.0%, 32.8%, 26.5%, 

43.7%, 49.5% and 19.9% for AT200, JPMC, BofA, CITI, WELLS and PNC, respectively.  

            

6. SUMMARY OF MAJOR CONCLUSIONS AND DIRECTIONS FOR FUTURE 

RESEARCH 

 

In this study, we have compared alternative risk aggregation methodologies.  We have 

described various models used in practice, including the variance-covariance approximation 

(VCA), as well as various copula simulations formulations that include the well-known 

parametric Gaussian copula simulation (GCS) and the less-well known (in this context) 

empirical copula simulation (ECS).  Through differences observed across the five largest 

banks by book value of assets as of the end of 2008, proxying for five risk types using 

accounting data from Call Reports submitted to national supervisors, we have identified a 

range of results across different models for aggregating risk.  The first major exercise 

involved fitting the models, describing and comparing value-at-risk (VaR) and proportional 

diversification benefits (PDBs) across banks and models, as well as goodness-of-fit statistics 

(GOF) for the latter.  The second part involved measuring the statistical variation in the VaR 

and PDB measures through a non-parametric bootstrap. 

    

First, while we documented that dollar 99.97th percentile VaR is increasing in size of 

institution, VaR as a fraction of book value does not appear to be a monotonically increasing 

in size (however, it appears to decrease overall).  Second, we saw that across different risk 

aggregation methodologies and banks that consistently the ECS and AGCS produce the 

highest absolute magnitudes of VaR as compared to either GCS “benchmark”, STCS or any 



H. Inanoglu, M. J. Jr / Journal of Risk and Financial Management 2(2009) 118-189 

 

 161

of the other Archimadean copulas.  Furthermore, ECS – a variant of the well-established 

“historical simulation” methodology in market risk practice – was in many cases found to be 

most conservative, a surprise in that according to asymptotic theory it should be the lower 

bound across copula models.  On the other hand, the VCA consistently produced the lowest 

VaR number, which is disturbing in that several bank practitioners are (for the lack of 

theoretical or supervisory guidance) adopting this computational shortcut.  Third, we also 

noted that the PDB tended to be largest for the ECS than the other methodologies, including 

the GCS “benchmark” or the VCA, while the AGCS produced the lowest.  Therefore, if we 

regard ECS as a reasonable benchmark with much to recommend it, we caution that banks 

choosing either the VCA or other copula models may possibly understate diversifications 

benefits.  Fourth, through differences observed across the two (three) of five largest banks 

having proportionately more trading (lending) assets, we failed to find business mix to exert 

a directionally consistent an impact on total integrated risk.  Fifth, in an application of a 

blanket goodness-of-fit tests for copula models (Genest et al, 2009), we found mixed results: 

while in about half the cases commonly utilized parametric copula models fail to fit the data, 

confidence levels tended to be modest, so clearly this is an area that warrants further 

investigation and experimentation.  Finally, the bootstrapping experiment revealed the 

variability of the VaR itself to be significantly lowest (highest) for the ECS and GCS (VCA) 

relative to other risk aggregation models.  Furthermore, we found that the contribution of the 

sampling error in the parameters of the marginal distributions to be an order of magnitude 

greater than that of the dependency measures.  Overall, our results constituted a sensitivity 

analysis that argues for practitioners to err on the side of conservatism in considering a non-

parametric copula alternative in order to quantify integrated risk.  This is because standard 

copula formulations produced a wide divergence in measured VaR, diversification benefits 

as well as the sampling variation in both of these across different measurement frameworks 

and types of institutions.  

          

There are various fruitful avenues along which this research may be extended.  First, 

motivated by some of our descriptive analysis (i.e., pairwise correlations and group-

independence tests), we may want to model sub-sets of risk factors according to different 

dependency structures (e.g., different copula models).  An ideal framework for 
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accomplishing this is the pair-copula formulation (Aas and Berg, 2007).  While this is 

computationally challenging, we believe the returns to be substantial, and at this point we are 

pursuing such an empirical strategy.  Indeed, it may well turn out that this more realistic 

framework performs not only better than standard copulas, but beats the ECS model that this 

paper has found so robust.  Second, we may consider alternatives to the copula paradigm, 

such as a dynamic time series model; an example that comes to mind is the dynamic 

conditional correlation (DCC) model of Engle and Sheppard (2001) and Engle (2002).  

Third, we may investigate alternative proxies for risk factors, or different risk factors 

themselves, in this or in a competing framework.   Lastly, we could expand the universe of 

banks that we study (e.g., the Top 10 or 20 by assets size).  
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TABLES AND FIGURES 

 

 

 

 
 

Book Value 
of Total 
Assets Book Equity

Book Value 
of Total 
Debt

Book 
Leverage 
Ratio2

Lending 
Assets

Percent 
Lending 
Assets

Trading 
Assets

Percent 
Trading 
Assets

Total 
Chargeoffs

Chargeoff 
Ratio3

Net Interest 
Income

Net-Interest 
Margin

Non-
Performing 
Assets

Non-
Performing 
Assets 
Ratio4

Trading 
Revenue

Non-Interst 
Income

Non-Interest 
Expense

Other Non-
Interest 
Expense

Aggregate Top 200 Banks 10,758.51 1,007.19 9,751.33 90.64% 5,737.07 53.33% 964.24 8.96% 88.01 1.53% 289.33 5.04% 188.15 3.28% -0.99 189.28 298.53 116.37

JP Morgan Chase 1,849.65 152.69 1,696.96 91.74% 738.44 39.92% 365.71 19.77% 10.75 1.46% 43.38 5.88% 29.23 3.96% 5.02 41.78 46.35 14.40

Bank of America 1,699.71 178.72 1,520.99 89.49% 900.99 53.01% 155.64 9.16% 17.60 1.95% 46.35 5.14% 27.82 3.09% -0.35 29.94 36.13 13.67

Citigroup 1,319.45 101.46 1,217.99 92.31% 620.12 47.00% 200.52 15.20% 15.55 2.51% 35.40 5.71% 28.67 4.62% -4.49 12.28 38.97 17.05

Wells Fargo 1,236.36 105.62 1,130.74 91.46% 792.49 64.10% 52.08 4.21% 7.52 0.95% 35.40 4.47% 25.50 3.22% 0.35 22.16 32.89 12.21

PNC 289.88 25.25 264.62 91.29% 180.79 62.37% 6.09 2.10% 0.62 0.34% 7.22 4.00% 29.23 16.17% -0.13 3.35 9.38 2.85

5th Percentile 2.87 0.24 2.40 83.65% 1.94 39.64% 0.00 0.00% 0.0016 0.04% 0.07 0.67% 0.01 0.36% -0.07 0.00 0.00 0.00

25th Percentile 3.90 0.38 3.44 88.20% 2.66 62.06% 0.00 0.00% 0.01 0.36% 0.12 0.94% 0.05 1.18% 0.00 0.01 0.00 0.01

Average Bank 53.79 5.04 48.06 89.35% 28.69 66.63% 4.82 1.38% 0.44 1.27% 1.45 1.24% 0.94 3.40% 0.00 0.17 0.65 0.16

Median Bank 7.04 0.70 6.35 90.09% 4.38 69.53% 0.00 0.00% 0.04 0.76% 0.20 1.11% 0.11 2.37% 0.00 0.01 0.02 0.02

75th Percentile 15.47 1.65 14.21 91.81% 10.34 75.47% 0.05 0.40% 0.14 1.38% 0.48 1.31% 0.35 3.94% 0.00 0.06 0.10 0.04

95th Percentile 162.91 15.36 152.86 93.83% 92.30 86.12% 6.65 5.25% 1.38 3.93% 3.98 1.85% 2.06 9.75% 0.06 0.70 1.11 0.69

Standard Deviation 218.78 19.64 10.88 4.97% 109.41 15.40% 31.88 5.46% 1.92 1.95% 5.86 0.82% 3.94 4.60% 0.54 0.81 7.99 0.64

Skewness 6.76 6.97 -0.53 2.46 6.52 -1.45 9.13 7.28 7.20 6.44 6.59 7.16 6.52 5.61 0.81 8.09 22.03 6.99

Kurtosis 47.29 51.79 60.16 2.99 43.83 3.18 92.04 61.85 55.54 60.24 44.00 64.32 42.57 45.17 64.67 79.00 513.64 53.64

Table 1.1: Summary Statistics on Characteristics of Top 200 and 5 Largest Banks by Asset Size (Call Report Data As of 20081 )

3 - Defined as the ratio of gross-charegeoffs to total lending assets.
4 - Defined as the ratio of non-performing assets to total lending assets.

1 - Dollar amounts expressed in billions.

2 - Defined as the ratio of the book value of  total debt to the book value of total assets.
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Book Value 
of Total 
Assets

Market 
Value of 
Equity

Book 
Equity

Book Value 
of Total 
Debt

Quasi-
Market 
Value of 
Assets3

Book 
Leverage 
Ratio4

Market 
Leverage 
Ratio5

Market to 
Book 
Ratio6

Aggregate Banks2 9,179.99 644.10 838.58 8,341.40 8,985.50 90.87% 92.83% 97.88%

JP Morgan Chase 1,849.65 117.68 152.69 1,696.96 1,814.64 91.74% 93.51% 98.11%

Bank of America 1,699.71 70.65 178.72 1,520.99 1,591.63 89.49% 95.56% 93.64%

Citigroup 1,319.45 36.57 101.46 1,217.99 1,254.55 92.31% 97.09% 95.08%

Wells Fargo 1,236.36 109.92 105.62 1,130.74 1,240.66 91.46% 91.14% 100.35%

PNC 289.88 17.05 25.25 264.62 281.67 91.29% 93.95% 97.17%

5th Percentile 2.88 0.03 0.26 2.56 2.83 86.03% 81.07% 91.14%

25th Percentile 3.96 0.31 0.38 3.61 4.15 88.43% 86.33% 94.26%

Average Bank 74.63 5.24 6.82 67.82 73.05 90.10% 89.86% 103.04%

Median Bank 8.36 0.73 0.72 7.14 8.07 90.28% 90.74% 98.81%

75th Percentile 16.32 1.86 1.64 14.74 16.76 91.72% 95.52% 104.24%

95th Percentile 205.15 30.09 21.63 189.39 219.72 93.75% 99.33% 112.07%

Standard Deviation 275.91 16.87 24.74 251.42 266.72 2.46% 9.75% 28.99%

Skewness 5.3050 5.1706 5.4962 5.3000 5.2794 -0.4452 -3.8215 7.6426

Kurtosis 28.3161 29.1232 31.4196 28.2416 28.1107 1.0313 21.7520 63.3658

Table 1.2: Summary Statistics on Market Value Characteristics of Banks by Asset Size 
(Call Report and CRSP Data As of 20081 )

5 - Defined as the ratio of the book value of total debt to the quasi-market value of assets (defined in 3).
6 - Defined as the ratio of the quasi-market value of assets (defined in 3) to book value of total total assets.

1 - Dollar amounts expressed in billions.
2- 123 out of the 200 top banks by book value of assets for which we could match to CRSP as of 4Q08.
3 - Defined as the market value of equity plus the book value of total debt.
4 - Defined as the ratio of the book value of  total debt to the book value of total assets.
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Min
5th 
Prcntl.

25th 
Prcntl. Mean Median 

75th 
Prcntl.

95th 
Prcntl. Max Std. Dev. Skew. Kurt.

Gross Chargeoffs2 1.92 3.29 5.24 7.89 6.66 9.88 13.60 31.16 4.51 2.4931 9.0434
Non-Interest Expense3 6.20 8.55 12.85 18.47 17.55 24.20 28.64 33.10 6.60 0.1041 -0.9597
Net Trading Revenue4 -7.20 -1.79 -0.62 0.01 -0.13 0.25 1.30 16.13 2.14 4.5929 35.3144
Liquidity Gap5 -159.68 -112.11 -66.48 -20.10 -20.50 26.51 75.92 375.83 72.07 1.5928 7.8773
Interest Rate Gap6 -171.72 -89.86 -57.76 -2.62 7.34 59.23 85.11 153.01 64.80 -0.0682 -0.6063
Gross Chargeoffs 0.79 1.07 1.38 1.96 1.74 2.32 3.59 4.53 0.82 1.2623 1.3433
Non-Interest Expense 2.15 2.80 3.47 4.29 4.08 5.01 5.96 7.00 1.06 0.3278 -0.3711
Net Trading Revenue -1.59 -0.96 -0.32 -0.03 -0.09 0.21 0.87 3.65 0.63 1.9651 11.1842
Liquidity Gap -82.87 -26.97 -12.15 2.28 -0.76 13.25 38.46 88.94 24.92 0.4594 2.2183
Interest Rate Gap -30.86 -16.66 -8.67 -0.13 0.92 8.46 14.76 25.60 10.92 -0.1630 -0.3518
Gross Chargeoffs 0.85 1.21 1.52 2.10 1.91 2.43 3.91 5.81 0.87 1.6790 3.8429
Non-Interest Expense 2.81 3.19 3.71 4.14 4.05 4.53 5.20 5.98 0.62 0.3662 0.1090
Net Trading Revenue -2.43 -0.36 -0.08 0.00 -0.01 0.05 0.25 4.38 0.61 2.8475 31.4616
Liquidity Gap -65.05 -43.17 -20.41 -6.63 -6.85 5.92 35.65 84.95 24.59 0.5063 1.3789
Interest Rate Gap -34.99 -17.06 -9.37 -0.42 0.54 9.03 15.35 31.71 12.12 -0.1040 -0.0776
Gross Chargeoffs 0.17 0.48 0.91 1.58 1.11 2.19 3.55 4.96 1.01 1.0753 0.2524
Non-Interest Expense 0.69 1.67 2.21 3.04 2.58 3.72 5.21 6.43 1.20 0.7202 -0.1864
Net Trading Revenue -3.87 -0.39 -0.16 0.03 -0.02 0.06 0.43 9.09 1.04 6.2887 60.3677
Liquidity Gap -34.38 -20.14 -10.08 -0.12 -1.93 7.55 20.76 90.05 17.96 2.2629 9.0858
Interest Rate Gap -15.34 -11.93 -6.42 -0.58 -0.91 5.83 11.39 14.60 7.32 -0.0244 -0.9156
Gross Chargeoffs 0.45 0.60 0.83 1.15 1.00 1.33 2.21 3.50 0.52 1.7393 4.0686
Non-Interest Expense 1.94 2.30 2.69 2.99 2.90 3.23 4.03 6.63 0.59 2.6639 14.1990
Net Trading Revenue -0.56 -0.12 -0.03 0.00 -0.01 0.02 0.12 0.75 0.13 2.0058 16.6127
Liquidity Gap -41.58 -29.25 -12.26 -5.28 -4.91 0.29 19.90 30.69 13.30 0.0705 0.5398
Interest Rate Gap -24.80 -12.17 -6.31 -0.24 0.86 6.97 11.49 22.39 8.48 -0.1075 0.0474
Gross Chargeoffs 0.10 0.17 0.21 0.33 0.27 0.38 0.68 1.33 0.20 2.4750 7.7287
Non-Interest Expense 0.42 0.57 0.75 0.84 0.84 0.93 1.07 1.23 0.15 0.0660 0.4106
Net Trading Revenue -0.21 -0.03 -0.01 0.00 0.00 0.00 0.04 0.21 0.04 0.2049 22.0198
Liquidity Gap -17.36 -10.17 -5.46 -1.59 -1.85 1.78 8.07 23.62 6.35 0.7620 2.3140
Interest Rate Gap -7.58 -3.76 -1.98 -0.02 0.58 2.43 3.52 7.26 2.80 -0.1077 -0.3254

2 - Gross charge-offs (GCO) is our proxy measure credit risk (CR).
3 - Other non-interest expense (ONIE) is our proxy measure of operational risk (OR).
4 -The deviation to the trailing 4-quarter average in net-trading revenues (NTR-4QD) is our proxy measure of market risk (MR).

Table 1.3: Summary Statistics on Risk Measures for Top 200 and 5 Largest Banks by Asset Size                            
(Call Report Data 1984-2008)1

6 -The deviation to the trailing 4-quarter average of the interest rate gap, defined as total interest expense minus total interest income, our 
proxy measure of interest rate risk (IRG-4QD).

5 -The deviation to the trailing 4-quarter average of the liquidity gap, defined as total loans minus total deposits, our proxy measure of liquidity 
risk (LG-4QD).

1 - Dollar amounts expressed in billions.
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Risk Pair
Type of 

Correlation
Aggregate 
Banks2

JP Morgan 
Chase

Bank of 
America Citigroup

Wells 
Fargo PNC

Pearson 65.17% -5.77% -4.34% 76.65% 10.07% 28.87%
Spearman 60.00% -3.60% -10.00% 78.00% 15.00% 41.00%

Pearson 22.41% 19.73% 5.29% 16.40% 18.42% 9.00%
Spearman -4.90% 15.00% 6.90% 8.10% 19.00% 9.00%

Pearson 53.43% 19.07% 47.87% 31.47% 2.30% 20.85%
Spearman 10.00% -12.00% -17.00% -3.30% -15.00% -15.00%

Pearson -13.28% -7.82% -18.09% -8.78% -14.31% -13.13%
Spearman 33.00% 20.00% 24.00% 33.00% 17.00% 28.00%

Pearson 19.89% 10.92% 12.01% 13.46% -4.28% -9.31%
Spearman 3.00% 10.00% 10.00% 2.70% 1.40% -6.50%

Pearson 15.33% 7.37% -8.55% 11.76% -4.85% -10.22%
Spearman -2.00% -16.00% -24.00% -9.20% -26.00% -18.00%

Pearson -11.74% -14.25% -23.49% -8.79% -15.88% -15.68%
Spearman 7.20% 10.00% -30.00% 12.00% -4.60% -4.20%

Pearson 11.27% 1.56% -18.23% 6.29% -0.94% -3.21%
Spearman 2.30% -36.00% -23.00% -23.00% -25.00% 0.26%

Pearson 24.78% -27.92% -16.70% -19.17% -17.79% 3.38%
Spearman 19.00% -9.10% 8.80% -0.60% 6.80% 3.90%

Pearson 18.97% 19.96% 9.17% 12.38% 9.14% 12.86%
Spearman 13.00% 21.00% 15.00% 26.00% 8.20% 18.00%

Operational and 
Liquidity Risk

Operational and 
Market Risk

Credit and Interest 
Rate Risk

Credit and Liquidity 
Risk

Table 1.4: Pairwise Correlations for Top 200 and 5 Largest Banks Risk 
Proxies (Call Report Data 1984-2008)

Credit and Market 
Risk

Credit and 
Operational Risk

Interest Rate and 
Liquidity Risk

Market and Interest 
Rate Risk

Market and 
Liquidity Risk

Operational and 
Interest Rate Risk
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Figures 1.1.1-1.1.6: Distributions of Key Call Report Variables as of 4Q08 for Top 200 Banks by Book Value of Assets 
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Figure 1.1; Call Report Variables: 200 Largest Banks by Book Value (As of 4Q08)



H. Inanoglu, M. J. Jr / Journal of Risk and Financial Management 2(2009) 118-189 

 

 177

Figures 1.2.1-1.2.3: Distributions of Key Call Report Variables as of 4Q08 for Top 200 Banks by Market Value of Assets 
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Figures 2.1.1-2.1.6:  Kernel Density Estimated Distributions of Historical Losses  
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Figures 2.2.1-2.1.6:  Quarterly Time of Historical Losses 
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Figures 3.1-3.6:  Pairwise Panel Scattergrams and Pearson Correlations of Risk Proxies 
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Figures 4.1-4.6:  Pairwise Panel Scattergrams and Spearman Correlations of Transformed Risk Proxies 
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Figures 5.1-5.6: Genest et al (2009) Dependograms of Independence Tests 
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Figures 6.1-6.4:  Dollar & Relative Value-at-Risk, Proportional Diversification Benefits and, Genest et al (2009) G.O.F. Test P-Values  
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Figure 6.1: 99.97th Percentile Value-at-Risk for 5 Risk 
Types: Credit, Operational, Market, Liquidity and Interest 

Rate (200 Largest Banks: Call Report Data 1984-2008)
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Figure 6.2: 99.97th Percentile VaR as a 
Proportion of BVA for 5 Risk Types: Credit, 
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Rate (200 Largest Banks: Call Report Data 

1984-2008)
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Figure 6.4: Genest et al (2009) Copula GOF Tests  for 5 Risk 
Types: Credit, Operational, Market, Liquidity and Interest 

Rate (200 Largest Banks: Call Report Data 1984-2008)
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Figures 7.1-7.4: Coefficients of Variation of Bootstrapped Value-at-Risk and Percent Diversification Benefit 

across Methodologies and Banks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gaussian Copula 

Normal Approx.

Empirical Copula

T-Copula

Gumbel Copula

Clayton Copula

To
p 

20
0

JP
M

C

Bo
fA

C
iti

W
el

ls

PN
C

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

CV

Figure 7.2: Numerical Coefficients of Variation in Bootstrap 
of Margins for 99.97th Percentile Value-at-Risk for 5 Risk 
Types: Credit, Operational, Market, Liquidity and Interest 

Rate (200 Largest Banks: Call Report Data 1984-2008)
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