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Abstract: How to forecast next year’s portfolio-wide credit default rate based on last year’s
default observations and the current score distribution? A classical approach to this problem
consists of fitting a mixture of the conditional score distributions observed last year to the
current score distribution. This is a special (simple) case of a finite mixture model where
the mixture components are fixed and only the weights of the components are estimated.
The optimum weights provide a forecast of next year’s portfolio-wide default rate. We point
out that the maximum-likelihood (ML) approach to fitting the mixture distribution not only
gives an optimum but even an exact fit if we allow the mixture components to vary but keep
their density ratio fixed. From this observation we can conclude that the standard default
rate forecast based on last year’s conditional default rates will always be located between
last year’s portfolio-wide default rate and the ML forecast for next year. As an application
example, cost quantification is then discussed. We also discuss how the mixture model based
estimation methods can be used to forecast total loss. This involves the reinterpretation of an
individual classification problem as a collective quantification problem.
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1. Introduction

The study of finite mixture models was initiated in the 1890s by Karl Pearson when he wanted to
model multimodal densities. Research on finite mixture models continued ever since but its focus
changed over time as further areas of application were identified and available computational power
increased. More recently the natural connection between finite mixture models and classification
methods with their applications in fields like machine learning or credit scoring began to be investigated
in more detail. In these applications, often it can be assumed that the mixture models are simple in the
sense that the component densities are known (i.e., there is no dependence on unknown parameters) but
their weights are unknown.

In this note, we explore a specific property of simple finite mixture models, namely that their
maximum likelihood (ML) estimates provide an exact fit of the observed densities if the estimates exist.
Conceptually, exact fit is of interest because it inspires trust that also the estimates of the weights of
the components are reliable. A practical consequence of exact fit is an inequality for the finite mixture
model estimate of the class probabilities in a binary classification problem and the so-called covariate
shift estimate (see Corollary 7 below for details). These observations extend observations made in the
case “no independent estimate of unconditional default probability given” from [1] to the multi-class
case and general probability spaces.

In Section 2, we present the result on the exact fit property in a general simple finite mixture model
context. In Section 3, we discuss the consequences of this result for classification and quantification
problems and compare the ML estimator with other estimators that were proposed in the literature. In
Section 4, we revisit the cost quantification problem as introduced in [2] as an application. In Section 5,
we illustrate by a stylised example from mortgage risk management how the estimators discussed before
can be deployed for the forecast of expected loss rates. Section 6 concludes the note while an appendix
presents the proofs of the more involved mathematical results.

2. The Exact Fit Property

We discuss the properties of the ML estimator of the weights in a simple finite mixture model in a
general measure-theoretic setting because in this way it is easier to identify the important aspects of the
problem. The setting may formally be described as follows:

Assumption 1. µ is a measure on (Ω,H). g > 0 is a probability density with respect to µ. Suppose
that the probability measure P is given by P[H] =

∫
H
g dµ for H ∈ H. Write E for the expectation with

regard to P.
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In applications, the measure µ will often be a multi-dimensional Lebesgue measure or a counting
measure. The measure P might not be known exactly but might have to be approximated by the empirical
measure associated with a sample of observations. This would give an ML estimation context.

The problem we study can be described as follows:

Problem 2. Approximate g by a mixture of probability µ-densities f1, . . . , fk, i.e., g ≈
∑k

i=1 pi fi for
suitable p1, . . . , pk ≥ 0 with

∑k
i=1 pi = 1.

In the literature, most of the time a sample version of the problem (i.e., with P as an empirical
measure) is discussed. Often the component densities fi depend on parameters that have to be estimated
in addition to the weights pi (see [3] or [4], and for a more recent survey see [5]). In this note, we
consider the simple case where the component densities fi are assumed to be known and fixed. This is a
standard assumption for classification (see [6]) and quantification (see [2]) problems.

Common approaches to the approximation problem 2 are

• Least Squares. Determine min(p1,...,pk)

∫ (
g −

∑k
i=1 pi fi

)2
dµ or its weighted version

min(p1,...,pk)

∫
g
(
g −

∑k
i=1 pi fi

)2
dµ (see [7] and [8] for recent applications to credit risk and

text categorisation respectively). The main advantage of the least squares approach compared
with other approaches comes from the fact that closed-form solutions are available. However, the
achieved minimum will not be zero (i.e., there is no exact fit) unless the density g happens to be a
mixture of the densities fi.
• Kullback–Leibler (KL) distance. Determine

min
(p1,...,pk)

∫
g log

(
g∑k

i=1 pi fi

)
dµ = min

(p1,...,pk)
E

[
log

(
g∑k

i=1 pi fi

)]
(1)

(see [9] for a recent discussion). We show below (see Remark 1) that a minimum of zero (i.e.,
exact fit) can be achieved if we allow the fi to be replaced by densities gi with the same density
ratios as the fi. In the case where P from Assumption 1 is the empirical measure of a sample, the
r.h.s. of (1) becomes (up to an additive constant) a conventional log likelihood function and thus
presents an ML problem.

In the following we examine in detail the conditions under which exact fit by the KL approximation
can occur. First we note two alternative representations of the KL distance (assuming all integrals are
well-defined and finite):∫

g log

(
g∑k

i=1 pi fi

)
dµ =

∫
g log(g) dµ−

∫
g log

(
k∑

i=1

pi fi

)
dµ (2)

=

∫
g log(g) dµ−

∫
g log(fk) dµ

−
∫
g log

(
1 +

k−1∑
i=1

pi (Ri − 1)

)
dµ (3)

with Ri = fi
fk

, i = 1, . . . , k − 1 if fk > 0.
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The problem in (2) to maximise
∫
g log

(∑k
i=1 pi fi

)
dµ was studied in [10] (with g =

empirical measure, which gives ML estimators). The authors suggested the Expectation-Maximisation
(EM) algorithm involving conditional class probabilities for determining the maximum. This works well
in general but sometimes suffers from slow convergence.

The ML version of (2) had been studied before in [11]. There the authors analysed the same iteration
procedure, which they stated, however, in terms of densities instead of conditional probabilities. In [11],
the iteration was derived differently to [10], namely by studying the gradient of the likelihood function.
We revisit the approach from [11] from a different angle by starting from (3).

There is, however, the complication that g log
(

1 +
∑k−1

i=1 pi (Ri − 1)
)

is not necessarily integrable.
However, this observation does not apply to the gradient with respect to (p1, . . . , pk−1). We therefore
focus on investigating the gradient. With Ri as in (3), let

F (p1, . . . , pk−1)
def
=

∫
g log

(
1 +

k−1∑
i=1

pi (Ri − 1)

)
dµ (4)

(p1, . . . , pk−1) ∈ Sk−1
def
=
{

(s1, . . . , sk−1) : s1 > 0, . . . , sk−1 > 0,
k−1∑
i=1

si < 1
}

From this we obtain for the gradient of F

Gj(p1, . . . , pk−1)
def
=
∂F

∂pj
(p1, . . . , pk−1)

=

∫
g (Rj − 1)

1 +
∑k−1

i=1 pi (Ri − 1)
dµ, j = 1, . . . , k − 1 (5)

Gj(p1, . . . , pk−1) is well-defined and finite for (p1, . . . , pk−1) ∈ Sk−1:

|Gj(p1, . . . , pk−1)| ≤
∫

g (Rj + 1)

1−
∑k−1

i=1 pi +
∑k−1

i=1 piRi

dµ

≤ 1

pj
+

1

1−
∑k−1

i=1 pi
<∞

(6)

We are now in a position to state the main result of this note.

Theorem 3. Let g and µ be as in Assumption 1. Assume that R1, . . . , Rk−1 ≥ 0 are H-measurable
functions on Ω. Suppose there is a vector (p1, . . . , pk−1) ∈ Sk−1 such that

0 = Gi(p1, . . . , pk−1), i = 1, . . . , k − 1 (7)

for Gi as defined in (5). Define pk = 1−
∑k−1

j=1 pj . Then the following two statements hold:

(a) gi = g Ri

1+
∑k−1

j=1 pj (Rj−1)
, i = 1, . . . , k − 1, and gk = g

1+
∑k−1

j=1 pj (Rj−1)
are probability densities with

respect to µ such that g =
∑k

i=1 pi gi and Ri = gi
gk

, i = 1, . . . , k − 1.
(b) Let R1 − 1, . . ., Rk−1 − 1 additionally be linearly independent, i.e.,

P

[
k−1∑
i=1

ai (Ri − 1) = 0

]
= 1 implies 0 = a1 = . . . = ak−1
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Assume that h1, . . . , hk−1 ≥ 0, hk > 0 are µ-densities of probability measures on (Ω,H) and
(q1, . . . , qk−1) ∈ Sk−1 with qk = 1 −

∑k−1
i=1 qi is such that g =

∑k
i=1 qi hi and Ri = hi

hk
, i =

1, . . . , k − 1. Then it follows that qi = pi and hi = gi for gi as defined in (a), for i = 1, . . . , k.

See appendix for a proof of Theorem 3.

Remark 1. If the KL distance on the l.h.s. of (2) is well-defined and finite for all (p1, . . . , pk−1) ∈ Sk−1

then under the assumptions of Theorem 3 (b) there is a unique (p∗1, . . . , p
∗
k−1) ∈ Sk−1 such that the

KL distance of g and
∑k

i=1 p
∗
i fi is minimal. In addition, by Theorem 3 (a), there are densities gi with

gi
gk

= fi
fk

for i = 1, . . . , k − 1 such that the KL distance of g and
∑k

i=1 p
∗
i gi is zero—this is the exact fit

property of simple finite mixture models alluded to in the title of this note.

Remark 2. (a) Theorem 3 (b) provides a simple condition for the uniqueness of the solution to (7). In
the case k = 2 this condition simplifies to

P[R1 = 1] < 1 (8a)

For k > 2 there is no similarly simple condition for the existence of a solution in Sk−1. However, as
noted in [12] (Example 4.3.1), there is a simple necessary and sufficient condition for the existence
of a solution in S1 = (0, 1) to (7) in the case k = 2:

E[R1] > 1 and E
[
R−11

]
> 1 (8b)

(b) Suppose we are in the setting of Theorem 3 (a) with k > 2 and all Ri > 0. Hence there are
µ-densities g1, . . . , gk, (p1, . . . , pk−1) ∈ Sk−1, and pk = 1 −

∑k−1
i=1 pi such that g =

∑k
i=1 pi gi

and Ri = gi
gk

, i = 1, . . . , k. Let g =
∑k

j=2 pj gj

1−p1 . Then we have another decomposition of g, namely
g = p1 g1 + (1− p1) g, with p1 ∈ (0, 1). The proof of Theorem 3 (b) shows that, with R = g1

g
this

implies

0 =

∫
g (R− 1)

1 + p1 (R− 1)
dµ (9)

By (a) there is a solution p1 ∈ (0, 1) to (9) if and only if E[R] > 1 and E[
(
R)−1

]
> 1.

(c) As mentioned in (a), an interesting question for the application of Theorem 3 is how to find out
whether or not there is a solution to (7) in Sk−1 for k > 2. The iteration suggested in [11] and [10]
will correctly converge to a point on the boundary of Sk−1 if there is no solution in the interior
(Theorem 2 of [11]). However, convergence may be so slow that it may remain unclear whether
a component of the limit is zero (and therefore the solution is on the boundary) or genuinely very
small but positive. The straightforward Newton–Raphson approach for determining the maximum
of F defined by (4) may converge faster but may also become unstable for solutions close to or on
the boundary of Sk−1.
However, when k > 2, the observation made in (b) suggests that the following Gauss–Seidel-type
iteration works if the initial value (p

(0)
1 , . . . , p

(0)
k−1) with p(0)k = 1−

∑k−1
i=1 p

(0)
i is sufficiently close to

the solution (if any) of (7):

– Assume that for some n ≥ 0 an approximate solution (q1, . . . , qk) = (p
(n)
1 , . . ., p(n)k ) has

been found.
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– For i = 1, . . . , k try successively to update (q1, . . . , qk) by solving (9) with component i

playing the role of component 1 in (b) and p1 = qi as well as g =
∑k

j=1,j 6=i qj gj

1−qi . If for all
i = 1, . . . , k the sufficient and necessary condition for the updated qi to be in (0, 1) is not
satisfied then stop—it is then likely that there is no solution to (7) in Sk−1. Otherwise update
qi with the solution of (9) where possible, resulting in qi,new, and set

qj,new =
1− qi,new

1− qi
qj, j 6= i

– After step k set (p
(n+1)
1 , . . . , p

(n+1)
k ) = (q1,new, . . . , qk,new) if the algorithm has not been

stopped by violation of the resolvability condition for (7).
– Terminate the calculation when a suitable distance measure between successive (p

(n)
1 , . . . ,

p
(n)
k ) is sufficiently small.

3. Application to Quantification Problems

Finite mixture models occur naturally in machine learning contexts. Specifically, in this note we
consider the following context:

Assumption 4.

• (Ω,H) is a measurable space. For some k ≥ 2, A1, . . . , Ak ⊂ Ω is a partition of Ω. A is the
σ-field generated byH and the Ai, i.e.,

A = σ(H ∪ {A1, . . . , Ak}) =

{
k⋃

i=1

(Ai ∩Hi) : H1, . . . , Hk ∈ H

}

• P0 is a probability measure on (Ω,A) with P0[Ai] > 0 for i = 1, . . . , k. P1 is a probability
measure on (Ω,H). Write Ei for the expectation with respect to Pi.
• There is a measure µ on (Ω,H) and µ-densities f1, . . . , fk−1 ≥ 0, fk > 0 such that

P0[H |Ai] =

∫
H

fi dµ, i = 1, . . . , k,H ∈ H

The space (Ω,A,P0) describes the training set of a classifier. On the training set, for each example
both the features (expressed by H) and the class (described by one of the Ai) are known. Note that
fk > 0 implies Ak /∈ H.

(Ω,H,P1) describes the test set on which the classifier is deployed. On the test set only the features
of the examples are known.

In mathematical terms, quantification might be described as the task to extend P1 onto A, based
on properties observed from the training set, i.e., of P0. Basically, this means to estimate prior
class probabilities (or prevalences) P1[Ai] on the test dataset. In this note, the assumption is that
P1

∣∣A 6= P0

∣∣A. In the machine learning literature, this situation is called dataset shift (see [6] and
references therein).

Specifically, we consider the following two dataset shift types (according to [6]):
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• Covariate shift. P1

∣∣H 6= P0

∣∣H but P1[Ai |H] = P0[Ai |H] for i = 1, . . . , k. In practice, this
implies P1[Ai] 6= P0[Ai] for most if not all of the i. In a credit risk context, two portfolios of rated
credit exposures differ by a covariate shift if the rating grade-level probabilities of default are equal
but the rating grade distributions are different in the two portfolios.
• Prior probability shift. P1[Ai] 6= P0[Ai] for at least one i but P1[H |Ai] = P0[H |Ai] for i =

1, . . . , k, H ∈ H. This implies P1

∣∣H 6= P0

∣∣H if P0[· |A1], . . ., P0[· |Ak] are linearly independent.
In a credit risk context, two portfolios of rated credit exposures differ by a prior probability shift
if (1) the rating grade distributions of defaulting exposures in the two portfolios are equal and (2)
the rating grade distributions of surviving exposures in the two portfolios are equal but (3) the
portfolio-wide default rates of the two portfolios are different.

In practice, it is likely to have P1[Ai] 6= P0[Ai] for some i in both covariate shift and prior probability
shift. Hence, quantification in the sense of estimation of the P1[Ai] is important for both covariate shift
and prior probability shift. Under covariate shift assumption, a natural estimator of P1[Ai] is given by

P̃1[Ai] = E1

[
P0[Ai |H]

]
, i = 1, . . . , k (10)

Under prior probability shift, the choice of suitable estimators of P1[Ai] is less obvious.
The following result generalises the Scaled Probability Average method of [13] to the multi-class

case. It allows to derive prior probability shift estimates of prior class probabilities from covariate shift
estimates as given by (10).

Proposition 5. Under Assumption 4, suppose that there are q1 ≥ 0, . . ., qk ≥ 0 with
∑k

i=1 qi = 1 such
that P1 can be represented as a simple finite mixture as follows:

P1[H] =
k∑

i=1

qi P0[H |Ai], H ∈ H (11a)

Then it follows that E1

[
P0[A1 |H]

]
...

E1

[
P0[Ak |H]

]
 = M

 q1
...
qk,

 (11b)

where the matrix M = (mij)i,j=1,...,k is given by

mij = E0

[
P0[Ai |H] |Aj

]
= E0

[
P0[Ai |H] P0[Aj |H]

]
/P0[Aj]

(11c)

Proof. Immediate from (11a) and the definition of conditional expectation.

For practical purposes, the representation of mij in the first row of (11c) is more useful because most
of the time no exact estimate of P0[Aj |H] will be available. As a consequence, there might be a non-zero
difference between the values of the expectations in the first and second row of (11c) respectively. In
contrast to the second row, for the derivation of the r.h.s. of the first row of (11c), however, no use of the
specific properties of conditional expectations has been made.
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Corollary 6. In the setting of Proposition 5, suppose that k = 2. Define

R2
0 =

var0
[
P0[A1 |H]

]
P0[A1] (1− P0[A1])

∈ [0, 1]

with var0 denoting the variance under P0. Then we have

E1

[
P0[A1 |H]

]
= P0[A1] (1− R2

0) + q1 R2
0 (12)

See appendix for a proof of Corollary 6. By Corollary 6, it holds that

P0[A1] ≤ E1

[
P0[A1 |H]

]
≤ q1, if P0[A1] ≤ q1

P0[A1] ≥ E1

[
P0[A1 |H]

]
≥ q1, if P0[A1] ≥ q1

(13)

Hence, for binary classification problems the covariate shift estimator (10) underestimates the change
in the class probabilities if the dataset shift is not a covariate shift but a prior probability shift. See
Section 2.1 of [2] for a similar result for the Classify & Count estimator.

However, according to (12) the difference between the covariate shift estimator and the true prior
probability is the smaller the greater the discriminatory power (as measured by the generalised R2) of
the classifier is. Moreover, both (12) and (11b) provide closed-form solutions for q1, . . ., qk that transform
the covariate shift estimates into correct estimates under the prior probability shift assumption. In the
following, the estimators defined in this way are called Scaled Probability Average estimators.

Corollary 6 on the relationship between covariate shift and Scaled Probability Average estimates
in the binary classification case can be generalised to the relationship between covariate shift and KL
distance estimates.

Corollary 7. Under Assumption 4, consider the case k = 2. Let R1 = f1
f2

and suppose that (8b) holds
for E = E1 such that a solution p1 ∈ (0, 1) of (7) exists. Then there is some α ∈ [0, 1] such that

E1

[
P0[A1 |H]

]
= (1− α) P0[A1] + α p1

See appendix for a proof of Corollary 7. From the corollary, we obtain an inequality for the covariate
shift and KL distances estimates, which is similar to (13):

P0[A1] ≤ E1

[
P0[A1 |H]

]
≤ p1, if P0[A1] ≤ p1

P0[A1] ≥ E1

[
P0[A1 |H]

]
≥ p1, if P0[A1] ≥ p1

(14)

How is the KL distance estimator (or the ML estimator in the case of P being the empirical measure) of
the prior class probabilities, defined by the solution of (7), in general, related to the covariate shift and
Scaled Probability Average estimators?

Suppose the test dataset differs from the training dataset by a prior probability shift with positive class
probabilities, i.e., (11a) applies with q1, . . . , qk > 0. Under Assumption 4 and a mild linear independence
condition on the ratios of the densities fi, then Theorem 3 implies that the KL distance and Scaled
Probability Average estimators give the same results. Observe that in the context given by Assumption 4
the variables Ri from Theorem 3 can be directly defined as Ri = fi

fk
, i = 1, . . . , k − 1 or, equivalently,

by

Ri =
P0[Ai |H]

P0[Ak |H]

P0[Ak]

P0[Ai]
, i = 1, . . . , k − 1 (15)
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Representation (15) of the density ratios might be preferable in particular if the classifier involved has
been built by binary or multinomial logistic regression.

In general, by Theorem 3, the result of applying the KL distance estimator to the test feature
distribution P1, in the quantification problem context described by Assumption 4, is a representation
of P1 as a mixture of distributions whose density ratios are the same as the density ratios of the class
feature distributions P0[· |Ai], i = 1, . . . , k.

Hence, the KL distance estimator makes sense under an assumption of identical density ratios in the
training and test datasets. On the one hand, this assumption is similar to the assumption of identical
conditional class probabilities in the covariate shift assumption but does not depend in any way on the
training set prior class probabilities. This is in contrast to the covariate shift assumption where implicitly
a “memory effect” with regard to the training set prior class probabilities is accepted.

On the other hand the “identical density ratios” assumption is weaker than the “identical densities”
assumption (the former is implied by the latter), which is part of the prior probability assumption.

One possible description of “identical density ratios” and the related KL distance estimator is that
“identical density ratios” generalises “identical densities” in such a way that exact fit of the test set
feature distribution is achieved (which by Theorem 3 is not always possible). It is therefore fair to
say that “identical density ratios” is closer to “identical densities” than to “identical conditional class
probabilities”.

Given training data with full information (indicated by the σ-field A in Assumption 4) and test data
with information only on the features but not on the classes (σ-fieldH in Assumption 4), it is not possible
to decide whether the covariate shift or the identical density ratios assumption is more appropriate for
the data, because both assumptions result in the exact fit of the test set feature distribution P1

∣∣H but
in general give quite different estimates of the test set prior class probabilities (see Corollary 7 and
Section 5). Only if Equation (7) has no solution with positive components it can be said that “identical
density ratios” does not properly describe the test data because then there is no exact fit of the test set
feature distribution. In that case “covariate shift” might not be appropriate either but at least it delivers a
mathematically consistent model of the data.

If both “covariate shift” and “identical density ratios” provide consistent models (i.e., exact fit of the
test set feature distribution) non-mathematical considerations of causality (are features caused by class or
is class caused by features?) may help in choosing the more suitable assumption. See [14] for a detailed
discussion of this issue.

4. Cost Quantification

“Cost quantification” is explained in [2] as follows:

“The second form of the quantification task is for a common situation in business where a
cost or value attribute is associated with each case. For example, a customer support log
has a database field to record the amount of time spent to resolve each individual issue, or
the total monetary cost of parts and labor used to fix the customer’s problem. . . . The cost
quantification task for machine learning: given a limited training set with class labels, induce
a cost quantifier that takes an unlabeled test set as input and returns its best estimate of the
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total cost associated with each class. In other words, return the subtotal of cost values for
each class.”

Careful reading of Section 4.2 of [2] reveals that the favourite solutions for cost quantification
presented by the author essentially apply only to the case where the cost attributes are constant on
the classes. Only then the C+ as used in Equations (4) and (5) of [2] stand for the same conditional
expectations—the same observation applies to C−.

Cost quantification can be more generally treated under Assumption 4 of this note. Denote by C the
(random) cost associated with an example. According to the description of cost quantification quoted
above then C is actually a feature of the example and, therefore, may be considered an H-measurable
random variable under Assumption 4.

In mathematical terms, the objective of cost quantification is the estimation of the total expected cost
per class E1[C 1Ai

], i = 1, . . . , k. For a set M , its indicator function 1M is defined as 1M(m) = 1 for
m ∈M and 1M(m) = 0 for m /∈M .

Covariate shift assumption. Under this assumption we obtain

E1[C 1Ai
] = E1

[
C P1[Ai |H]

]
= E1

[
C P0[Ai |H]

]
(16)

This gives a probability-weighted version of the “Classify & Total” estimator of [2].
Constant density ratios assumption. Let Ri = fi

fk
, i = 1, . . . , k − 1. If (7) (with µ = P1 and g = 1)

has a solution p1 > 0, . . ., pk−1 > 0, pk = 1−
∑k−1

j=1 pj < 1, then we can estimate the conditional class
probabilities P1[Ai |H] by

P1[Ai |H] =
piRi

1 +
∑k−1

j=1 pj (Rj − 1)
, i = 1, . . . , k − 1

P1[Ak |H] =
pk

1 +
∑k−1

j=1 pj (Rj − 1)

From this, it follows that

E1[C 1Ai
] = pi E1

[
C Ri

1 +
∑k−1

j=1 pj (Rj − 1)

]
, i = 1, . . . , k − 1

E1[C 1Ak
] = pk E1

[
C

1 +
∑k−1

j=1 pj (Rj − 1)

] (17)

Obviously, the accuracy of the estimates on the r.h.s. of both (16) and (17) strongly depends on the
accuracy of the estimates of P0[Ai |H] and the density ratios on the training set. Accurate estimates of
these quantities, in general, will make full use of the information in the σ-field H (i.e., the information
available at the time of estimation) and, because of the H-measurability of C, of the cost feature C. In
order to achieve this,C must be used as an explanatory variable when the relationship between the classes
Ai and the features as reflected in H is estimated (e.g., by a regression approach). As one-dimensional
densities are relatively easy to estimate, it might make sense to deploy (16) and (17) with the choice
H = σ(C).

Note that this conclusion, at first glance, seems to contradict Section 5.3.1 of [2]. There it is
recommended that “the cost attribute almost never be given as a predictive input feature to the classifier”.
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Actually, with regard to the cost quantifiers suggested in [2], this recommendation is reasonable because
the main component of the quantifiers as stated in (6) of [2] is correctly specified only if there is no
dependence of the cost attribute C and the classifier. Not using C as an explanatory variable, however,
does not necessarily imply that the dependence between C and the classifier is weak. Indeed, if the
classifier has got any predictive power and C is on average different on the different classes of examples,
then there must be a non-zero correlation between the cost attribute C and the output of the classifier.

5. Loss Rates Estimation with Mixture Model Methods

Theorem 3 and the results of Section 3 have obvious applications to the problem of forecasting
portfolio-wide default rates in portfolios of rated or scored borrowers. The forecast portfolio-wide
default rate may be interpreted in an individual sense as a single borrower’s unconditional probability of
default. However, there is also an interpretation in a collective sense as the forecast total proportion of
defaulting borrowers.

The statements of Theorem 3 and Assumption 4 are agnostic in the sense of not suggesting an
individual or collective interpretation of the models under inspection. In contrast, by explaining
Assumption 4 in terms of a classifier and the examples to which it is applied, we have suggested an
individual interpretation of the assumption.

However, there is no need to adopt this perspective on Assumption 4 and the results of Section 3.
Instead of interpreting P0[A1] as an individual example’s probability of belonging to class 1, we could
as well describe P0[A1] as the proportion of a mass or substance that has property 1. If we do so, we
switch from an interpretation of probability spaces in terms of likelihoods associated with individuals to
an interpretation in terms of proportions of parts of masses or substances.

Let us look at a retail mortgage portfolio as an illustrative example. Suppose that each mortgage has
an associating loan-to-value (LTV) that indicates how well the mortgage loan is secured by the pledged
property. Mortgage providers typically report their exposures and losses in tables that provide this
information per LTV-band without specifying numbers or percentages of borrowers involved. Table 1
shows a stylised example of how such a report might look like.

Table 1. Fictitious report on mortgage portfolio exposure distribution and loss rates.

LTV Band Last Year This Year
% of exposure of this % lost % of exposure of this % lost

More than 100% 10.3 15.0 13.3 ?
Between 90% and 100% 28.2 2.2 24.2 ?
Between 70% and 90% 12.9 1.1 12.8 ?
Between 50% and 70% 24.9 0.5 25.4 ?
Less than 50% 23.8 0.2 24.3 ?
All 100.0 2.2 100.0 ?

This portfolio description fits well into the framework described by Assumption 4. Choose events
H1 = “More than 100% LTV”, H2 = “Between 90% and 100% LTV”, etc. Then the σ-field H is
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generated by the finite partition H1, . . . , H5. Similarly, choose A1 = “lost” and A2 = “not lost”. The
measure P0 describes last year’s observations, P1 specifies the distribution of the exposure over the LTV
bands as observed at the beginning of this year—which is the forecast period. We can then try and
replace the question marks in Table 1 by deploying the estimators discussed in Section 3. Table 2 shows
the results.

Table 2. This year’s loss rate forecast for portfolio from Table 1. The R2
0 used for calculating

the Scaled Probability Average is 7.7%.

LTV Band Covariate Shift Scaled Probability Average KL Distance
% lost % lost % lost

More than 100% 15.0 34.6 35.4
Between 90% and 100% 2.2 6.3 6.5
Between 70% and 90% 1.1 3.2 3.3
Between 50% and 70% 0.5 1.5 1.5
Less than 50% 0.2 0.6 0.6
All 2.8 7.3 7.1

Clearly, the estimates under the prior probability shift assumptions are much more sensitive to
changes in the distribution of the features (i.e., LTV bands) than the estimates under the covariate shift
assumption. Thus the theoretical results of Corollaries 6 and 7 are confirmed. However, recall that there
is no right or wrong here as all the numbers in Table 1 are purely fictitious. Nonetheless, we could
conclude that in applications with unclear causalities (like for credit risk measurement) it might make
sense to compute both covariate shift estimates and KL estimates (more suitable under a prior probability
shift assumption) in order to gauge the possible range of outcomes.

6. Conclusions

We have revisited the maximum likelihood estimator (or more generally Kullback–Leibler distance
estimator) of the component weights in simple finite mixture models. We have found that (if all
weights of the estimate are positive) it enjoys an exact fit property, which makes it even more attractive
with regard to mathematical consistency. We have suggested a Gauss–Seidel-type approach to the
calculation of the Kullback–Leibler distance estimator that triggers an alarm if there is no solution with
all components positive (which would indicate that the number of modelled classes may be reduced).

In the context of two-class quantification problems, as a consequence of the exact fit property we
have shown theoretically and by example that the straightforward “covariate shift” estimator of the prior
class probabilities may seriously underestimate the change of the prior probabilities if the covariate shift
assumption is wrong and instead a prior probability shift has occurred. This underestimation can be
corrected by the Scaled Probability Average approach, which we have generalised to the multi-class
case, or the Kullback–Leibler distance estimator.

As an application example, we then have discussed cost quantification, i.e., the attribution of total
cost to classes on the basis of characterising features when class membership is unknown. In addition,
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we have illustrated by example that the mixture model approach to quantification is not restricted to the
forecast of prior probabilities but can also be deployed for forecasting loss rates.

Both the theoretical (Corollary 7) and illustrative numerical results (Table 2) suggest that the
difference between the Kullback–Leibler and the more familiar covariate shift estimates of prior class
probabilities (default probabilities in the case of credit risk) can be material. This may actually be
interpreted as an indication of model risk because the assumptions underlying the two estimators
are quite different (“identical density ratios” vs. “identical conditional class probabilities”). It seems
therefore reasonable to calculate both estimates and analyse the potential reasons for the difference if it
turns out to be material.

Appendix: Proofs

Proof of Theorem 3. For (a) we have to show that
∫
gi dµ = 1, i = 1, . . . , k. The other claims are

obvious. By (5), Equation (7) implies that
∫
gi dµ =

∫
gk dµ, i = 1, . . . , k − 1. This in turn implies

1 =

∫
g dµ =

k∑
i=1

pi

∫
gi dµ =

∫
gk dµ

k∑
i=1

pi =

∫
gk dµ

Hence
∫
gi dµ = 1 for all i.

With regard to (b), observe that

∂Gi

∂qj
(q1, . . . , qk−1) = −

∫
g (Ri − 1) (Rj − 1)(

1 +
∑k−1

`=1 q` (R` − 1)
)2 dµ

Like in (6), for (q1, . . . , qk−1) ∈ Sk−1 it can easily be shown that ∂Gi

∂qj
is well-defined and finite. Denote

by J =
(
∂Gi

∂qj

)
i,j=1,...,k−1 the Jacobi matrix of the Gi and let R = (R1 − 1, . . . , Rk−1 − 1). Let a ∈ Rk−1

and aT be the transpose of a. Then it holds that

a J aT = −
∫
g

(R aT )2(
1 +

∑k−1
`=1 q` (R` − 1)

)2 dµ ≤ 0

In addition, by assumption on the linear independence of the Ri − 1, 0 = a J aT implies a = 0 ∈
Rk−1. Hence J is negative definite. From this it follows by the mean value theorem that the solution
(p1, . . . , pk−1) of (7) is unique in Sk−1.

By assumption on (q1, . . . , qk) and h1, . . . , hk we have for i = 1, . . . , k − 1

1 =

∫
hi dµ =

∫
g hi∑k

j=1 qj hj
dµ =

∫
g Ri

1 +
∑k−1

j=1 qj (Rj − 1)
dµ, and

1 =

∫
hk dµ =

∫
g hk∑k
j=1 qj hj

dµ =

∫
g

1 +
∑k−1

j=1 qj (Rj − 1)
dµ

(18)

Hence we obtain 0 =
∫ g (Ri−1)

1+
∑k−1

j=1 qj (Rj−1)
dµ, i = 1, . . . , k − 1. By uniqueness of the solution of (7) it

follows that qi = pi, i = 1, . . . , k. With this, it can be shown similarly to (18) that∫
H

hi dµ =

∫
H

gi dµ, H ∈ H, i = 1, . . . , k

This implies hi = gi, i = 1, . . . , k.
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Proof of Corollary 6. We start from the first element of the vector-Equation (11b) and apply some
algebraic manipulations:

E1

[
P0[A1 |H]

]
= q1

P0[A1]
E0

[
P0[A1 |H]2

]
+ 1−q1

1−P0[A1]
E0

[
P0[A1 |H](1− P0[A1 |H])

]
=
(
P0[A1] (1− P0[A1])

)−1 (
q1 (1− P0[A1]) E0

[
P0[A1 |H]2

]
+ P0[A1] (1− q1)

(
P0[A1]− E0

[
P0[A1 |H]2

]))
=
(
P0[A1] (1− P0[A1])

)−1 (
q1
(
E0

[
P0[A1 |H]2

]
− P0[A1]

2
)

+ P0[A1]
(
P0[A1]− E0

[
P0[A1 |H]2

]))
From P0[A1]− E0

[
P0[A1 |H]2

]
= P0[A1] (1− P0[A1])− var0

[
P0[A1 |H]

]
now the result follows.

Proof of Corollary 7. Suppose that g > 0 is a density of P1 with respect to some measure ν on (Ω,H).
The measure ν does not necessarily equal the measure µ mentioned in Assumption 4. We can choose
ν = P1 and g = 1 if there is no other candidate. By Theorem 3 (a) then there are ν-densities g1 ≥ 0,
g2 > 0 such that g1

g2
= R1 and g = p1 g1 + (1− p1) g2.

We define a new probability measure P̃0 on (Ω,A) by setting

P̃0[Ai] = P0[Ai], i = 1, 2

P̃0[H |Ai] =

∫
H

gi dν, H ∈ H, i = 1, 2

By construction of P̃0 it holds that

P1[H] = p1 P̃0[H |A1] + (1− p1) P̃0[H |A2], H ∈ H

Hence we may apply Corollary 6 to obtain

E1

[
P̃0[A1 |H]

]
= P0[A1] (1− R̃2

0) + q1 R̃2
0

where R̃2
0 ∈ [0, 1] is defined like R2

0 with P0 replaced by P̃0. Observe that also by construction of P̃0

we have
P̃0[A1 |H] =

P0[A1] g1
P0[A1] g1 + P0[A2] g2

=
P0[A1]R1

P0[A1]R1 + P0[A2]
= P0[A1 |H]

With the choice α = R̃2
0 this proves Corollary 7.
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