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Abstract: Analyzing social systems, particularly financial markatsng a complex network
approach has become one of the most popular fields withinogtysics. A similar trend is
currently appearing within the econometrics and financensanities, as well. In this study,
we present a state-of-the-art method for analyzing thetstrer and risk within stock markets,
treating them as complex networks using model-free, nealilependency measures based
on information theory. This study is the first network anays the stock market in Shanghai
using a nonlinear network methodology. Further, it is oissumed that markets outside the
United States and Western Europe are inherently riskier. filldethat the Chinese stock
market is not structurally risky, contradicting this pogubpinion. We use partial mutual
information to create filtered networks representing tharfghai stock exchange, comparing
them to networks based on Pearson’s correlation. Consdguer discuss the structure
and characteristics of both the presented methods and gnegBai stock exchange. This
paper provides an insight into the cutting edge methodottagygned for analyzing complex
financial networks, as well as analyzing the structure ohtlaeket in Shanghai and, as such,
is of interest to both researchers and financial analysts.
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1. Introduction

Due to human involvement, financial markets constitute dempdaptive systems. As economics
does not have a theory fully explaining their behavior, tle&lfis left with an assumption of the prices
moving randomly, which is also known as the efficient-matkgiothesis 1,2]. Within this paradigm,
the evolution of stock prices can only be explained by rangomoesses. It is then natural to ask whether
these random processes are uncorrelated or whether thay &et correlated and based on some
common underlying causes. Studies looking into the infgddencies between financial instruments
answer this very question.

The field of econophysics is perhaps best known for its treatrof financial markets as complex
systems. Network theory plays an important role in suchtmeats, and it is most often used for the
above-mentioned study of interdependencies between falamstruments. Usually, a correlation-based
network is created, which quantifies the interrelationsvieen the studied set of financial instruments.
Such analysis uncovers the basic structure of the studiglempadut can be also used for practical
applications, such as portfolio optimizatioB].] There have been many studies investigating stock
markets on daily 4-9] and intraday 10-12] scales, as well as market indices3f20] and foreign
exchange market2]]. These studies show that markets are structured accomsegtors of economic
activity for stock markets and geographical locations farket indices and foreign exchange markets.
This result is important, as it cannot be reproduced by stng a virtual marketg2]. A limitation
of this approach is connected with the researchers’ ingisten using Pearson’s correlation coefficient,
which describes the system fully only if the system is bemguatrictly linearly and, additionally, if an
assumption of multivariate normal distribution holds trdéis is the most used approach, even though
it goes against the assumption of the complexity of thostesys P3,24] and the solid evidence of the
nonlinearity of financial markets with regards to stock reul25-29], market index returns30-34]
and currency exchange rate chang2s35-38]. This has recently been addressed by exchanging
Pearson’s correlation coefficient with a more general (méee [39]) measure of mutual information,
which allows the study to account for nonlinearity and ndy ren the assumption of multivariate
normality [40,41].

In this paper, we address the above-mentioned issue by nsimgrk analysis of financial markets
based on mutual information, as well as partial mutual imf@tion. Partial mutual information is a
generalization of partial correlation, which is sensitteenonlinear dependencies (but not sensitive
to outliers), for which Pearson’s correlation and partiatrelation cannot account. Partial mutual
information allows us to refine the structural analysis c# tharket with Pearson’s correlation by
adding nonlinearity and controlling for the mediating idhce of third instruments and the stock market
(through the index). However, partial mutual informatioayralso be used to bring the analysis closer
to market dynamics and causal relationships, similarlyéoanalysis performed with partial correlation
in [42,43]. The latter will not be presented in this study, however.
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We note that in order to include nonlinear dependencies,confl exchange Pearson’s correlation
with Spearman’s rank correlation. There is a problem witthsan approach, however. Spearman’s rank
correlation considers only a limited class of associatiatiggns (monotonically increasing functions),
while mutual information does not have such constraints.r thes reason, we prefer to use the
information-theoretic approach. To justify this choice nave performed the analysis using Spearman’s
rank correlation, and it gives results very similar to Peais correlation (the correlation between
dependency measures for all studied pairs of stocks froimn in@&thods is around 0.95, much higher
than between Pearson’s rho and mutual information, as mpegen Figure3). However, in cases
where analysts would rather avoid the discretisation st@pl consequently, the information-theoretic
approach), we would advise against using Pearson’s cbarland in favor of using Spearman’s
rank correlation or biweight mid-correlation, as these lagter justified theoretically with regards to
sensitivity to nonlinear behavior and outliers and alsoesped to give marginally better results in the
presence of noise or outliers in the comparisons that we p@dermed in our other studies.

Despite a growing interest and body of literature on thisaognere is still relatively little research
produced within the econometrics community that analyzamptex financial networks using the
above-mentioned tools. Most of the related articles ardighdd within econophysics or general science
journals. This is particularly surprising, as financialgiigoners are quite commonly using tools based
on such methodology (e.g. www.fna.fi). Despite interdeesiates within financial markets being
an area of interest in finance for decades néjy {he usage of complex networks in such inquiries
is relatively new in the financial literature. Teeal. first presented such complex networks to the
financial research community in their paper analyzing Ut8cks in 2010 44]. Tumminelloet al.
presented a review of hierarchical networks for financialk®ts in the same yea4}|. The econometrics
literature largely ignores networks illustrating the netricomplexity based on historical data, but
rather concentrates on more traditional economic issued) 8s games on networkég]. As such,
this paper is an opportunity to present the cutting-edgsierrof the mentioned methodology to the
econometrics community.

Further, an analysis of financial markets accounting forlinearity has yet to be applied to the
Shanghai stock exchange. Due to the size and rate of growtiisofnarket, such an analysis is of
obvious importance to financial analysts. There have ongnhleehandful of papers that have touched
upon the basics of this methodology, but which have not besotdd solely to this topic. It has either
been featured in a recent review of econophyl@s¢r within a research devoted to the usage of random
matrix theory f48]. The former is applied, but does not deal with financial reeks in detail, whereas the
latter is the only article dealing with financial networksGhinese journals on interdisciplinary physics.
This paper does not contain a detailed study of the Chines& starket, however. Another study looks
at the Chinese market from the network perspective, but isermderested in the network topology,
rather than the market itsel9]. Yet another study published Europhysics Lettersuses random matrix
theory to derive the subsector structure of American anch€ds markets and analyzes the differences
between them, again with very little market insigh0]. Yet another study in the same journal merely
notes that the cross-correlation structure of the Chinemdeh is less dependent on economic sectors
in comparison with the other markets1]. One can also find studies that use time series, which are
too short to avoid statistical noise or to gain an insighpiigture of the market32], studies interested
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in networks based on geographical features, rather thae ptovements33] or studies interested in
the robustness of the networks rather than their economitfsiance $4]. The last study notes that
the Chinese market is more resilient than other marketsaianalve also investigate in this study in
detail. Our earlier studie$p] concentrated on industry indices and, additionally, gétearson’s linear
correlation coefficient, did not account for nonlinear tielaships between the studied time series. Itis
of the utmost importance to note that none of these studiesider nonlinear relationships, which is
puzzling, as noted above. Thus, we believe that there is @ foea paper that presents a cutting edge
methodology for creating financial networks, together waittletailed analysis of the stock exchange in
Shanghai. Such an analysis will be of interest to both rebeas and market practitioners. Within this
study, we also partially test the popular belief that mazkeitside the United States and Western Europe
are inherently more risky.

This paper is structured as follows: in Section 2, we preenproposed methodology. In Section 3,
we show the results obtained for the Shanghai Stock Exchdndggection 4, we discuss these results.
In Section 5, we conclude our study and propose further relsea

2. Methods

The topological structure of networks modeling financiarkets is most often based on Pearson’s
correlation coefficients between time series describiggiithmic price changes (we use logarithmic
returns, because prices are not stationary). These needdaldulated for all pairs in the studied set of
financial instruments. The Pearson’s correlation coefitdedefined asg6:

E(XY)—-EX)E(Y)
PXyYy = (1)
V(BE(X?) - E(X)))(E(Y?) - E(Y)?)
where X and Y are time series describing log price changes for two findnogruments under
consideration.p is not a metric, and it may be easier to use one to determindveories topology
and the geometry of the resulting plots. Thus, the belowimistmost often used for this purpos:[

S(X,Y) = /201 — pxy)- 2)

This form guarantees that.X,Y") is a Euclidean metric and that it conforms to the three axioms
positivity, symmetry and triangle inequality.

Pearson’s correlation coefficients only describe the aystdly if the interdependencies are strictly
linear. As this is not the case in financial markets, we extéedsimilarity measure to account for
nonlinear dependencies. We propose to use mutual infasmédr this purpose. Mutual information is
a term derivative to Shannon’s entrofy[, which is a measure of the uncertainty of a random variable.
Mutual information, in Shannon’s sense, can be defined fordiscrete random variableX, andY’, as:

I(X,Y) =) plx,y) 1ngp(xi’y) (3)

et (#)p(y)

wherep(z, y) is the joint probability distribution function oX” andY andp(z) andp(y) are the marginal
probability distributions. For continuous variables, tedinition is analogous using probability density
functions. Equivalently, using entropy, mutual infornoatis defined as:

I(X,)Y)=H(X)+H(Y)-H(X,)Y) 4)
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where H(X) is Shannon’s entropy, which is a measure of the uncertaihty @mndom variableX
defined as:

H(X)=- Zp(:cz-) log p(;) (5)

summed over all possible outcomgs; } with respective probabilities gi(x;). H(X,Y) is the joint
entropy associated with both variables, and is defined goakly toH (X)), but using joint probabilities.
Mutual information, as defined above, measures informagiared between the two variables, taking
into account both linear and nonlinear dependencies. Aswdtreising it to describe dependencies on
financial markets seems natural. Mutual information is negative and (X, X) = H(X). Itis also
worth noting that such an approach is inherently model{{8&k

Additionally, partial mutual informatiord (X, Y'|Z) denotes the part of mutual informatid(X, Y)
that is not inZ and is defined aHy]:

I(X.Y|Z)=H(X,2)+ H(Y,Z)— H(Z) - H(X,Y, Z) (6)

Partial mutual information is symmetric, so thatX,Y|7Z) = I(Y,X|Z) and0 < [(X,Y|Z).
Mutual information and partial mutual information are ordgual to0 when X andY are strictly
independent.

We have defined mutual information and partial mutual infation in terms of Shannon’s entropy.
Therefore, for practical purposes, we need an estimatoudi entropy. There is a large number of
estimators, and a discussion of these can be found in thatlite F9-63]. In this paper, we use the
Schurmann—Grassberger estimator of the entropy of a Detiphobability distribution, which is thought
to be a good choice for most applicatior®l]] The Schurmann—Grassberger estimator is a Bayesian
parametric procedure that assumes samples distributedsfiog a Dirichlet distribution:

A~

A(X) = e S () + M@+ [N+ ) =0 + N 1) (@)

where #(x) is the number of data points having value |x| is the number of bins from the
discretisation stepmn is the sample size, and(z) = dInl'(z)/dz is the digamma function. The
Schurmann-Grassberger estimator assukes1/|y| as the prior§5]. Here, we note that the choice of
this estimator (and consequently, also the Dirichlet pi®irrelevant to our analysis, as the correlation
between results obtained with Schurmann—Grassbergenatsti and empirical estimator (entropy of
the empirical probability distribution) is over 0.999998hile the same for Schurmann—Grassberger
estimator and Miller—Madow asymptotic bias corrected eiogi estimator is over 0.99999. We use the
Schurmann—Grassberger estimator, as it is a popular choioormation theory. However, the results
are robust with regards to this choice.

Using the Schurmann—Grassberger estimator, we are abladarfutual information, but then it
needs to be converted to a Euclidean metric, as has beemi@e$er correlation coefficients above. We
present metrics based on mutual information and partiabatubformation, both of which are used in
this study. Metrics based on mutual information are knowtheliterature $6,67]. The quantity:

Ad(X,Y)=H(X,Y) - I(X,Y) 8)
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satisfies the mentioned axiom®&7]. For partial mutual information, we want to base the dis&aon
the smallest partial mutual information when controlliog &ll other stocks and the index of the studied
exchange. We may define it in the following manner:

H(X,Y) —mingzxy [(X,Y|Z) if X#Y

D(X,Y) =
0 if X =Y

9)
which ensures that this is a Euclidean metric.

We have a method for estimating the topological structuteexirchical networks modeling financial
markets based on Pearson’s correlation, Shannon’s mutioaiiation and partial mutual information.
We need to briefly discuss methods for producing such nesvorkrder to complete the presentation.
Based on a matrix filled with the described pairwise metrescan now define methods for constructing
hierarchical networks used for studying financial marke&uch methods filter the less important
information out of the characteristic vector describing #ystem and allow for easier analysis of the
most important information within the system. These meshace well known, and we only briefly
define them here. In particular, we define methods used fatingeminimally-spanning trees (MST)
and planar maximally-filtered graphs (PMFG). The distanegriD containingd(X,Y), d(X,Y) or
D(X,Y) for all studied pairs is defined above. Frdm we create an ordered list, in which the
distances are listed in ascending order.

The minimally-spanning tree (MST) is created by using thaeced listS, and starting from the pair
with the lowest distanc®, an edge is added to the graph between elemg&raadY” if and only if the
graph obtained this way is still a forest or a tré&][ After all appropriate links are added, such a graph
is always reduced to a tre49,68]. This method is known as Kruskal's algorithm.

Less constrained graphs can also be constructed, wheretis ¢ fixed:.g = k. Such graphs are
created similarly: from the ordered li§t starting from the pair with the largest similarity measwre
add an edge between that pair if and only if the resulting lyiegn still be embedded on a surface of
genusg < k. Such a graph is less topologically restrictive than MST alwehys contains the relevant
MST, as well as additional loops and cliqués]f Then, ifg = 0, the resulting graph is plana89]. Such
a graph is the simplest extension of the MST and is called lreap maximally-filtered graph (PMFG).
Each element in such a graph has to participate in at leastlanes of three elements; thus, such a
graph can be considered a topological triangulation of gieege B8]. Larger cliques are not allowed,
however 9,70].

The minimally-spanning tree presents only the most reledapendencies in the studied system,
thus making the analysis of large systems relatively eabigiwis important in the analysis of financial
markets. When a less restrictive structure is needed, tneataandidate is the planar maximally-filtered
graph. Thus, we use both those structures, but it is wortimgahat other structures have also been
proposed45.

Minimally-spanning trees and planar maximally-filteredygjns can be used to effectively reduce
the complexity of financial dependencies and to understaadiynamics of financial markets. Tools
for analyzing correlation-based networks are used by mawgsiment funds, particularly to easily
understand the changing structure (commonly based on etosectors and subsectors) of the financial
markets and to enhance the risk management of investmefulpos (baskets of stocks within the same
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cluster in the networks are inherently more risky). Suclwoelts based on changes in stock prices
commonly display a scale-free degree distribution. As stitls suggests that the variations in stock
prices are strongly influenced by a relatively small numiestocks. Such networks provide an easy
way to obtain information about these stocks and are péatigwuseful in managing risk associated with
investment portfolios. Such networks can also help inguite the existence and nature of common
economic factors that drive the time evolution of stock @si¢l]. Below, we create such networks for
the market in China and analyze its structural properties.

3. Experimental Results

To apply networks based on correlation, mutual informatod partial mutual information in the
reality of the Shanghai Stock Exchange, so as to find thepeatees and the characteristics of the market
itself, we have obtained daily log returns for 158 stock®bging to the Shanghai Stock Exchange, as
well as the index of this market (SSE Composite Index). Tha da prices cover 1288 days between
the 5 January 2009 and the 30 April 2014 and have been obthimredthe Yahoo! Finance database.
The choice of this particular period is motivated by two wayisst, we want to comment on the current
state of the market in Shanghai, and thus, we take the daath#& turmoil of the worldwide crisis
of 2008. Second, we want the data to be sufficiently long, asiahinformation does not work well
for very short time series, but we also want the data not todrg bng, so as not to lose economic
homogeneity. The time series describing daily closinggwiare transformed in the standard way for
analyzing price movements, which is so that the data ponetthe log ratios between consecutive daily
closing prices:r;, = In(p;/p:—1), and those data points are, for the purpose of the mutuainiaftion
estimator, discretized into four distinct states througd ¢common procedure of binning into quantiles.
The choice of the number of bins, as well as the discussiomeoivhole procedure can be found #1];
here, we only note that the results are robust with regardeeahoice of the number of quantiles.
Additionally, the 158 stocks are divided into 10 sectors &ddsubsectors according to Bloomberg.
Bloomberg has also provided the latest earnings per shiégws far all studied stocks.

On this basis, we have created six networks. For each of tveeaibtroduced distance§(X,Y),
d(X,Y)andD(X,Y), we have created a minimally-spanning tree and a planamalyi-filtered graph.

All of those networks are undirected, weighed graphs, winedes denote stocks and links denote
closeness between them (in terms of correlation or (partiatual information). The nodes (the stocks)
are assigned an economic sector and subsector accordiigamBerg’s classification, which does not
affect the topology, and is only used later to compare how tliel presented methods recreate sector
structure from price changes alone, which is one of the mesalts of the general methodolodZ].
Thus, we are able to comment on the different charactesistidhese and, in particular, show that
using partial mutual information is beneficial to the analysspecially against the most commonly-used
methodology based on Pearson’s correlation coefficient. idimally-spanning tree based on partial
mutual information is presented in Figuteand a planar maximally-filtered graph based on the same
distance is presented in Figu2e The most important stocks (in terms of node degree) ardddlveth
their tickers. These are as follows: 601588, Beijing Nottdr £o Ltd; 601168, Western Mining Co Ltd;
and 601898, China Coal Energy Co Ltd.
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Figure 1. Minimally-spanning tree for the Shanghai Stock Exchangetan partial mutual
information between studied stocks. Stocks with the highede degrees have been named
with their ticker symbols. The size of the nodes is proposido their node degree.

Figure 2. Planar maximally-filtered graph for the Shanghai Stock Exgfe based on partial
mutual information between studied stocks. Stocks withhigbest node degrees have been
named with their ticker symbols. The size of the nodes is gtigmal to their node degree.
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Before commenting on the structure of the market in Shangtaidiscuss the advantages of using
partial mutual information in creating financial networks, compared to using Pearson’s correlation
coefficient. First, we show that the two approaches do indaa different results, before looking into
whether we can say that one of them gives better resultsluBtraite that there are differences between
the three methods, we have calculated Pearson’s correlediefficients between distances associated
with the three used dependency measufdsaéed on Pearson’s correlation (Corflased on mutual
information (MI) andD based on partial mutual information (PMI)) for all pairs edcks within the
studied set(('3*) = 12, 403), which we have presented in Figuse
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Figure 3. Pearson’s correlation coefficients between distancesciadsd with the three
used dependency measurésb@sed on Pearson’s correlation (Cowf)pbased on mutual
information (MI) andD based on partial mutual information (PMI)) for all pairs edeks
within the studied set. It is clear that using partial mutaérmation changes the analysis
very slightly with regards to mutual information, but botlreysignificantly different results
from the analysis using Pearson’s correlation coefficients

As mentioned above, both MST and PMFG show the strongediamtabetween assets, which
create clusters based mostly on the economic sectors. ffoisniation is important, as it cannot be
reproduced by simulating a virtual mark&2]. Note that all nodes in the networks we have created
are attributed as belonging to a specific economic sectopfdmg to Bloomberg). As such, we may
analyze how strongly the filtered graphs (MST, PMFG) are dase=conomic sectors. For this purpose,
we calculate the ratio between the number of links betweerstibicks belonging to the same economic
sector (according to Bloomberg) and the number of all limkéhie created networks. If a network were
only to consist of links between stocks (nodes) belongindp¢osame economic sector, this ratio would
be equal to 100% (in practice, this would require only onémeas there must be (at least an indirect)
link between all nodes within MST and PMFG).

Calculating the percentage of intra-sector links withia theated networks allows us to see which of
these networks reproduces the sector structure of the 8aa8tpck exchange from the price changes
in the most accurate manner. The results are presented lie TaWe note that it is very hard to probe
the statistical significance of these results (a sample ef amwe only create one network based on each
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dependency measure and topology; there is not enough dettedt® multiple networks and test it this
way), and as such, we base our conclusions mostly on theragredetween these results and results
obtained in other studies, which cover different markets @malyze different years; see the discussion
below. Nonetheless, we have performed a bootstrap anabysshuffling the rows of the matrix
containing log returns repeatedly without replacementrdeoto create a large number of surrogated
time series of returns. After each shuffling, we calculagedbrrelation and mutual information between
the original and shuffled log returns, create minimallyrspag trees on this basis and calculate the
percentage of intra-sector links within these to obserwe liieely the results are due to pure chance. We
applied this procedure a thousand times and have obtainstti@ation of the percentage of intra-sector
links within the networks based on surrogate data (closeetngoGaussian) with a mean of 12.85%
and a standard deviation of around 4% for correlation-basddorks and an average of 4.18% with a
standard deviation of around 1% for mutual informationduasetworks. These findings further increase
our confidence in the results presented in TdblEirst, the obtained intra-sector link ratios are already
stunningly significant at over 11 standard deviations altbganean for correlation-based networks and
even more for mutual information-based networks. Secanthentioned above, the ratio of intra-sector
links is lower for networks based on mutual information thammrelation (for surrogate data); thus,
being the opposite for the original data makes us believehiigis due to the economic structure being
unveiled by mutual information, rather than statisticakeo

Table 1. Percentage of links between instruments belonging to time gEonomic sector in
all links within the studied networks. As a reference, theasas shown for an unrestricted
network or a full graph. Both mutual informatiod)(and partial mutual informationZ¥)
reproduce the sector structure from price changes slightlye accurately than Pearson’s
correlation coefficient®), which is in agreement with similar studies of other mask®IST,
minimally-spanning tree; PMFG, maximally-filtered graph.

Distance MST PMFG

0 64.97% 53.85%
d 66.24% 56.84%
D 66.88% 58.12%
None 13.96% 13.96%

One of the most important characteristics describing a owtvs the distribution of node degrees.
Thus, we have plotted degree distributions for all createtlvarks on a log-log scale, as presented
in Figure 4. This allows us to see whether these are in fact scale-frégonkes or whether they
follow a different distribution. We expect the distributiaf node degrees to have fat tails, due to
preferential attachment. The resultsvalues) of the Kolmogorov—Smirnov test for the power law as
follows: 0.04120614 for Pearson’s correlation-based M31)2516791 for Pearson’s correlation-based
PMFG, 0.09684842 for mutual information-based MST).07434126 for mutual information-based
PMFG, 0.08852421 for partial mutual information-based MST arid06827215 for partial mutual
information-based PMFG. As can be seen, while the netwodsed) on the information-theoretic
approach are not strictly following power law distributgofat 5% level of significance we would reject
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the null hypothesis of the two distributions being equahi@ mmutual information-based networks), they
are nonetheless strongly fat-tailed, which shows that thegnted information-theoretic methodology
does not fail to produce networks with preferential attaehtn Further, the resultg{values) of
the Kolmogorov—Smirnov test for log-normal distributioreaas follows: 0.01961782 for Pearson’s
correlation-based MST).01572181 for Pearson’s correlation-based PMFG02234679 for mutual
information-based MST().02875467 for mutual information-based PMFQ@).01768697 for partial
mutual information-based MST and)2850081 for partial mutual information-based PMFG. In all these
cases we would not be able to reject the null hypothesisigtétiat the distributions are identical. The
tests have been performed using the poweRlaw package in R.
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Figure 4. Degree distributions (with fitted power law and log-normatdbution) for:
(&) a minimally-spanning tree based on correlatidn), & planar maximally-filtered graph
based on correlationc MST based on mutual informationgdY PMFG based on MI;d)
MST based on partial mutual information; arfiiRMFG based on PMI.
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Finally, we look into how stocks with various levels of impamce in the studied networks (in terms
of node degree) behave economically in terms of earningshzee ratio. There is a negative correlation
between node degree within the network presented in Fijaral the earnings per share (EPS) ratio for
all studied companies, with a magnitude of arour@l1. Further, the two hubs in the networks (nodes
with the largest degrees: 13 and 12) have modest EPS ratioke, &l the outliers (both negative and
positive) in terms of EPS are characterized by low degrees @i less) within the studied networks.
Additionally, in Table2, we have presented the sum of the degrees for stocks in dilestsectors, the
average degree for a stock in all studied sectors and thage&PS ratio in all studied sectors in MST
and PMFG based on partial mutual information.

Table 2. The sum of node degrees for stocks belonging to the studmtbetc sectors in
MST (1) and PMFG (3) based on partial mutual information, dkerage node degree for
stocks belonging to the studied sectors in MST (2) and PMFG#4ed on partial mutual
information and the average earnings per share (EPS) aaitsddcks belonging to the studied
sectors (5). There is a negative correlation between ther&iRSn a sector and the sector’s
average importance in the network.

Sector @ @ @& @ G
Communications 7 233 22 7.33 0.29
Consumer Discretionary 46 1.92 136 5.67 0.58
Consumer Staples 14 156 37 4.11 217
Energy 37 206 117 6.50 0.49
Financials 80 211 228 6.00 0.92
Healthcare 17 213 47 5.88 0.54
Industrials 38 2.00 113 5.95 0.15
Materials 55 2.12 171 6.58 0.33
Technology 10 143 39 557 0.53
Utilities 10 167 26 4.33 0.46

4. Discussion

First, we comment on the differences between networkseuaaging the three mentioned distances
(0(X,Y),d(X,Y), D(X,Y)) in the context of finding the accuracy of the created netaofthe more
general nature of mutual information over Pearson’s catih together with the obvious nonlinearity of
the behavior of financial markets hints that mutual infoiiorashould be better suited for analyzing stock
markets. This is confirmed for other markets in the studiestioeed above40,41]. Nonetheless, since
there is no theory of financial markets, we are not able tactlyetate that our method is representing
the market in a more accurate manner than the standard medlsed on Pearson’s correlations. In other
words, there is no benchmark, as we do not know what the nktstarcture of the market really looks
like (if we knew, the presented methodology would be poss)eWe may observe some characteristics
of these networks and comment on their differences, howerewiding an indirect answer to this
question. As we can see in FiguiBgethere is quite a large (around 20%) difference betweenidtartces
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based on correlation and (partial) mutual information. Waila not expect a higher difference, as the
most important dependencies on the market are capturecelyotinelations. We only want to enhance
this methodology by involving nonlinear dependencies. W& see that the difference between distances
based on mutual information and partial mutual informatos small, thus controlling for a mediating
influence is of secondary importance.

We also expect our method to recreate the sector structutttedbhanghai Stock Exchange from
prices. This is an important feature of asset networks, asblean explained above. In Taldlewe
see that all three methods give substantially higher pé&aiges of intra-sector links than the full graph.
Nonetheless, similarly to studies on other markd,[mutual information also performs better in this
study. Partial mutual information also slightly improvée tanalysis in this respect as compared to
mutual information. Nonetheless, it is very hard to find ttegistical significance of these results, but
the consistency of the results pointing in favor of the infation-theoretic approach in this and similar
studies gives certain weight to our argument.

We also note that this result contradicts the results of drlkeostudies in the literature review]],
where the authors have found that “since the Chinese stodketia an emerging market, the companies
are not operated strictly with the registered business.t 1®sults suggest that the sector structure, as
reconstructed from price changes, is not different fromdtracture of mature markets, such as the
United States and Europe. We also note that while we believethod that recreates this structure in the
best way can be seen as superior, there can be situations wheto not necessarily want this to be the
case. For instance, in certain cases, we may prefer a métabdricovers a more surprising relationship
for stocks belonging to different sectors, but having othergs in common, such as shared ownership.
It is difficult to judge a method based on such criteria, hosvesince the amount of relationships we
could be looking for is virtually limitless, and it could ttefore be used to justify any choice, while in
our measurement, the standard is clear.

Finally, we take a look at the degree distributions preseméigure4, which may further shed light
on the question of the accuracy of the networks. It appeaitsthie distribution depends quite strongly
on the structure of the graph. While MST seems to have theedsgilistributed in a manner closer
to log-normal distribution than PMFG, the latter is chaeaizted by degree distributions closer to the
power law. While many researchers strive to obtain the pdswerin such analyses, we believe the fat
tails of a log-normal distribution are sufficient (and carfant be better justified as the multiplication
of various market complexities). We observe that the almesented Kolmogorov—Smirnov test
results for a log-normal distribution are sufficiently gotml conclude that networks created using
information-theoretic approach are characterized byatd degree distributions. We are therefore
inclined to say that by using partial mutual information, @lain financial networks that describe the
financial markets more precisely, accounting for nonlirdggendencies, enhancing the reconstruction
of the sector structure and not losing the (nearly) scae-firoperty. Therefore, we propose not to
use the most popular correlation-based methodology, as thao significant gain (in computational
complexity or results) from the simplified procedure ovex thethodology presented in this paper.

Finally, we discuss the picture of the Shanghai Stock Exgbaesulting from the partial mutual
information network analysis presented above. The stooksirhting the market in Shanghai are not
concentrated in one or two sectors, which is usually a sigthefgood health of the market3].
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Here, by health, we mean the vulnerability to shocks origngavithin economic sectors. In this sense, a
more diverse market (network) is better, spreading themiske evenly. In fact, in the presented PMFG,
within the ten stocks with the highest node degrees, we findrépresentatives of the energy, financial
and industrial sectors, with four other sectors represk@te well. By far the highest node degree equal
to 42 belongs to Western Mining Co Ltd, representing the neadtesector. Second place belongs to
Beijing North Star Co Ltd, representing the financial seetidth 28, while third place belongs to China
Coal Energy Co Ltd, representing the energy sector with 2thections. This corroborates our earlier
study, which showed that there is no single sector comiglthe Chinese financial network, but that
there is a number of sectors that are influen®&] .|

Despite this diversity within the most influential stockstbe Shanghai Stock Exchange, they have
one thing in common: they are all very stable companies, vadsonable earnings per share ratios
between).1657 and0.284. As can be seen in Figutz these three stocks lead large clusters of stocks
from their respective sectors. As mentioned above, the eoiep with large node degrees (top two
stocks with degrees of 13 and 12; the other stocks have degmel or less than five) in MST are
characterized by reasonable EPS ratio, while companiédavitdegrees vary greatly in their EPS ratios,
hinting that the market is healthy, as in following only we#itablished companies (and not unstable
companies, which may have very good results in the short, teatnwhich could destabilize the market
in the long term). This is by no means a fully precise statanenthe market is highly complex, and
we can observe a lot of variation; however, the trend is iasiln fact, there is a negative correlation
between the average node degree in a sector and the aver&ge BRsector of-0.46 for MST and
—0.63 for PMFG. This once again hints that companies with temlgratoated financial results do
not tend to be highly influential on the stock exchange in §han Finally, we comment on the sector
structure presented in TabR The financial sector is the strongest in terms of the totahlver of
connections related to their stocks within the studied pédte; This is largely due to the number of
stocks representing this sector, however. In terms of geedegree for a stock belonging to a given
sector, the picture is a lot more equal. On average, the conmamion sector is the most influential
one. It is closely followed by the healthcare and materiat@s. Within the PMFG, consumer staples
make up the least influential sector on average, while wikh8ir, this title is given, surprisingly, to
the technology sector. It is interesting that the financiatkat is not dominating the Shanghai Stock
Exchange, as is the case in most other financial markets. iCheae painted by this analysis of the
sectors of the Shanghai Stock Exchange leaves an impresfsegonealthy and diversified market. This
gives partial evidence against the popular belief that taekets outside New York, London and Western
Europe are inherently riskier. The Shanghai Stock Exchapgears better suited to withstand shocks
than what follows from the countless studies of the NYSE 8asenetwork methodology, particularly
due to lesser concentration on one economic sector.

5. Conclusions

In this paper, we have presented a methodology of creatiagdial networks based on partial mutual
information. This is different from the most common methlogdy based on correlation, both in allowing
nonlinear interdependencies in the analysis and in acowufdr the mediating influence of third parties
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in pairwise dependencies within financial markets. We hgyied this methodology to the Shanghai
Stock Exchange and found that this methodology does indezskpt a better picture of the market,
particularly reconstructing the sector structure of theke&more precisely, while retaining the (almost)
scale-free property of the networks. Finally, we have comtedon the resulting picture of the Shanghai
Stock Exchange. We have found that the market is quite diiesisand mature, even compared with

more established markets. Further research should lookoifier stock exchanges in China and the
region. Studies should also try to enhance the methodotogseisent the structure of markets in an even
more clear and precise manner.
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