
Journal of

Risk and Financial
Management

Article

VaR and CVaR Implied in Option Prices

Giovanni Barone Adesi

The Swiss Finance Institute at the Università della Svizzera italiana, 6904 Lugano, Switzerland;
baroneg@usi.ch; Tel.: +41586664753

Academic Editors: Stefan Mittnik and Marc S. Paolella
Received: 16 November 2015; Accepted: 12 February 2016; Published: 29 February 2016

Abstract: VaR (Value at Risk) and CVaR (Conditional Value at Risk) are implied by option prices.
Their relationships to option prices are derived initially under the pricing measure. It does not require
assumptions about the distribution of portfolio returns. The effects of changes of measure are modest
at the short horizons typically used in applications. The computation of CVaR from option price
is very convenient, because this measure is not elicitable, making direct comparisons of statistical
inferences from market data problematic.
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1. Introduction

The successes of the VIX [1] and the SKEW [2] indices of the Chicago Board of Options Exchange
show that investors are interested in the information on the distribution of future returns carried by
option prices. Although expected volatility and skewness under the objective measure may differ
from the two indices, the ease of information available in the option market motivates the success of
VIX and SKEW. In fact, option markets provide forward-looking information about the distribution of
future asset return that cannot be gleaned using just historical prices.

While the link between option prices and the variance and skewness of the pricing distribution,
represented by the two indices, has been analyzed extensively, similar links for the risk measures most
popular with financial practitioners and regulators, Value at Risk (VaR) and Conditional Value at Risk
(CVaR), are not well known.

VaR and CVaR have been objects of many theoretical and empirical investigations. On the theoretical
side, the lack of coherence of VaR played in favor of CVaR originally. However, the lack of elicitability of
the latter [3,4] is likely to re-open the debate. The impossibility of making reliable statistical comparisons
about CVaR estimates from portfolio returns motivates its direct computation from option prices.
Option-based CVaR values can be used as a benchmark to validate alternative methodologies.

Gneiting [3] argues that the lack of elicitability of CVaR is a likely explanation for the VaR receiving
more attention in the empirical literature. See [5,6], for a study of the properties of the filtered historical
simulation [7] or alternative estimation methods. Kuester, Mittnik and Paolella [8] provide an extensive
comparison of empirical performances of several methods.

For ease of presentation, formulas for the VaR and CVar in terms of options on the underlying
portfolio are derived initially under the pricing measure. Later, the effects of measure change are
discussed, relating our measures to equivalent results under the objective measure, most commonly used
in risk management. Finally, we discuss applications and the implementation of our proposed estimators.

2. VaR and CVaR

The Value at Risk, VaR, is the 1–α percentile of the distribution of possible portfolio losses
associated with the portfolio value, S, at a given investment horizon, T. That is, VaR is a measure that
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summarizes portfolio losses L, defined as S0´ S. S0 is a reference value, usually the portfolio value at
time 0 [9].

Note that setting S0 equal to zero, the probability density of a loss f(L) equals f(-S), that is
F(L) = 1 ´ F(–S). For continuous distributions VaR ” S0´ K such that

ż K

´8

f pSq dS “ FpKq “ α (1)

where F(K) is the distribution function, that is the probability that S is smaller than K, and α is the
chosen confidence level. If the distribution F(K) is not continuous, K is the smallest value for which
the integral above equals or exceeds α. In either case that is referred as VaR (1–α, T).

The CVaR, conditional value at risk [10], also known as expected shortfall or conditional tail
expectation, is the conditional expected loss within the integration limits in Equation (1):

CVaR “
1
α

ż K

´8

LpSq f pSq dS (2)

Although CVaR is popular with theorists, being a subadditive measure, its computation has
been hampered by the difficulty of comparing in practice different methods of computing the tail
expectation of losses from the unknown distribution generating empirical returns. This difficulty stems
from the non-elicitability of CVaR. Therefore, it is very convenient that option prices reveal VaR and
CVaR values, independently of the distribution generating them. This will be shown to hold exactly
under the pricing measure. It will lead to useful approximations at short horizons under the real
world measure.

Equations (1) and (2) are related to the equations that express the European put option price, p,
and its derivative x ” Bp/BK, with respect to its strike price K under the pricing measure

p “ e´rT
ż K

0
pK´ Sq f pSq dS (3)

x “
Bp
Bk
“ e´rT

ż K

0
f pSq dS “ e´rTFpKq (4)

In Equations (3) and (4) r refers to the risk-free rate and T to the time to maturity of the
option. As shown in [11], Equations (3) and (4) are valid for any pricing density f(S) under a given
probability measure. These results stem from [12], or [13]. In particular, Equation (4) links the
pricing distribution function, F(K), to the derivative of a put option with respect to its strike price, x.
This derivative can be computed analytically or, if an option pricing model is not available, it can be
approximated numerically.

If the portfolio has limited liability, the lower limit of integration is zero rather than ´8 in
Equations (1) and (2). Comparing then Equations (1) and (4) it follows that, under the pricing measure,
the VaR is formally identical to the expression for x being equal to α, except for discounting at the
risk-free rate.

The VaR under the risk neutral measure is therefore the difference between the initial portfolio
value and the strike price of a European put. The partial derivative of this put with respect to its strike
price, x, equals the discounted value of α, the chosen VaR level at horizon T.

To illustrate the above result in terms of the well-known Black-Scholes model [14], the VaR is the
difference between the initial portfolio value and the strike price of a put with volatility σ, for which

Np´d2q “ 1–Np
lnp

S
K
q ` pr´

σ2

2
q

σ
?

T
q “ α (5)
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Equations (2) and (3) are similarly related. Under limited liability, the lower integration limit in
Equation (2) is zero. Writing S0 = K + S0 ´ K, it follows from Equations (1)–(3) that

CVaR “ erT p{α`VaR (6)

3. Change of Measure

In the above equations, the same probability measure is used to compute risk measures and
option prices. In practice, risk measures are usually computed under the physical, or real world,
probability measure. For an extensive discussion on the meanings of the two probability measures in
risk management, see [15].

Equations (1) and (2) are usually computed under a different measure than Equations (3) and (4).
The probability density f(S) changes to g(s) under the real world measure in those equations.
Equations (7) and (8) express VaR under the physical measure, VaR = S0 ´K1, with

K1 :
ż K1

´8

gpSq dS “ α (7)

CVaR “
1
α

ż K1

´8

LpSq gpSq dS (8)

The change of measure is simple if g(S) is known. As an example, in the Black-Scholes model,
with risk premium µ – r,

K1 “ Kepµ ´ rqT (9)

Also, in the computation of the CVaR, K’ and µ replace K and r in Equation (5). The change of
measure is equivalent to the introduction of a continuous dividend yield r – µ. These results follow
because ln(S) is normal. The two distributions of the logarithms of g and f differ only because of a
translation, due to the risk premium. Analogous developments are obtained for other distributions,
if the Girsanov theorem holds. Otherwise, the change can be computed starting from the ratio of the
two densities, g and f.

In the more general case, the relationship between g, f, K and K’ is determined by the pricing
kernel, that is the discounted ratio of f and g. However, the pricing kernel is generally not given and
its estimation is problematic. It is always true that if g(S) is smaller than f(S) for the values of S on the
left tail of the distribution, as it is usually assumed to be the case for market indices, K is on the left of
K’. Moreover, if the stochastic discount rate associated to each state tends to zero when TÑ 0, that is
the gross stochastic discount rate tends to one, the limit of f is g and the limit of K is K’.

That follows from the fact that the state price is the present value of its pricing probability
discounted at the risk-free rate over the time horizon or, equivalently, its real world probability
discounted at the risk-free discount rate. When the horizon goes to zero, it follows that f converges to
g, because both of them approach the state price density. This condition, equivalent to requiring that
the rate of return exists in each state when the time horizon approaches zero, ensures that option prices
provide a valid approximation of VaR and CVaR, computed at short horizons under the real world
measure. Therefore, as shown in the following section, we do not need to rely on a specific change of
measure, as in [16], to provide a useful approximation of VaR and CVaR.

4. Extensions and Applications

Some other risk measures can be easily derived along the same principles. As an example,
a measure of tail asymmetry is

CVaR rS,α, KαpSqs ´ CVaR r–S,α, Kαp´S, ´S0qs (10)
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where K = α is the value of K associated with the confidence level α. The second term in Equation (10)
equals the value of a call on S with strike price K1´αpSq such that F (K1´αpSq) equals 1–α, compounded
at the risk-free rate. It is now necessary to use a call rather than a put, because the lower integration
bound, introduced in Equation (1), can be no longer truncated at zero.

The measure in Equation (10) is zero for symmetric distributions and positive for distributions
with heavier left tail.

Our measures of risk rely on option prices. Their limitation is that option prices are easily available
for stock indices and some exchange-traded funds (ETFs), not on generic portfolios. Moreover, their
time to maturity does not always equal the desired risk horizon. However, similar restrictions do
not impede the use of VIX and SKEW, because most professionally managed portfolios are highly
correlated with the index underlying these variance and skewness indicators and maturities can be
easily interpolated. Similar developments for VaR and CVaR, relating two risk measures to option
prices, may be useful within the financial industry.

An advantage of our measures is that they rely on one single option, rather than the summation
of infinite options. This ensures that they are not affected by the changing truncation errors afflicting
VIX and SKEW, which in theory are based on infinite sums of options. The reliance on a single option
price makes our measures also very useful to validate risk models, that should come close to matching
the values derived from option prices over short horizons.

To implement the above equations it is necessary to identify Kα. This task can be accomplished
starting from model option prices or, without relying on a specific option-pricing model, from
numerical differentiation of contiguous market prices.

Let R =
p2 ´ p1

K2 ´ K1
be the incremental ratio of the put price over the strike price of two puts with

contiguous strike prices, K2 ą K1. The limit of of R when K2 Ñ K1 is x, that is α (Equation (4)).
For finite increments, being x monotonically increasing in K, R overstates x at the left point,

K1, and understates it at the right point. To remedy this, it is convenient to use three options with
contiguous strike prices, averaging the value of R from the first two with the value from the last two
options. The average is an estimate of x at the middle point, K2, that eliminates the first-order error in
a Taylor expansion of the derivative. This procedure eliminates also the first-order error due to the
implied volatility changing across strike prices [15], simplifying the procedure proposed in [16].

As an example, consider three puts with strike prices 24, 25, 26, on an asset with price 35.
The risk-free rate is 6% and their time to maturity, T, is 0.5. Their market prices are 0.063, 0.106 and
0.168. To estimate x (K = 25), compute the ratios of differences of option prices to the left and to the
right of this point:

0.106´ 0.063
25´ 24

“ 0.0425
0.168´ 0.106

26´ 25
“ 0.062 (11)

The average of the two differences, 0.052, compounded by the negative exponential of
0.06 ˆ 0.5 = 0.03, is 0.054. This is the value of the confidence level of the VaR associated with p (25).
The VaR at 5.4% for a six-month horizon under the risk neutral measure is therefore 35 ´ 25 = 10.
From Equation (6), the corresponding CVaR is

CVaR “ e0.03 ˆ 0.106{0.054` 10 “ 12.02 (12)

The put prices in our example are the Black-Scholes prices for volatility σ = 0.30. Our choice of
theoretical, rather than market prices, is due to the opportunity they offer to compute exact values for
risk measures, allowing for a comparison with our approximations. That would not be possible for
CVaR, which is not elicitable.

The value of N(–d2) with the above parameters is 0.0525 rather than the approximated value,
0.05. The correct value may be approximated better with more sophisticated interpolation methods.
Of course, the exact confidence level is known only if option prices follow Black-Scholes or another
specific model.
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If the Black-Scholes model holds, it is possible to compute VaR and CVar under the real world
measure if a risk premium, as an example µ – r = 0.08, is assumed. The VaR at 5.4% level and 6-month
horizon becomes under the real world measure

VaR “ 35´ 25e0.08 ˆ0.5 “ 8.98 (13)

The corresponding CVaR can be computed substituting p(25) = 0.106 with p(25 e0.08 ˆ0.5) in
Equation (12). In the computation of the latter put option, the drift is the risk free rate increased by the
risk premium that acts as a negative dividend, because the distribution of the portfolio value under the
change of measure changes only its drift. The CVaR at 5.4% under the physical measure is therefore

CVaR “ 8.98`
erT

α
rppS, K1, T,σ, r, dq “ pp35, 26.02, 0.5, 0.3, 0.06,´0.08qs “ 11.06 (14)

The numerical values in Equations (12) and (14) show that the change in CVaR, due to the change
of measure, is smaller than the change in VaR. This result applies to the Black-Scholes model, but it is
not true in general. However, because it is always true that the difference between the two VaR, or the
CVaR values, under the two measures always approaches zero for smaller times to maturity, option
prices provide a useful approximation to VaR and CVaR at short time horizons.

Readers can verify that, if the six-month horizon, chosen in our example, were to be replaced by
the ten-day horizon often used in applications, the percentage difference between the two risk measures
would decrease almost proportionally, that is to about one per cent in our example. This stems directly
from the discounted expectations under either measure converging to the same state price when the
time horizon T approaches zero. Therefore, their difference goes to zero as cT, where c is the average
risk premium associated with the relevant states.

5. Conclusions

Option prices provide information about the distribution of potential losses in portfolio returns.
The derivative of a put option price with respect to its strike price allows for the immediate computation
of VaR and CVaR under the pricing measure. This derivative can be approximated from the differences
in market prices of puts and their strike prices.

For the lognormal distribution, the VaR is more sensitive than the CVaR to the change in measure.
For any distribution, the dependence of both VaR and CVaR from the change of measure vanishes
at short maturities, where option prices provide good approximations to VaR and CVaR under the
real world probability measure. This result is most useful because CVaR is not an elicitable measure,
making statistical inferences from portfolio returns problematic.
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