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Abstract: This paper features an analysis of the effectiveness of a range of portfolio diversification
strategies, with a focus on down-side risk metrics, as a portfolio diversification strategy in a European
market context. We apply these measures to a set of daily arithmetically-compounded returns, in U.S.
dollar terms, on a set of ten market indices representing the major European markets for a nine-year
period from the beginning of 2005 to the end of 2013. The sample period, which incorporates the
periods of both the Global Financial Crisis (GFC) and the subsequent European Debt Crisis (EDC), is
a challenging one for the application of portfolio investment strategies. The analysis is undertaken
via the examination of multiple investment strategies and a variety of hold-out periods and backtests.
We commence by using four two-year estimation periods and a subsequent one-year investment
hold out period, to analyse a naive 1/N diversification strategy and to contrast its effectiveness with
Markowitz mean variance analysis with positive weights. Markowitz optimisation is then compared
to various down-side investment optimisation strategies. We begin by comparing Markowitz with
CVaR, and then proceed to evaluate the relative effectiveness of Markowitz with various draw-down
strategies, utilising a series of backtests. Our results suggest that none of the more sophisticated
optimisation strategies appear to dominate naive diversification.
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1. Introduction

It is now some sixty years since Markowitz [1] developed portfolio theory. Although it became a
central foundation of classical finance, leading directly to the development of the capital asset pricing
model (CAPM) by Sharpe [2], Lintner [3], Mossin [4] and Treynor [5], its practical application has been
surrounded by difficulties. Markowitz [1,6] suggested choosing the portfolio with the lowest risk for a
given level of portfolio return and defined such portfolios as being ‘efficient’. Merton [7] demonstrated
the parabola that constitutes the efficient frontier in mean variance space.

Markowitz ([6] p. 206) states that: “Problems concerning the proper information to serve as
the basic inputs concerning securities are outside the scope of this monograph. There are no magic
formulas to supplant the sources of information and the rules of judgement of the security analyst”.
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The position of the efficient frontier has to be estimated and this leads to ‘estimation risk’. A common
approach to portfolio selection is to use historical data to estimate the required means and covariances,
but this leads to estimation risk, which, in turn, can lead to extreme and unstable portfolio weights
over time. Michaud ([8] p. 3) suggests that: “The traditional MV [mean-variance] procedure often
leads to financially irrelevant or false ’optimal’ portfolios and asset allocations. In fact, equal weighting
can be shown to be superior to MV optimization in some cases”. Michaud ([8] p. 33) also suggests that:
’MV optimizers are, in a fundamental sense, “estimation-error maximizers”. They have a tendency
to over-weight (under-weight) those securities that have large (small) estimated returns, negative
(positive) correlations and small (large) variances’. In turn, these are the securities likely to have the
largest estimation errors.

One approach to adjusting for estimation risk involves the application of Bayesian techniques,
and some of the original suggested adjustments were either based on the use of diffuse priors (see,
for example, Barry [9] and Bawa et al. [10]) or ‘shrinkage’ estimators. The latter were explored
by Jobson et al. [11], Jobson and Korkie [12] and Jorion [13,14]. More recent approaches have
used an asset-pricing model to establish a prior; see, for example, Pástor (2000) and Pástor and
Stambough [15,16].

Markowitz considered a number of downside risk measures as an alternative to mean-variance
analysis [6,17], and similarly, as early as (1952), Roy developed his ‘safety-first’ asset selection
criteria [18]. Rockafellar et al. [19–21] developed the mean-deviation approach to portfolios as an
extension to the classic mean-variance approach generalising the results to the one fund theorem, [19],
the CAPM [20], plus the derivation of market equilibrium for investors using different deviation
measures [21]. More recently, Zabarankin et al. [22] have extended the CAPM with a draw-down
measure to measure betas and alphas based on draw-downs.

We draw on several of these portfolio optimisation approaches in the empirical work in this
paper, namely: naive diversification, Markowitz mean variance analysis with positive constraints,
conditional value at risk (CVaR), conditional draw-down (CDaR), average draw-down (AveDD),
maximum-draw-down (MaxDD), plus draw-down metrics set at 95% confidence levels (CDaR95) and
(CDaRmin95). We test their out-of-sample capabilities in times of market turbulence in a series of
hold-out and backtests.

The paper is organised into five sections; this Introduction is followed by a discussion of research
methods in Section 2, which discusses the various portfolio optimisation strategies adopted beginning
with naive diversification and then proceeding to Markowitz mean-variance analysis, CVaR and a
variety of optimal draw-down approaches. Section 3 introduces the dataset and its characteristics,
while Section 4 presents the results, and a brief conclusion follows in Section 5.

2. Research Method

We proceed by adopting a variety of portfolio selection approaches and adopt a naive portfolio
benchmark with 1{N weights as a comparator. This approach was also used by DeMiguel et al. [23], in
an out-of-sample analysis, of the mean-variance portfolio selection criteria, employing U.S. data sets,
plus a variety of adjustments for estimation risk. They concluded that there are still “many miles to go”
before the gains promised by portfolio optimisation techniques can be realised out of sample.

Our focus is broader than theirs, in that we employ a variety of portfolio optimisation techniques
that go well beyond mean-variance optimisation. We contrast naive diversification, with mean-variance
analysis, plus other portfolio optimisation techniques, such as the optimisation of conditional value at
risk (CVaR), and other techniques, such as various draw-down strategies, and our analysis is conducted
across the major European equity markets.

2.1. Naive 1{N Diversification Strategy

In this strategy, we just consider holding a portfolio where the weights for the asset ωj “ 1{N,
which is applied for each of the N risky assets. This strategy ignores the data and does not involve any
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estimation or optimisation. DeMiguel et al. [12] suggest that this can be considered as equivalent to
imposing the restriction that µt9

ř

t 1N for all t, implying that expected returns are proportional to
total risk rather than systematic risk.

2.2. Markowitz Mean-Variance Analysis

Markowitz [1] founded modern mathematical finance and ushered in formal portfolio analysis
in one giant step with his introduction of the mean-variance model of the risk-return relationship.
Variance is an appropriate risk-measure if either the investor’s utility set is quadratic or the return
series considered are multivariate normal.

The Markowitz [1] approach can be presented as the following non-linear-programming problem.

min
ω

1
n

n
ÿ

i“1

¨

˝

m
ÿ

j“1

ωjpri,j ´ µjq

˛

‚

2

s.t.

m
ÿ

j“1

ωjµj “ C (1)

m
ÿ

j“1

ωj “ 1

ωj ě 0, @j P t1, ....., mu .

In the above formulation, ω are the portfolio weights for the universe of the j “ 1, .....m assets
available, i “ 1, ...., n are the number of periods considered for the returns r and for µj, which
is the forecast return. The optimisation involves minimizing the portfolio variance subject to the
portfolio forecast return being set to a level C. A full investment constraint and positive constraints
on the weights are included, effectively ruling out short sales. In our subsequent analyses, we apply
mean-variance optimisation with both a positive weight constraint and with an upper limit on the
weight of any one security being less than 0.4% or 40% of the chosen portfolio.

Jagganathan and Ma [24] demonstrate that the placement of a short-sale constraint on the
minimum variance portfolio is equivalent to shrinking the elements of the covariance matrix. For this
reason, we do not make any other adjustments for estimation risk. See, for example, the discussions in
Best and Grauer [25], Chan, Karceski and Lakonishok [26] and Ledoit and Wolf [27].

2.3. Optimising Conditional Value at Risk

Uryasev and Rockafellar [28] in a series of papers have advocated CVaR as a useful risk metric.
Pflug [29] proved that CVaR is a coherent risk measure with a number of attractive properties, such as
convexity and monotonicity, among other desirable characteristics. A number of papers apply CVaR to
portfolio optimization problems; see, for example, Rockafeller and Uryasev [30], Andersson et al. [31],
Alexander, Coleman and Li [32], Alexander and Baptista [33] and Rockafellar et al. [19].

The conditional value at risk of X at level α P p0, 1q is defined by:

CVaRαpXq “ expectation o f X in its α´ tail, (2)

which can also be expressed as:

CVaRαpXq “
1

1´ α

ż 1

α
VaRτpXqdt. (3)
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Pffaf ([34] p. 223) recapitulates Uryasev [35], noting that the following risk measures are needed
in order to define CVaR:

• VaRα, the α quantile of a loss distribution;
• CVaR`, the expected losses strictly exceeding VaR (i.e., mean excess loss or expected shortfall);
• CVaR´, the expected losses that are weakly exceeding VaR, i.e., losses that are equal to or

exceed VaR.

The CVaR is then defined as a weighted average between VaR and CVaR`:

CVaR “ λVaR` p1´ λqCVaR`, (4)

where the weight 0 ď λ ď 1 is given by λ “ pψpVaRq ´ αq{p1´ αq and ψpVaRq denotes the probability
that losses do not exceed or are equal to VaR for a given confidence level.

Rockafellar and Uryasev ([36] p. 22) further elaborate on some of these issues in their discussion
of the ‘fundamental risk quadrangle’, and suggest a way round the issue of the non-elicitability of
CVaR by utilising quantile regression, as pioneered by Koenker and Basset [37]. Fissler and Ziegel [38]
further concur, in a discussion of higher order elicitability and Osbond’s principle, and again mention
quantile and expectile regression. They demonstrate that the pair (value at risk, expected shortfall) is
elicitable, subject to mild regularity assumptions, which involve the relevant distributions consisting
of absolutely continuous distributions with unique quantiles. This does not seem unreasonable in the
case of financial return distributions.

In terms of portfolio selection, CVaR can be represented as a non-linear programming
minimisation problem with an objective function given as:

min
ω, υ

1
na

n
ÿ

i“1

»

–maxp0, υ´
m
ÿ

j“1

ωjri,jq

fi

fl´ υ (5)

where υ is the α-quantile of the distribution. In the discrete case, this was shown by Rockefellar and
Uryasev [28] to be capable of being represented by using auxiliary variables in the linear programming
formulation below:

min
ω, d, υ

1
na

n
ÿ

i“1

di ` υ

s.t.

m
ÿ

j“1

ωjri,j ` υ ě ´di,@ P t1, ..., nu

m
ÿ

j“1

ωjµj“C (6)

m
ÿ

j“1

ωj “ 1

ωj ě 0,@j P t1, ...., nu

di ě 0,@i P t1, ...., nu

where υ represents the VaR at the α coverage rate and di the deviations below the VaR.
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2.4. Optimal Draw-Down Portfolios

Chekhlov et al. [39–41] considered the optimization of portfolios with respect to the portfolio’s
draw-down. The conditional draw-down (CDD) measure includes the maximum draw-down (MaxDD)
and average draw-down (AvDD) as its limiting cases. The CDD family of risk functional measures
is similar to CVaR. Chekhlov et al. [41] suggest that portfolio managers would like to avoid large
draw-downs and/or extended draw-downs, as this may lead to a loss of mandate or withdrawal of
business.

The analysis can be developed as follows; let a portfolio be optimised over some time interval
r0, Ts, and let Wptq be the portfolio value at some moment in time t P r0, Ts. The portfolio draw-down
is defined as:

maxτPr0,tsWpτq ´Wptq{Wptq (7)

If we think in terms of the portfolio’s constituent assets and write Wpω, tq “ y
1

tω as the
un-compounded portfolio value at time t, with ω the portfolio weights for the N constituent assets
and write yt for the cumulated returns, the draw-down can be written as:

Dpω, tq “ max
0ďτďt

tWpω, τqu ´Wpω, tq (8)

This definition can be converted into the three previously-mentioned functional risk measures;
MaxDD, AvDD and conditional draw-down at risk (CDaR). CDaR is dependent on the chosen
confidence level α in the same way that CVaR is. CDaR can be defined as:

CDaRpωqα “ min
ς
tς`

1
p1´ αqT

ż T

0
rDpω, tq ´ ςs`dt (9)

where ς is the threshold value for draw-downs so that only p1´ αqT observations exceed this value. The
limiting cases of this family of risk functions are MaxDD and the AvDD. In the case that α Ñ 1, CDaR
approaches the maximum draw-down, CDaRpωqαÑ1 “ MaxDDpωq “ max0ďtďTtDpω, tqdt. The
AvDD results from the case in which α “ 0. That is, CDaRpωqαÑ0 “ AvDDpωq “ p1{T

şT
0

Dpω, tqdt.
These risk functionals can be used in terms of the optimization of a portfolio’s draw-down and

implemented as inequality constraints for a fixed share of the wealth at risk.
The goal of maximizing the average annualised portfolio return with respect to limiting the

maximum draw-down can be written:

PMaxxDD “ arg
ω,u

max Rpωq “
1

dC
y
1

Tω, (10)

uk ´ y
1

kω ď v1C,

uk ě y
1

kω,

uk ě uk´1,

u0 “ 0,

where u denotes a pT ` 1 ˆ 1q vector of slack variables in the program formulation, in effect the
maximum portfolio values up to time period k with 1 ď k ď T.

We include these three approaches to portfolio optimisation, CDaR, MaxDD and AvDD, in our
portfolio analyses. We use programs from the R library to conduct our analyses, in particular, the
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packages fPortfolio, FRAPO and PerformanceAnalytics. We also modify R code from Pfaff [34] to
undertake the various draw-down optimisations.

The above approaches to portfolio analysis can be characterised under the general heading of
operational research methods featuring applications of multi-criteria optimization methods to portfolio
selection problems. Surveys of various aspects of this literature are provided by Sawik [42–44].

The application of coherent risk measures has generated a large literature, which attempts to
extend their application to a dynamic context in a variety of different ways. For applications of these
approaches see the early work by Riedel [45] or the more recent survey by Acciaio and Penner [46].
This area of the literature is still being developed and is based on the previously-mentioned coherent
risk measures of Artzner et al. [47]. Their original approach, based on the capital requirements
framework, is the framework adopted in our paper. Delbaen [48] and Follmer and Schied [49]
provide a comprehensive presentation of the theory of static coherent and convex risk measures.
The most recent comprehensive application of this approach to portfolio selection is provided by
Rujeerapaiboon et al. [50].

Platen and Heath [51] embark on an initially different approach in a probabilistic Markovian
framework in their benchmark approach to quantitative finance. A central component of these
approaches is the use of the ‘growth optimal portfolio’ (GOP). The GOP is the portfolio that has the
maximal expected growth rate over any time horizon. This strictly positive portfolio almost surely
outperforms any other strictly positive portfolio over a sufficiently long time horizon, as first noted by
Kelly [52].

Although Kelly’s strategy promise of doing better than any other strategy seems compelling,
some economists have argued strenuously against it, mainly because an individual’s specific investing
constraints override the desire for optimal growth rate. The conventional alternative is utility theory,
which says bets should be sized to maximize the expected utility of the outcome (to an individual
with logarithmic utility, the Kelly bet maximizes utility, so there is no conflict in this case). The Kelly
approach assumes the only important thing is long-term wealth. Most people also care about the
path to get there. Kelly betting leads to highly volatile short-term outcomes, which many people find
unpleasant, even if they believe they will do well in the end. Samuelson [53,54], in particular, was a
long time critique of the Kelly criterion.

3. Dataset

We utilise a sample of the daily values of ten European Stock Indices taken from Datastream
for a period from the beginning of 2005 to the end of 2013, all constituted in U.S. dollar terms. The
nine-year sample period, which incorporates the period of both the Global Financial Crisis (GFC)
and subsequent European Debt Crisis (EDC), is a challenging one for the application of portfolio
investment strategies. The ten markets and indices involved are: the FTSE100 index, the DAX index,
the CAC 40 index, the AEX Amsterdam Index, the IBEX 35 Index the OMX Copenhagen 20 Index,
the OMX Stockholm All Share Index, the OMX Helsinki All Share Index, the BVLG PSI Portuguese
General Index and the BFX Belgian 20 Index. The end of day values of these indices are differenced
in to form arithmetically-compounded return series. Graphs of the returns on these indices, for the
whole sample period, are shown in Figure 1 and QQ plots in Figure 2.

It is clear from the QQ plots, in Figure 2, that all of the index return distributions are non-normal
and fat-tailed. This has implications for the use of Markowitz’s method to select efficient portfolios,
given that it is based on the assumption of multivariate normal distributions. These issues are discussed
by Rachev and Mittnik [55], Ortobelli et al. [56], Rachev et al. [57,58].

If it is assumed that the fat-tailed distributions observed conform to stable Paretian distributions,
then several attractive properties follow as observed by Rachev et al. [57]. The appeal of the stable
non-Gaussian approach is given by its attractive properties that are almost the same as the normal one.
A relevant desirable property of the stable distributional assumption is that stable distributions have
the domain of attraction. The central limit theorem for normalized sums of i.i.d. random variables
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determines the domain of attraction of each stable law. Therefore, any distribution in the domain of
attraction of a specified stable distribution will have properties close to those of the stable distribution.
They discuss the potential attractiveness of a three-fund separation model for asset pricing and risk
assessment. Rachev et al. [58] summarise their current practical applied position on these issues and
suggest that expected tail loss (ETL) or conditional value at risk (CVaR) is a suitable portfolio risk
metric under these conditions. This is one of the approaches to portfolio optimisation adopted in the
current study. We do not deviate from the standard Markowitz approach, in our empirical analysis,
because it is so commonly applied in practice, and it is informative to see how it compares.

Descriptive statistics for the series are given in Table 1.

(a)

(b)

(c)

(d)

(e)

Figure 1. Plots of indices’ continuously-compounded daily returns. (a) AEX and BFX; (b) BVL and
DAX; (c) FCH and FTSE; (d) IBEX and OMEXC; (e) OMXH and OMXS.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. QQ plots of indices. (a) QQ plot for AEX and BFC; (b) BVL and FCH; (c) IBEX and OMXC;
(d) IBEX and OMEXC; (e) OMXH and OMXSP; (f) STOXX.
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Table 1. Descriptive statistics of indices’ daily arithmetically-compounded returns.

Mean Median Min Max SD Skewness Ex. Kurtosis Hurst Exponent

AEX 0.000209306 0.000604318 ´0.111806 0.131065 0.0168772 0.151445 8.60375 0.552931
BFX 0.000135558 0.000391543 ´0.0906908 0.110042 0.0161834 0.0177818 5.29293 0.570771
BVL 0.0000685788 0.000296413 ´0.121168 0.111047 0.0152447 0.0657292 7.74367 0.586224
DAX 0.000497582 0.000730373 ´0.0915454 0.131672 0.0171735 0.177855 6.46489 0.535675
FCH 0.000215969 0.000403166 ´0.110744 0.129115 0.0179219 0.271767 6.96039 0.521829
FTSE 0.0002 0.0006 ´0.10002 0.129967 0.0153948 0.150327 9.69932 0.533963
IBEX 0.000218544 0.000198572 ´0.101087 0.161465 0.0187440 0.302523 6.79814 0.558791

OMXC 0.000463244 0.000820621 ´0.130423 0.118779 0.0163018 ´0.0765109 6.65507 0.576929
OMXH 0.000228989 0.000135171 ´0.0968762 0.104224 0.0175208 0.126917 4.20111 0.576929
OMXSP 0.000462738 0.000652458 ´0.0960500 0.133513 0.0192538 0.203474 4.99464 0.541169

The descriptive statistics in Table 1 suggest that the series have the typical characteristics on
financial return series in that they are skewed, mainly positively, but the OMXC series demonstrates
negative skewness. They all demonstrate excess kurtosis and some evidence of long memory, in
that the Hurst coefficient for all of them is above 0.5. This suggests that portfolio analysis based on
mean variance analysis is not likely to match the characteristics of the data, as was discussed earlier
in this section.

The choice of indices was determined by availability in the Thomson Reuters Datastream
subscription in force at Edith Cowan University at the time of data downloading. A number of
caveats should be made about the construction of the indices. All are capitalization-weighted indices,
but some of the indices, such as the CAC 40, represent the more liquid, highly capitalized companies in
the market and should be more readily replicable in an investment strategy. Other indices, such as the
OMX Helsinki all share, represent the total market, would include less liquid companies and therefore
be less easy to replicate. Most of the indices, with the exception of the BVLG Portuguese Index and the
DAX, are not total return indices and, therefore, do not include adjustments for re-invested dividends.
The total return indices are likely to have higher returns. This is partially supported by the descriptive
statistics in Table 1. The Dax has the highest mean return at 0.000497, yet the second highest mean
return is that of the OMX Copenhagen 20 with a value of 0.00046. The position is reversed in terms of
the median return, with OMXC recording 0.00082 and the DAX 0.00073, yet the total return version of
the OMX 20 was not available to us.

4. Results

4.1. Naive Diversification versus Markowitz Portfolios

The analysis commenced with a naive set of portfolios calculated for an annual holding period
for each year with portfolio weights of 1{N. The results are shown in the second to fifth columns
of Table 2. Portfolios were also calculated using Markowitz mean/variance analysis with all of the
portfolio weights constrained to be positive, and an upper limit of 0.4 was set on the holding of any
individual security. The analysis was conducted over a two-year sample period; the optimal portfolio
weights were calculated, and then, these were applied to a portfolio held for a subsequent period of
one year. The analysis suggested that the optimal portfolio throughout the sample period consisted
of 0.4 invested in the DAX, 0.4 invested in the OMXC and 0.2 invested in the OMXSP. The focus on
these three individual markets is not surprising given that Table 1 reveals that these markets have the
highest returns over the sample period.

The outcomes for the one-year holding periods are shown in Columns 6–9 in Table 2. The naive
diversification strategy gives a higher return in one year; 2012. However, when risk is also taken into
account, the naive portfolio has higher Sharpe ratios in 2009 and in 2012, and so, on balance, the results
favour the Markowitz with constraints in five of the seven years considered.

The results in Table 3 suggest that the Markowitz optimisation with positive weights produces a
higher Sharpe ratio in the one-year hold out sample in 2007, 2009 and 2010 only and in the other four
periods has an inferior outcome. This is consistent with the previous findings of DeMiguel et al. [23],
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who suggested that in their sample and simulation analysis, it took around 3000 months with a
portfolio of 25 assets to outperform the naive diversification strategy.

Table 2. Portfolio optimisation results’ yearly hold-out samples.

Naive Diversification Markowitz Pos.Constraints (Max Weight 0.4)

Indices Included Equal Weights
1
N

Return Indices Included (Weights)

Return (%) SD Sharpe Ratio Return (%) SD Sharpe Ratio

2007 All 0.00058263 0.010669 0.0546 Dax(0.4) OMXC(0.4) OMXSP(0.2) 0.00069980 0.011182 0.0625
2008 All ´0.0027037 0.026519 ´0.1019 Dax(0.4) OMXC(0.4) OMXSP(0.2) ´0.00248078 0.0269006 ´0.0922
2009 All 0.0011225 0.019535 0.05746 Dax(0.4) OMXC(0.4) OMXSP(0.2) 0.0011954 0.020944 0.04927
2010 All 0.000076592 0.016380 0.00467 Dax(0.4) OMXC(0.4) OMXSP(0.2) 0.00070664 0.00054330 1.3006
2011 All ´0.00072393 0.019653 ´0.0368 Dax(0.4) OMXC(0.4) OMXSP(0.2) ´0.00061439 0.020027 ´0.03067
2012 All 0.0051752 0.013875 0.3729 Dax(0.4) OMXC(0.4) OMXSP(0.2 0.00092886 0.013461 0.06900
2013 All 0.00083955 0.0096324 0.0871 Dax(0.4) OMXC(0.4) OMXSP(0.2 0.00097143 0.0098360 0.09876

Table 3. Markowitz with positive constraints, 1-year hold-out results.

Markowitz Pos. Constraints

Year Indices Included (Weights) Return (%) SD Sharpe Ratio

2007 FTSE(0.32) + OMXC(0.014) + BVLG(0.66) 0.00058082 0.0091520 0.063
2008 AEX(0.17) + IBEX(0.05) + BVLG(0.78) ´0.00256311 0.0251282 ´0.102
2009 GDAX(0.12) + BVLG(0.69) + BFX(0.19) 0.00127888 0.016421 0.077
2010 BVLGRET(0.86) + BFXRET(0.14) ´0.000526745 0.0175202 ´0.0.0301
2011 FTSE(0.36) + OMXC(0.15) + BVLG(0.49) ´0.000539713 0.0149820 ´0.0360
2012 FTSE(0.77) + OMXC(0.22) + BVLG(0.01) 0.000565371 0.0109104 0.0518
2013 FTSE(0.66) + OMXC(0.26) + BVLG(0.08) 0.000648125 0.00798428 0.0812

4.2. Markowitz versus CVaR Portfolios

In the next part of the analysis, we compared a standard Markowitz optimisation with an
optimisation procedure based on the risk measure CVaR. We set the confidence level to two alternatives,
10% and 20%; the confidence level is specified in return and not in loss space, hence a value
of 0.1 coincides with the 90% level of the loss distribution. The backtest is constructed with respect to
prior data history of 250 daily observations or approximately the previous year. The portfolios are
optimised with respect to this sliding data window, and the results are determined by the sample
values in this sliding data window. We use this one-year period to estimate the weights for both the
Markowitz and CVaR portfolios and then roll the window forwards through the datasets to conduct
our backtests. We use two different quantiles to set the CVaR parameters at 10% and 20%, respectively.
We employ the R (3.30) packages FRAPO and fPortolio and modify some of the R code provided in
Pfaff [34]. Plots of the results are shown in Figure 3.

Figure 3. Minimum CVaR versus minimum variance portfolio: backtest (CVaR = 0.1).

It is clear in Figure 3 that if the quantile for the CVaR is set to 0.1, for the purposes of the backtest,
that there are very few occasions when CVaR outperforms minimum variance with positive constraints,
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when applied to this European set of markets, over the recent nine-year sample period. The plot for
CVaR (blue line) in the first diagram in Figure 3 is predominantly below the plot of the Markowitz
outcome (black line). This is clear in the second diagram in which the plot for the difference between
the CVaR and minimum variance outcomes in blue very rarely pierces the horizontal line at zero, at
the top of the diagram, and ventures into positive territory.

The outcomes change to a considerable degree when we alter the quantile for the CVaR
optimisation to 0.2. The results of this second analysis are shown in Figure 4. There is no longer
uniform dominance by the minimum variance portfolio, and for for a prolonged period in 2010–2011,
the CVaR portfolio has superior outcomes; but, over the entire backtest, it is still inferior. This is
indicated by the summary statistics for the two separate backtests of the CVaR versus minimum
variance strategy in Table 4.

Figure 4. Minimum CVaR versus minimum variance portfolio: backtest (CVaR = 0.2).

Table 4. Backtests’ minimum CVaR versus minimum variance.

CVaR(0.1) - Min Var CVaR(0.2) - Min Var

Min ´9.294 ´2.7527

1st Qu. ´7.678 ´1.1399

Median ´5.544 ´0.5865

Mean ´5.112 ´0.3207

3rd Qu. ´2.324 0.3218

Max 0.604 3.6258

It can be seen in Table 4 that CVAR used as an optimiser at both the 0.1 and 0.2 quantiles is still
inferior, in that the mean and median differences are still negative. The CVaR(0.2) works better, but the
mean and median differences are still negative. There is the further problem that ex ante, it is difficult
to know what is the appropriate quantile to pick for the CVaR optimisation.

Table 5 shows the average weights applied in the rolling windows in the optimisation techniques.
On average, the Markowitz minimum variance portfolios place greater weight on the FTSE, average
weight 0.38, OMXS with an average of 0.11 and BVL with an average weight of 0.424. The CVaR
techniques still emphasize the FTSE, but with an average weight of 0.04 less than GMV, put slightly
more emphasis on the DAX, much greater emphasis on OMXC at around 0.13–0.14, given that it was
not included in the GMV. They drop investment in OMXS and increase the weight in BVL.

Table 5. Average portfolio weights GMVand Min CVaR through rolling windows.

FTSE GDAX FCH AEX IBEX OMXC OMXS OMXH BVL BFX

GMV Weights 0.380222 0.044829 0 0.006797 0.00049 0 0.111106 0 0.003272 0.424209 0.029075
Weights CVaR (0.1) 0.344506 0.047293 0 0.000478 0.002555 0.132861 0.003192 0.010384 0.443938 0.014793
Weights CVaR (0.2) 0.33971665 0.064228 0.0 0 0.002498 0.00689 0.142548 1.09E-10 0.007579 0.435044 0.001496

However, they both perform worse than Markowitz optimisation, which in the previous analysis
was shown to be inferior to naive diversification for this sample set of European markets for this
particular nine-year period, which includes the GFC and the European debt crisis.
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4.3. Draw-Down Portfolio Analyses

Figure 5 shows the draw-downs of the global minimum variance portfolio.

Figure 5. Draw-downs of the global minimum variance portfolios.

The trajectory of draw-downs of the global minimum variance portfolio, as shown in Figure 5,
reflects the initial shock of the GFC, on European markets, followed by the continuing impact of the
European Sovereign debt crisis. The period from 2007 onwards has been a tough time for investors in
European markets.

A comparison of the draw-downs for the various strategies is shown in Figure 6. The analysis
program is coded to use the global minimum variance portfolio as a benchmark allocation for long-only
investments. The characteristics of this solution are compared to the allocations of portfolios that are
restricted by their maximum, average and conditional draw-downs and with a minimum conditional
draw-down at risk portfolio. The imposition of an average draw-down constraint to optimise the
portfolio can still result in large draw-downs, as shown in the first graph labelled “(a) AveDD” in the
top left-hand panel of Figure 6. The draw-down of ´150% is much greater than the other draw-down
optimiser outcomes, with the minimum CDaR, in panel (d) of Figure 6, producing the smallest
draw-down, relative to global minimum variance portfolio benchmark.

In Table 6, we further analyse these portfolios fitted to historic data in terms of their weights, risk
contributions and diversification ratios.

Figure 6. Comparison of draw-downs.

In Table 6, we show how the portfolio weights vary if we apply the various strategies across
the entire nine-year sample period. The GMV strategy with positive weights places 39% of the
portfolio in the FTSE, nearly 15% in OMXC20 and the remainder of around 46% in BVLG. The other
strategies, which concentrate on minimising the maximum draw-down, average draw-down, or
conditional average draw-downs, or minimum draw-downs at a 95% confidence level produce much
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less diversified portfolios, with MaxDD placing 100% in the FTSE, AveDD placing 100% in the DAX
and CDaR95 and CDaRMIN95, both placing 100% in the FTSE.

Table 6. Comparison of portfolio allocations and characteristics. MaxDD, maximum draw-down;
AveDD, average draw-down; CDaR, conditional draw-down.

GMV MaxDD AveDD CDaR95 CDaRMin95

FTSE
Weight 0.393953078 1.00 0.00 1.00 1.00

MES 0.029383168 0.019985 0.00 0.022582148 0.001812922
MPR 0.393953078 1.00 0.00 1.00 1.00

GDAXI
Weight 0.00 0.00 1.00 0.00 0.00

MES 0.00 0.00 0.034926 0.00 0.00
MPR 0.00 0.00 1.00 0.00 0.00
FCHI

Weight 0.00 0.00 0.00 0.00 0.00
MES 0.00 0.00 0.00 0.00 0.00
MPR 0.00 0.00 0.00 0.00 0.00
AEX

Weight 0.00 0.00 0.00 0.00 0.00
MES 0.00 0.00 0.00 0.00 0.00
MPR 0.00 0.00 0.00 0.00 0.00
IBEX

Weight 0.00 0.00 0.00 0.00 0.00
MES 0.00 0.00 0.00 0.00 0.00
MPR 0.00 0.00 0.00 0.00 0.00

OMXC20
Weight 14.37856 0.00 0.00 0.00 0.00

MES 0.029383168 0.00 0.00 0.00 0.00
MPR 14.37856 0.00 0.00 0.00 0.00

OMXSPI
Weight 0.00 0.00 0.00 0.00 0.00

MES 0.00 0.00 0.00 0.00 0.00
MPR 0.00 0.00 0.00 0.00 0.00

OMXHPI
Weight 0.00 0.00 0.00 0.00 0.00

MES 0.00 0.00 0.00 0.00 0.00
MPR 0.00 0.00 0.00 0.00 0.00
BVLG
Weight 46.22613 0.00 0.00 0.00 0.00

MES 0.029383168 0.00 0.00 0.00 0.00
MPR 46.22613 0.00 0.00 0.00 0.00
BFX

Weight 0.00 0.00 0.00 0.00 0.00
MES 0.00 0.00 0.00 0.00 0.00
MPR 0.00 0.00 0.00 0.00 0.00

Overall
ES95% 2.9383168 1.9985201 3.4926388 2.2582148 0.1812922

DivRatio 1.078599 1.000 1.000 1.000 1.000

The impact on reducing diversification is shown in the bottom line of Table 6, which reports the
diversification ratio, which is lower for all of the CDaR-based strategies than the minimum variance
one, which is the entry at the bottom of the first column. The diversification ratio was developed
by Choueifaty and Cognard [59] and Choueifaty et al. [60] and provides a measure of the degree
of diversification of long-only portfolios. It has a lower bound of one, which is achieved in single
asset portfolios.

Paradoxically, optimising by reducing the average draw-down produces a higher expected
shortfall at the 95% level than the mean variance optimiser, as shown in the penultimate entry in the
fourth column of Table 6, and this is consistent with the graphical analysis presented in Figure 6.

These results are obtained by fitting the optimisations to the entire dataset and are of limited use.
The crucial tests are the out of sample ones, and these are considered next, using rolling one-year
windows for estimation purposes. In the next section of the analysis, we compute the draw-down
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portfolio solutions and use the maximum draw-down of the minimum variance portfolio as a
benchmark value. The CDaR portfolios are calculated for a confidence level of 95%.

4.4. Portfolio Comparisons Using Backtests

We conducted further analyses to compare the results of the minimum variance strategy with
the various conditional draw-down at risk strategies. The backtests are carried out using a recursive
window of 250 days, or one year of daily data. The CDaR portfolio is optimised for a conditional
draw-down of 10% at a 95% confidence level. The GMV portfolio is again constrained to be long only.

Figure 7 provides a graph of the wealth trajectories of the CDaR strategy contrasted with the
GMV one. An initial wealth of 100 units is assumed. There are two periods in 2013 when the wealth
trajectory of the GMV portfolio falls well below that of the CDaR strategy, which is much less volatile,
but by the end of the period, the GMV trajectory is well above that of the CDaR portfolio.

Figure 7. Comparison of wealth trajectories.

Table 7 provides an analysis of the five greatest draw-downs that resulted from the implementation
of each strategy. The draw-downs for the CDaR strategy are much shallower, and the period of the
draw-downs is slightly less than for the GMV strategy.

Table 7. Drawdowns comparison.

Draw-downs(MVRet)

From Trough To Depth Length To Trough Recovery

1 4/02/2013 24/06/2013 19/09/2013 ´0.1216 164 101 63
2 23/10/2013 1/11/2013 28/11/2013 ´0.0299 27 8 19
3 2/12/2013 13/12/2013 23/12/2013 ´0.0289 16 10 6
4 20/09/2013 9/10/2013 14/10/2013 ´0.0279 17 14 3
5 16/01/2013 16/01/2013 17/01/2013 ´0.0081 2 1 1

Draw-downs(CDRet)

From Trough To Depth Length To Trough Recovery

1 4/02/2013 24/06/2013 16/09/2013 ´0.013 161 101 60
2 25/10/2013 8/11/2013 27/11/2013 ´0.0036 24 11 13
3 2/12/2013 13/12/2013 23/12/2013 ´0.0032 16 10 6
4 20/09/2013 9/10/2013 14/10/2013 ´0.0026 17 14 3
5 31/01/2013 31/01/2013 1/02/2013 ´0.0008 2 1 1
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Figure 8 provides a comparison of the draw-down trajectories. It is readily apparent that
the CDaR strategy successfully minimises draw-downs, but it does not necessarily provide
compensating returns.

Figure 8. Comparison of draw-down trajectories.

It can be seen in Table 8 that the CDaR optimiser works in terms of reducing the size of
draw-downs; there are slightly more of them, 13 compared to 11 for GMV, in the analysis period,
but their average size is much smaller, with a mean value of 0.19910 for CDaR and a maximum of
1.303 compared to a mean of 2.131 and a maximum of 12.16 for the GMV strategy.

Table 8. Relative performance statistics GMV versus CDaR.

Statistics GMV CDaR

Risk/return
VaR 95% 0.03097294 0.03879076
ES 95% 0.01963578 0.01727134

Sharpe ratio 0.4341370 0.05088481
Return annualised % 0.02303186 0.003515948

Draw-down
Count 11 13

Minimum 0.1208 0.00663
1st Quartile 0.2369 0.02455

Median 0.7765 0.05347
Mean 2.1310 0.19910

3rd Quartile 2.8430 0.2570
Maximum 12.16 1.303

However, the more standard risk/return analyses, such as those provided by Sharpe ratios, are
less compelling. The Sharpe ration is higher for GMV at 0.434, than for CDaR at 0.0508. This is a result
of the relative differences in returns and standard deviations. The annualised return for the GMV
strategy was 0.0230, whereas that for the CDaR was only 0.0035. Although the volatility of the CDaR
strategy was relatively low, when combined with this low return, it produced a lower Sharpe ratio.

Thus, in summary, this portion of the analysis demonstrated that portfolio strategies, based on
optimisers based on reducing draw-downs, do reduce risk, but at the cost of greatly lowering returns,
at least in this sample of European stock indices over this recent nine-year sample period. It is not
clear that using a CDaR-based strategy dominates portfolio optimisation strategies based on mean
variance optimisers.
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5. Conclusions

In this paper, we have examined the effectiveness of a variety of portfolio optimisation strategies,
for a sample of ten major European market indices over a recent nine-year period terminating at the end
of 2013. The optimisation strategies examined included naive 1{N diversification, Markowitz mean
variance analysis with positive weights and a maximum individual weightď 0.4, plus Markowitz with
only positive weights, but no upper bound constraint. A set of analyses using CVaR optimisers,
plus a further set using four different applications of draw-down optimisers, MaxDD, AveDD,
CDaR95, CDaRMin95, was evaluated using a series of one-year hold out samples or rolling one-year
window backtests.

The results suggest that none of these strategies dominates naive diversification. The most
successful of the optimisation strategies was the Markowitz one with positive constraints and an upper
bound on individual exposures ď 0.4. Markowitz with positive constraints was less successful than
naive diversification. The CVaR strategy did not seem to dominate Markowitz and depends on the
quantile level chosen. The draw-down optimisation techniques did successfully diminish extreme
adverse outcomes, but at the expense of returns, and did not have higher Sharpe ratios.

Thus, the results of our analyses concur with those of DeMiguel et al. [23] and suggest that none
of the more sophisticated analyses appear to dominate naive diversification.
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