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Abstract: This paper investigates the information content of the ex post overnight return for
one-day-ahead equity Value-at-Risk (VaR) forecasting. To do so, we deploy a univariate VaR modeling
approach that constructs the forecast at market open and, accordingly, exploits the available overnight
close-to-open price variation. The benchmark is the bivariate VaR modeling approach proposed by
Ahoniemi et al. that constructs the forecast at the market close instead and, accordingly, it models
separately the daytime and overnight return processes and their covariance. For a small cap portfolio,
the bivariate VaR approach affords superior predictive ability than the ex post overnight VaR approach
whereas for a large cap portfolio the results are reversed. The contrast indicates that price discovery
at the market open is less efficient for small capitalization, thinly traded stocks.
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1. Introduction

Existing market microstructure research documents that the flow of information is greater during
trading (daytime) hours than during non-trading (overnight) hours.1 However, with the increasing
globalization of securities markets and electronic trading systems such as electronic communication
networks (ECNs), the importance of the overnight information flow will increase since events from
around the globe can trigger investor reactions in all markets.2 In principle, the events that occur
during overnight non-trading hours will typically be impounded into prices very rapidly when an
exchange opens for a new trading day. Assuming an absence of trading during the overnight period,
we address the question of how to tackle the overnight segment of the day for daily Value-at-Risk (VaR)
forecasting. VaR has become the standard tail risk management tool for setting day-by-day loss limits
of equity trading desks in commercial banks. Through one-day-ahead VaR forecasting, the bank’s risk
management team routinely estimates the equity portfolio tail risk exposure seeking to ensure that the
equity trading desk stays within predefined risk limits.

In order to assess the information content of the ex post observed overnight price variation for
VaR forecasting, we will compare two modeling approaches. One is the bivariate approach proposed
by Ahoniemi et al. [5] which applies to a setup where forecaster constructs the day-ahead prediction

1 See George and Hwang [1], Jones et al. [2], and French and Roll [3], inter alios.
2 De Goojier et al. [4] exploit full information in the intra-day stock price patterns in foreign markets during non-trading

hours in a home market to predict the opening of an index in the home market.
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for day t at the close of day t−1 when the day t overnight segment is not observed yet and hence,
cannot be part of the conditioning information set. This bivariate framework is rather flexible not
only because it allows for different data generating processes for the overnight and daytime segments
of the 24 h day period but also because it accommodates the potentially non-zero ex-ante covariance
term (due to inefficiencies in the price discovery process at the market open) between the returns
on both segments. During the overnight period, equity markets are closed for trading, although the
news releases do not cease. Once markets open for trading, market microstructure effects such as
price staleness and news spillover can induce a non-zero covariance between daytime and overnight
returns that may be valuable in setting the day t equity VaR limits at the close of day t− 1. After the
market opens, it takes some time before all stocks begin trading. Thus, the first published stock index
quotes of each day will contain numerous stale prices, i.e., transaction prices from the previous day
and hence, the overnight (close-to-open) return can be highly noisy.3 The fact that the first index quotes
are stale means that their values do not fully reflect all overnight news. Thus, overnight information
can spill further into the trading day, inducing a non-zero covariance between the ex ante intraday and
overnight innovations.

The second VaR modeling approach applies to a forecaster who chooses to construct the day-ahead
prediction for day t at the market open and hence, she is able to exploit a larger information set that
also contains the ex post observed overnight price variation. The key question is how informative this
ex post observed overnight price variation is and, equivalently, whether this approach generates more
accurate VaR forecasts than the bivariate approach that instead forecasts the overnight price variation.
As motivated above, the rationale for the comparison of the bivariate VaR modeling framework and
the ex post overnight VaR modeling framework is to determine the influence of price staleness in
opening market prices, assess the biases of VaR forecasts produced by these market imperfections
and measure the extent of news spillovers in market risk measures. The empirical analysis relies on
high-frequency data for two equity markets with different degrees of liquidity and trading volume.

The two aforementioned day-ahead VaR forecasting frameworks are evaluated using different
statistical methods. First, we employ the unconditional predictive ability test proposed in Giacomini
and White [11]. This test builds on the suitable “tick”or “check” loss function of quantile regression
theory. Second, we assess the criterion of correct conditional coverage of the α-quantile (or VaR)
forecasts through the Engle and Manganelli [12] dynamic quantile test and a probit-based version with
improved statistical properties.

Overall the findings suggest that incorporating directly the ex post observed overnight price
variation in the day-ahead VaR forecast has merit for the S&P 500 portfolio but not for the Russell
2000 portfolio. Together with any practical difficulties that bank risk managers may find in trying
to generate the day-ahead VaR forecasts at the market open—instead of at the previous-day market
close as it is typical—the contrasting findings for the two indices suggest that risk managers should
adopt the more conservative stance of relying on a bivariate model that forecasts both the overnight
and daytime returns and their covariance, instead of conditioning their VaR forecast on the noisy
close-to-open (overnight) return data gathered at the immediate start of the trading day.

The empirical evidence from our VaR forecasting analysis indirectly confirms the presence of
inefficiencies in the opening price discovery process, particularly, for low trading-volume stocks.
Barclay and Hendershott [13] show that the opening price conveys more fundamental information
for high trading-volume stocks. Hasbrouck [14] provides evidence that the initial part of the trading

3 Stoll and Whaley [6] document empirically that it took around five to six minutes in the 1980s for large stocks to open
for trading on the NYSE. Of course, with the advent of electronic trading platforms, the average time to open in today’s
markets is much shorter, but large cap stocks are still expected to open for trade faster than small cap stocks. Various
empirical studies implicitly acknowledge this “delay”in price discovery. Ahoniemi and Lanne [7] and Chan et al. [8] both
wait until 5 min of trading has elapsed before calculating an overnight return. Masulis and Shivakumar [9] waits 15 min,
and Lin et al. [10] wait for a full 30 min.
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day is characterized by very rapid bid-ask oscillations, particularly for small cap stocks, which are
noisy and unlikely to reflect overnight news about fundamentals. The upshot is that small cap stocks
are likely to exhibit less efficient opening prices. Our results are in line with this wisdom since clearly
for the Russell 2000 index (but not for the S&P 500 index) the bivariate VaR modeling approach that
conditions on the information available at the close of day t− 1 is more reliable for computing accurate
one-day-ahead equity trading limits than the ex post overnight VaR that generates the forecast at the
market open by incorporating the realized overnight return. The opening prices of the larger volume
S&P 500 constituents are more efficient, meaning that here it would be useful (were it feasible) for risk
managers to wait to observe the overnight return before setting VaR limits for the day.

Forecasting approaches that are similar in spirit to the bivariate and ex post overnight frameworks
here employed exist in the literature. In a bivariate modeling framework, Andersen et al. [15]
characterize the daytime return variation as a long-memory HAR process, while the overnight return
variation is portrayed as a GARCH type process. A noticeable difference between this bivariate VaR
modeling approach and ours is that the former does not allow the overnight-intraday covariance to
play a role. Moreover, the forecast target in Andersen et al. [15] is the volatility per se (not a quantile
of the return distribution) and the forecast evaluation hinges on a proxy constructed as the sum of the
squared close-to-open overnight return and the squared intraday high-frequency returns. Accordingly,
using the Mincer-Zarnowitz R2 criterion, they conclude that there are benefits to separately modeling
the daytime and overnight volatility components. In a similar spirit to the univariate ex post overnight
approach deployed in our paper, existing studies predict the day-ahead return variation through
long-memory (ARFIMA) models fitted to a history of open-to-close realized volatilities constructed
from intraday prices (e.g., Corsi et al. [16]; Thomakos and Wang [17]; Andersen et al. [18]). We proceed
similarly but, in contrast, the ex post overnight approach deployed in our paper additionally exploits
the close-to-open return that becomes available to the forecaster at market open.

Our empirical analysis is confined to equity indices but is potentially relevant to any market where
trading ceases for certain periods—this still applies to the majority of securities markets worldwide,
including the U.S. futures market which is closed to trading over weekends. There is a parallel,
smaller empirical literature on daily volatility forecasting that focuses on futures (instead of cash)
markets where trading also occurs overnight through specific electronic trading platforms. For instance,
Taylor [19] models separately the per-hour returns from 12:00 am to 8:30 am (E-mini S&P 500 futures),
8:30 am to 3:15 pm (regular S&P 500 futures), and 3:15 pm to 12:00 am (E-mini S&P 500 futures).
Martens [20] uses intra-day and intra-night S&P 500 futures prices observed at the 5 min and 15 min
frequencies, respectively. However, despite the overnight trading platforms, not only price volatility
and trading volume are highly concentrated during the 8:30–15:00 EST segment of the 24 h day but the
U-shaped patterns of price volatility, trading volume, and the bid-ask spread observed during this
segment resemble those found in equity markets. For this reason, some studies employing futures
prices still focus on the main open outcry Chicago Merchantile Exchange (CME) trading hours like
Giot and Laurent [21], Z̆ikěs [22] and Fuertes and Olmo [23].

This study continues as follows. Section 2 presents the continuous-time price process underlying
the bivariate model, its location-scale stationary representation, and two competing day-ahead return
mean and variance forecasting methods that differ in how the overnight return of the forecasted day is
conceptualized (ex ante unobserved at the previous day close or ex post observed at the market open).
Section 3 sets out the VaR forecasts and evaluation methods. Section 4 discusses the empirical results
before concluding in a final section.

2. Overnight Information for Modeling Daily Prices

This section begins by presenting a general framework for forecasting the day-ahead close-to-close
return and variance. Sections 2.2 and 2.3 discuss, respectively, as particular and competing approaches,
the forecasting equations of Ahoniemi et al. [5] that condition on information up to the market close,
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and the novel univariate modeling approach here entertained that conditions on information up to the
market open which thus, incorporates the overnight close-to-open return.

2.1. Overnight and Daytime Integrated Variance Processes

The diffusion of the log-price process, assuming as it is usual in the finance literature that it
belongs to the class of semimartingales, is described by the stochastic differential equation

dpt = µtdt + σtdWt + κtdqt, 0 ≤ t ≤ T (1)

where σt is the instantaneous or spot volatility process which is stationary and independent of the
random Brownian motion Wt, and µt the instantaneous deterministic drift term; κtdqt refers to the
pure jump part, where dqt = 1 if there is a jump at time t and 0 otherwise, where the jumps occur with
potentially time-varying jump intensity λt, and size κt, see, for example, Andersen et al. [15] for a
similar specification.

Let Ot and Ct represent the market opening and closing times of day t, respectively. The time
period from Ct−1 to Ct spans the entire 24 h day t that can be split into the overnight period when
the market is closed from Ct−1 to Ot, and the official daytime trading period from Ot to Ct; likewise,
the period from Ct to Ct+1 spans the 24 h day t + 1 and so forth. The day t return is defined as
rt ≡ pCt − pCt−1 with lowercase p denoting a logarithmic price measure. It follows from Equation (1)
that the quadratic variation of the daily return process is given by

QVt = IVt + ∑
Ct−1≤s≤Ct

κ2
s , (2)

with IVt ≡ V(rt) =
∫ Ct

Ct−1
σ2

s ds the integrated variance of the daily return process and ∑
Ct−1≤s≤Ct

κ2
s

denoting the aggregate contribution of discrete jumps to the daily quadratic variation process.
The different dynamics of the overnight and daytime components of the continuous time log-price
process can be accommodated by rewriting (1) as

dpt = {µo,tdt + σo,tdWo,t} 1(Ct−1 < t ≤ Ot) +
{

µd,tdt + σd,tdWd,t + κd,t dqd,t
}

1(Ot < t ≤ Ct), (3)

where the deterministic sequences µo,t and µd,t are the spot overnight and daytime drifts, respectively,
the random sequences σo,t and σd,t are the spot volatility processes, and Wo,t and Wd,t are the overnight
and daytime Brownian motions. We include a jump component for the daytime segment, denoted
as κd,t dqd,t, and assume, for simplicity, the overnight return to follow a continuous diffusion process.
This assumption is consistent with Hansen and Lunde [24], inter alios, that assume a negligible effect
of jumps on the daily price diffusion. We should note that our model is richer than Hansen and
Lunde [24] in the sense that it accommodates the presence of jumps in the daytime component of the
daily return process.

For forecasting purposes, we define the conditioning information set or sigma-algebra =t−1 that
contains all the information available to the forecaster at time Ct−1. Conditional on this sigma-algebra,
the Brownian motions in Equation (3) can be related, that is, E[dWo,sdWd,s∗ | =t−1] = ρss∗ where
Ct−1 < s < Ot < s∗ ≤ Ct. The term ρss∗ reflects the “spillover” of information from the overnight to
daytime segments of the 24 h day. Let the sigma-algebra =Ot denote the conditioning information
set that contains all the information available up to the market opening at Ot. Conditional on
=Ot , the Brownian motions Wo,t and Wd,t are uncorrelated instead. This result follows from the
Law of Iterated Expectations: E[dWo,sdWd,s∗ ] = E[E[dWo,sdWd,s∗ |=Ot ]] = E[dWo,sE[dWd,s∗ |=Ot ]] = 0,
since E[dWd,s∗ |=Ot ] = 0 for all s∗ ∈ [Ot, Ct], by definition of a Brownian motion.
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According to Equation (3) the daily return can be decomposed as rt = ro,t + rd,t where
ro,t ≡ pOt − pCt−1 and rd,t ≡ pCt − pOt represent the overnight and daytime return processes

ro,t =
∫ Ot

Ct−1

µo,sds +
∫ Ot

Ct−1

σo,sdWo,s ≡ µo,t + εo,t, (4a)

and

rd,t =
∫ Ct

Ot
µd,s∗ds∗ +

∫ Ct

Ot
σd,s∗dWd,s∗ + ∑

Ot≤s∗≤Ct

κd,s∗dqd,s∗ ≡ µd,s∗ + εd,t, (4b)

respectively. We define µo,t ≡
∫ Ot

Ct−1
µo,sds as the integrated deterministic drift driving the overnight

return, and εo,t ≡
∫ Ot

Ct−1
σo,sdWo,s as its random component. Similarly, µd,t ≡

∫ Ct
Ot

µd,s∗ds∗ is the

integrated deterministic drift driving the daytime return and εd,t ≡
∫ Ct

Ot
σd,s∗dWd,s∗ + ∑

Ot≤s∗≤Ct

κd,s∗dqd,s∗

its random component. The daily quadratic variation is

QVt = IVt + ∑
Ot≤s∗≤Ct

κ2
d,s∗ , (5)

with IVt the integrated variance of the return process rt. This process is the sum of the integrated
variances of the overnight and daytime components which can be expressed as

IVt = IVo,t + IVd,t (6)

with IVo,t ≡ V(ro,t) =
∫ Ot

Ct−1
σ2

o,sds and IVd,t ≡ V(rd,t) =
∫ Ct

Ot
σ2

d,s∗ds∗. This framework paves the way
for two modeling approaches for the mean and variance components of the close-to-close return
process (inputs to the location-scale VaR measure) which are discussed next.

2.2. Bivariate Modeling Approach

Let us formalize the overnight and daytime return data generating processes (DGP) as

ro,t = µo,t|t−1 + εo,t, (7a)

where µo,t|t−1 ≡ E[ro,t| =t−1] is the conditional mean of the overnight return, and

rd,t = µd,t|t−1 + εd,t, (7b)

where µd,t|t−1 ≡ E[rd,t | =t−1] is the conditional mean of the daytime return. The conditional
quadratic variation of ro,t is QVo,t|t−1 ≡ IVo,t|t−1 = E[ε2

o,t| =t−1] under the absence of jumps
in the overnight component. The conditional quadratic variation for the daytime process is
QVd,t|t−1 ≡ IVd,t|t−1 + Jd,t|t−1 with Jd,t|t−1 the jump component of the predicted daily quadratic
variation process. The conditional quadratic covariation process QVo,d,t|t−1 is defined, by construction,
as IVo,d,t|t−1 = Cov(ro,t, rd,t| =t−1) = E[εo,tεd,t| =t−1]. This is so in model (3) because of two facts. First,
the occurrence of cojumps between the overnight and daytime return is zero, and second, spillovers
from the random process dWo,s to the daily discrete jump process κd,s∗dqd,s∗ are also zero. As noted
above, a non-zero covariance term, Cov(ro,t, rd,t| =t−1), is possible if the overnight information is
slowly impounded into prices at the market open for some of the portfolio constituents.

Recalling that rt = ro,t + rd,t, by simple algebra the DGP of daily returns is rt = µt|t−1 + εt with
εt = εo,t + εd,t. The conditional mean process µt|t−1 ≡ E[rt| =t−1] can be expressed as

µt|t−1 = µo,t|t−1 + µd,t|t−1, (8)
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and the conditional quadratic variation process, QVt|t−1, can be decomposed as

QVt|t−1 = IVo,t|t−1 + QVd,t|t−1 + 2IVo,d,t|t−1. (9)

In order to operationalize these expressions into forecasts µ̂t|t−1 and ÎVt|t−1 we allow the
conditioning information set =t−1 to comprise the time-series {ro,1, ro,2, ..., ro,t−1}, {rd,0, rd,1, ..., rd,t−1}
and {RV1, RV2, ..., RVt−1}. The first two time-series are historical daily returns directly derived from
observed open and close market prices, ro,t ≡ log PO,t

PCt−1
and ro,t ≡ log PO,t

PCt−1
. The third time-series is a

history of ex post “observed” daily realized variances—the sums of intraday squared returns—which
can be cast as a realization from the integrated variance process.4

Following Andersen et al. [15], we acknowledge the strong volatility clustering of the overnight
return. To do so we fit by quasi maximum likelihood (QML) an autoregressive (AR) equation for the
return and the threshold GARCH (GJR-GARCH) model of Glosten, Jagannathan, and Runkle [28] for
the volatility, both conditional on =t−1. Formally, the overnight model is

ro,t = a0 + a1rd,t−1 + b1ro,t−1 +
√

ho,t · εo,t (10a)

ho,t = α0 + α1ε2
o,t−1 + β1ho,t−1 + γ1 I−t−1ε2

t−1 (10b)

where εo,t ≡
√

ho,t · εo,t is the overnight innovation; εo,t is assumed to follow an i.i.d. skewed
Student-t(0, 1, ξo, ηo) distribution where ξ0 is the asymmetry parameter, and ηo is the degrees of
freedom (dof) parameter that captures the degree of fat-tailedness in the overnight return distribution.
The term εt denotes the innovation in a standard AR(1) model for the daily return rt; accordingly,
the volatility asymmetry indicator function is I−t = 1 if εt < 0 and I−t = 0 otherwise. Accordingly,
a parameter value γ1 > 0 implies that large negative innovations or bad news at t− 1 increase the
day t conditional volatility of overnight returns more than large positive innovations (the so-called
leverage effect).

On the other hand, forecasts of the daytime return and quadratic variation process conditional on
the information set =t−1 are obtained through an AR equation to the open-to-close returns and a long
memory ARFIMA(0, d, 1) equation for the realized variance. Formally5

rd,t = a0 + a1rd,t−1 + b1ro,t−1 +
√

σd
2 · RVt|t−1 · εd,t (11a)

(1− L)d(lnRVt − τ0 − τ1rt−1 − τ2 I−t−1rt−1) = (1 + θL)ut (11b)

where the standardized innovation εd,t is assumed i.i.d. skewed Student-t(0, 1, ξd, ηd), the innovation
ut is i.i.d.(0, σ2

u); and the asymmetry or leverage indicator function is defined as I−t = 1 if rt < 0 and
I−t = 0 otherwise; therefore, a parameter value τ2 < 0 implies that bad news on day t−1 increase the
current daytime volatility more than good news. The ARFIMA modeling approach is motivated by
the stylized long memory and log-normality properties of the realized variance. The AR-ARFIMA
model parameters can be consistently estimated using Giot and Laurent’s [21] two-pass approach.
First, Equation (11b) is estimated by ML under a normality assumption for ut. Second, Equation (11a)
is estimated by QML under the assumption that the dynamic behaviour of the conditional volatility is
ARFIMA type.

4 Barndorff-Nielsen and Shephard [25] show that RVt converges to QVt as M→ ∞ at rate
√

M where M denotes the intraday
sampling frequency. As a byproduct of this, these authors show that the realized variance is a consistent estimator of the
sum of the integrated daily variance process and the sum of the daytime jumps.

5 Other specifications that have been used in the empirical finance literature to approximate the long memory properties
of the realized volatility are Corsi’s [26] heterogeneous autoregressive (HAR) model and Ghysels et al.’s [27] Mixed Data
Sampling (MIDAS) model both of which combine information sampled at different frequencies.
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The advantage of this bivariate framework, as proposed in Ahoniemi et al. [5], is not only its
flexibility to model separately the overnight and daytime return processes, ro,t and rd,t, but also
to model their covariance. For the latter purpose, these authors extend the dynamic conditional
correlation (DCC) model of Engle [29] to the current setting where a GARCH model characterizes the
overnight conditional variance and an ARFIMA realized volatility model characterizes the daytime
conditional variance6. The DCC equation employed in our subsequent VaR forecasting exercise is

qo,d,t = ρo,d(1− α− β) + αεo,t−1εd,t−1 + βqo,d,t−1, (12)

where εo,t and εd,t denote the standardized overnight and daytime innovations which, as
explained above, are consistently estimated through the AR-GJR-GARCH and AR-ARFIMA
parameterizations (10b) and (11b), respectively. The conditional correlation is denoted qo,d,t. The
conditional covariance term is obtained from εo,t and εd,t as IVo,d,t = qo,d,t

√
RVt × ho,t.

2.3. Univariate Ex Post Overnight Modeling Approach

We now position the VaR forecaster at the market open of day t so that the conditioning
information set is the sigma-algebra =Ot which includes the day t overnight close-to-open return.
In this setup, a conditional mean forecast of the daily return can be obtained as E[rt|=Ot ] = ro,t + µd,t|Ot

and the conditional quadratic variation as QVd,t|Ot
. The question of interest is whether these mean

and quadratic variation forecasts lead to day-ahead VaR measures that are more accurate than those
obtained with the bivariate approach outlined in the previous section. This question is not trivial.
On the one hand, the risk manager that constructs the equity VaR limit for day t at time Ot is exploiting
a richer information set as she is able to incorporate the ex post observed overnight price variation.
On the other hand, she loses any forecasting power coming from modeling the dynamics of the
overnight return and the conditional covariance between overnight and daytime returns. Moreover,
the effectiveness of the conditioning approach on =Ot implicitly hinges on the assumption that the
market is efficient so that the open price, pOt , reflects all news accumulated overnight. This may not
be the case if, in the context of broad stock indices, the opening price level suffers from “staleness”
because not all stocks begin trading immediately or because the trading volume of some stocks may
not be large enough for the opening price to be informative.

The forecasts µd,t|Ot
and QVd,t|Ot

are obtained through AR-ARFIMA equations similar in spirit to
the above Equations (11a) and (11b) with the only difference that the overnight close-to-open return
ro,t is now part of the conditioning information set (=Ot ). The ex post overnight model equations are

rd,t = a0 + a1rd,t−1 + b1ro,t−1 + b0ro,t +
√

σd
2 · RVt|Ot

· εd,t (13a)

(1− L)d(lnRVt − τ0 − τ1rt−1 − τ2 I−t−1rt−1 − τ3ro,t − τ4 I−o,tro,t) = (1 + θ1L)ut (13b)

where εd,t is skewed Student-t(0, 1, ξd, ηd) distributed. There is a modeling strategy in the literature
that broadly resembles this univariate approach in that AR-ARFIMA equations are fitted to time-series
of daily open-to-close returns and realized volatilities computed from open-to-close intraday prices
(e.g., Wu [31]; Liu and Maheu [32]; Fuertes et al. [33]; Corsi et al. [16]). In addition, we exploit the
overnight return that is available at the market open when the forecasts are made.

6 Aielli [30] proves that the standard DCC method can yield inconsistent estimates of the model parameters for large systems
that invalidate the traditional interpretation of the DCC correlation parameters. This author also proposes a cDCC procedure
based on reformulating the DCC correlation driving process as a linear multivariate generalized autoregressive conditional
heteroscedasticity (MGARCH) process. For consistency with the univariate specifications of the conditional volatility of the
daytime and overnight return processes presented in this paper, we use, instead, the version of the DCC model proposed in
Ahoniemi et al. [5].
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3. Risk Management Framework

3.1. VaR Forecasts

A routine task of risk managers is to set daily 1% Value-at-Risk (VaR) limits for separate business
lines or ‘desks’ (e.g., equity, FX, fixed income) which amounts to predicting a specific quantile of
the daily portfolio return distribution. The one-day 1% VaR of a given portfolio is the maximum
dollar-amount loss over a one-day horizon that should be exceeded only 1% of the time. The VaR
measure has been used by banks since the 1990s as a one-dimensional snapshot of downside risk.
Real-time risk monitoring using VaR has the advantage that VaR limits are comparable across assets
and forward-looking in nature. The widespread use of VaR as an internal measure of risk by banks was
formally acknowledged by the Basel Accord which introduced in 1996 a VaR-based capital requirement
framework for positions held for trading intent [34].

VaR-based risk limits can be obtained using non-parametric (e.g., historical simulation),
semi-parametric (e.g., CAViaR) and parametric (e.g., GARCH) techniques depending on the number
of assumptions one is prepared to make on the daily return distribution.7 The parametric VaR
approach remains the most widely used by academics, regulators and risk managers. It builds on the
assumption that returns belong to a location-scale density which implies, in effect, that the quantile
is an affine function of the volatility (see e.g., Giot and Laurent [21]; Giacomini and Komunjer [37];
Clements et al. [38]; Brownlees and Gallo [39]; Fuertes and Olmo [23].

The goal is to obtain out-of-sample forecasts for the α-quantile of the conditional distribution of
the day t return process; we denote the forecast target VaRt,α ≡ F−1

t (α) where F−1
t (·) is the inverse

of the conditional distribution of rt given the sigma-algebra = that represents the information set
available to the risk manager at the time the forecast is made. The forecast target can be rewritten as
P(rt ≤ VaRt,α|=t−1) = α.8

Our preferred model for the daily close-to-close return is location-scale type, formalized as
rt = µt +

√
QVtεt, where µt and

√
QVt are the mean and quadratic variation of the close-to-close

return distribution; εt is an standardized innovation. By assuming that QVt and εt are independent
processes, the corresponding prediction for the α−quantile is given by

VaRt,α = µt +
√

QVtF−1
ε (α) (14)

where F−1
ε (α) is the α-quantile of εt. The conditional mean and variance equations portrayed in

Sections 2.2 (bivariate approach) and 2.3 (ex post overnight approach) are the building blocks to obtain
forecasts of µt and QVt in (15).

The bivariate-based VaR prediction, following the discussion in Section 2.2, is an α-quantile forecast
conditional on the information set =t−1 which can be formalized as

VaRbivariate
t|t−1,α = µt|t−1 +

√
QVt|t−1F−1

ε (α) (15)

where the first term µt|t−1 is obtained as the sum of two forecasts from the overnight and daytime AR
equations, (9a) and (10a), respectively, µt|t−1 = µo,t|t−1 + µd,t|t−1 according to decomposition (8);
the term QVt|t−1 is obtained by aggregating three forecasts, respectively, from the overnight
GJR-GARCH Equation (9b), daytime ARFIMA Equation (10b) and DCC Equation (11), that is,
QVt|t−1 = IVo,t|t−1 + QVd,t|t−1 + 2IVo,d,t|t−1, according to decomposition (9). The α-quantile of the
skewed Student-t distributed daily standardized innovation εt is denoted F−1

ε (α).

7 For recent surveys on VaR modeling, see Kuester et al. [35] and Angelidis and Degiannakis [36].
8 Our interest is in long trading positions. For short trading positions one would analyze instead the right tail, i.e., F−1

t (1− α).
Commercial banks are required to report VaR at confidence level 99% to regulators but most banks adopt the 95% level for
internal backtesting. We consider both coverage levels α = {0.01, 0.05}.
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The ex post overnight VaR prediction, following the discussion in Section 2.3, is an α-quantile
forecast conditional on the information set =Ot that includes the day t overnight period. Formally,

VaRexpost
t|Ot ,α

= µt|Ot
+
√

QVt|Ot
F−1

εd
(α), (16)

where µt|Ot
= ro,t + µd,t|Ot

since the ex post overnight return is available. The daytime conditional
mean forecast µd,t|Ot

is obtained from the AR(1) Equation (13a) and the daytime conditional quadratic
variation forecasts Q̂Vd,t|Ot

from the ARFIMA Equation (13b); F−1
εd

(α) is the α-quantile of the skewed
Student-t distributed daytime standardized innovation εd,t.

The various methods to compute one-day-ahead VaR forecasts are compared using two statistical
methods. First, we utilize the unconditional version of the predictive ability test for quantiles developed
by Giacomini and White [11]. Second, we conduct two backtesting exercises to assess whether the
conditional VaR models are correctly specified. We briefly outline these evaluation methods next.
To simplify the exposition, we denote the relevant information set as =t−1 throughout the section but
the equations can be straightforwardly modified to use instead =Ot without loss of generality.

3.2. Predictive Ability Tests

VaR measurement is an out-of-sample forecasting exercise and, as such, the evaluation of
competing VaRs can be based on predictive ability tests. These tests compare the average losses
associated with two or more competing forecasting models. The predictive ability testing literature,
dating back to Diebold and Mariano [40], West [41], and West and McCracken [42] amongst others,
was subsequently extended to a conditional framework by Giacomini and White [11].

To establish notation, let θ0 denote the true (unknown) vector of parameters in the mean and
variance equations. Let the in-sample (estimation) period comprise P days and the out-of-sample
(evaluation) period comprise n days with P + n = T. A rolling estimator of θ0 based on the sample
window [t− 1, t− P] is denoted θ̂P,t−1 hereafter.

Since our target variable is the conditional α-quantile of the daily return rt distribution, the most
suitable loss function is the asymmetric linear loss function of order α defined as

Lt(et(θ̂P,t−1)) = (α− 1(et(θ̂P,t−1) < 0))et(θ̂P,t−1) (17)

where 1(·) is a binary indicator function and the forecast error is defined as
et(θ̂P,t−1) = (rt −VaRt,α(θ̂P,t−1)). Equation (17) is known as the “tick” or “check” loss function in the
literature. We deploy the unconditional predictive ability test for quantiles developed by Giacomini
and White [11] based on this loss function and OLS regression analysis. The null hypothesis of the
test is

H0 : E[∆Lt] = 0, almost surely for t = P + 1, . . . , T, (18)

with ∆Lt = Lt(e1
t (θ̂P,t−1))− Lt(e2

t (θ̂P,t−1)); where e1
t and e2

t are the out-of-sample errors associated with
the VaR forecasts from Models 1 and 2, respectively. The aim of this test is therefore to assess differences
in the average losses associated with two competing VaR models. We focus on the one-sided version
of the test with null and alternative hypotheses H0 : E[∆Lt] ≤ 0 and Ha : E[∆Lt] > 0, respectively.
Rejection of the null hypothesis implies that the average loss of Model 1 is greater than that of Model 2.
The test is based on an out-of-sample t-statistic computed as

√
n times the ratio of the sample mean

of ∆Lt to its sample standard deviation using the Newey and West [43] robust variance estimator.
In essence, this amounts to running an OLS regression of the loss differential sequence ∆Lt on a
constant and testing for the significance of the constant.
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3.3. Backtesting

VaR backtesting is aimed at assessing whether the model at hand is correctly specified. A correctly
specified α-th conditional VaR model of the portfolio returns rt is defined as

P(rt ≤ VaRt,α(θ0) | =t−1) = α, almost surely (a.s.), α ∈ (0, 1), ∀t ∈ Z. (19)

This definition of correct VaR specification is typically found in theoretical VaR discussions
(Christoffersen et al. [44]; Engle and Manganelli [12]; Koenker and Xiao [45]; Fuertes and Olmo [23].
Let the out-of-sample demeaned hits or violations be denoted by Hitt,α(θ0) ≡ 1(rt ≤ VaRt,α(θ0))− α.
If criterion (19) is met, then it follows that the expected value of Hitt,α(θ0) conditional on the
information set =t−1 is zero which, in turn, implies that Hitt,α(θ0) is independent of any function of
the variables contained in =t−1. Intuitively, correct VaR specification means that future hits should
be unpredictable.

A formal assessment of the adequacy of the out-of-sample VaR forecasts through the “lens” of
criterion (19) can be conducted through the dynamic quantile (DQ) test of Engle and Manganelli [12].9

Hitt,α(θ̂P,t−1) = xt−1(θ̂P,t−1)γ + vt, t = P + 1, . . . , T, n = T − P (20)

where γ is a k× 1 parameter vector (including an intercept) and vt is a zero-mean iid error sequence.
The null hypothesis of correct conditional coverage, H0 : E[Hitt,α(θ̂P,t−1) | xt−1(θ̂P,t−1)] = 0,
where xt−1(θ̂P,t−1) is a vector of k regressors, can be stated in this testing framework as H0 : γ0 =

γ1 = ... = γk−1 = 0. The corresponding Wald test statistic is given by

DQ = n
γ̂′n[Mn(θ̂P)]γ̂n

α(1− α)
(21)

where Mn(θ̂P) =
1
n

T
∑

t=P+1
x′t−1(θ̂P,t−1)xt−1(θ̂P,t−1) is a k× k matrix, and γ̂n is the OLS estimator of (20)

which is consistent and asymptotically normally distributed. Under H0 as n → ∞, it can be shown

that DQ converges in distribution to a χ2
k (i.e., DQ d→ χ2

k).
The binary nature of the hits sequence induces heteroscedasticity in the error vt of model (20).

Nonlinear probit or logit formulations have been recently deployed as refinements of (20) with
the advantage that the fitted values (probabilities) are bounded between 0 and 1 by construction,
and the asymptotic ML standard error formulae takes the heteroskedasticity into account (Taylor [19];
Berkowitz et al. [47]). In our analysis, we adopt the probit regression model

E[1(rt ≤ VaRt,α(θ̂P,t−1)) | xt−1(θ̂P,t−1)] = Φ(xt−1(θ̂P,t−1)β), t = P + 1, . . . , T (22)

with Φ(·) the cumulative standard Normal distribution and β ≡ (β0, β1, ..., βk−1)
′ the regression

parameter vector. In this probit setting, the correct conditional coverage criterion (19) amounts to

E[1(rt ≤ VaRt,α(θ̂P,t−1)) | xt−1(θ̂P,t−1)] = Φ(β0) = α (23)

which can be stated as H̃0 : β0 = Φ−1(α), β1 = ... = βk−1 = 0, and tested through the LR statistic

DB = 2(L−L0) (24)

9 Other conditional coverage tests have been developed based on the duration between consecutive violations; see e.g.,
Candelon et al. [46] The test is based on OLS estimation of the linear probability model
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with L =
T
∑

t=P+1
[Hitt,α(θ̂P,t−1)ln Φ(xt−1(θ̂P,t−1)β̂n) + (1−Hitt,α(θ̂P,t−1))ln (1− Φ(xt−1(θ̂P,t−1)β̂n))]

the log-likelihood of (22), and β̂n its ML estimator which is consistent and asymptotically normal.

Under H̃0, it follows that L0 =
T
∑

t=P+1
[Hitt,α(θ̂P,t−1)ln α + (1−Hitt,α(θ̂P,t−1))ln (1− α)], and DB d→ χ2

k .

We follow Engle and Manganelli [12], Dumitrescu et al. [48], Ahoniemi et al. [5] and others in
deploying these backtesting tests using the expanded regressor set

xt−1(θ̂P,t−1) = (1, rt−1, r2
t−1, VaRt−1,α(θ̂P,t−1), Hitt−1,α(θ̂P,t−1)),

which controls for dependence between the day t hit and the day t− 1 return, volatility, VaR and hit.

4. Empirical Application

4.1. Data and Descriptive Statistics

Two major stock market indices are chosen as illustrative equity portfolios: S&P 500 and
Russell 2000. S&P 500 is by far the most common benchmark for funds (mutual funds, ETFs,
and pension funds) that identify themselves as large cap. Russell 2000 is the typical benchmark
for small cap funds. The observations are 5-minute quotations from 9:30–16:00 Eastern time
(EST) which amounts to M = 78 intraday intervals. The quotes are from Disk Trading
(http://www.is99.com/disktrading/). Although methods exist to choose the “optimal”sampling
frequency for realized variance estimation (see e.g., the MSE minimization approach by Bandi and
Russell [49]), we follow most of the stock realized volatility literature in adopting the 5-minute
sampling frequency. This is the typical sampling interval because, for highly liquid stocks, it has
been shown to be short enough for the daily volatility dynamics to be picked up with reasonable
accuracy (small estimation error) and long enough for the adverse effects of market microstructure
noise (e.g., bid-ask bounce, discrete price observations, irregular trading) not to be excessive. The
observed opening price on day t is the first price recorded after 9:30. The jth intra-day price pt,j
with j = 1, ..., M− 1 is defined as the last seen tick before the jth 5-minute mark. The day t closing
price pCt ≡ pt,M is defined as the last price observed before 16:00. The two equity portfolios are
observed over the most recent 15-year period available from 12 November 1997 to 31 September
2011 (T = 3491 trading days). As of September 2011, the S & P 500 index comprises roughly 20%
Nasdaq-traded (89/500) and 80% NYSE-traded (411/500) companies, whereas for the Russell 2000,
the breakdown is roughly 60% Nasdaq (1250/2000) and 40% NYSE (750/2000). Measured by trading
volume, there is a marked difference between large and small cap U.S. equities: the average daily
trading volume from 1 January 2011 to 30 December 2011 for the S&P 500 (Russell 2000) constituents
is about $41 billion ($40 million).

Table 1 summarizes the daily overnight and daytime return distribution from 12 November 1998
to 29 August 2008 (pre-Lehman) and 2 September 2008 to 30 September 2011 (post-Lehman).

For both indices and over both sub-periods (pre- and post-Lehman) the summary statistics confirm
previous stylized facts: stock return volatility is substantially higher in the daytime (trading) than
the overnight (non-trading) segments of the day. Unsurprisingly, both daytime and overnight return
variances increase dramatically post-Lehman. During the pre-Lehman period, the marked negative
skewness and high kurtosis of overnight returns represent a large contrast vis-à-vis the corresponding
higher moments of daytime returns; however, this contrast is notably blurred during the post-Lehman
period when the daytime returns also become markedly negatively skewed and kurtosed. The kurtosis
of overnight returns is about three times larger than that of daytime returns in the pre-Lehman period,
but becomes roughly similar for both segments of the day during the post-Lehman period. Overnight
and daytime returns pertaining to the same day (ro,t, rd,t) are strongly positively correlated throughout,
but there is a substantial increase in correlation from the pre- to the post-Lehman periods. Overnight
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and daytime returns exhibit some 1st order autocorrelation, typically negative, but in much milder
form daytime. The magnitude of both autocorrelations increases somewhat in the post-Lehman period.

Table 1. Descriptive statistics for overnight and daytime returns.

In-Sample November 1997–August 2008 Out-of-Sample September 2008–September 2011

Russell 2000 S & P 500 Russell 2000 S & P 500

ro,t rd,t ro,t rd,t ro,t rd,t ro,t rd,t
night day night day night day night day

Panel A: returns

Mean 0.020 0.000 0.007 0.005 −0.004 −0.014 −0.012 −0.004
Median 0.005 0.040 0.003 0.047 0.007 0.138 0.000 0.095
StDev 0.234 1.271 0.190 1.092 0.572 2.136 0.249 1.780

Skewness −0.525 −0.074 −0.249 −0.031 −0.283 −0.358 −0.254 −0.362
Kurtosis 19.80 4.026 14.99 5.600 6.930 6.015 7.774 8.586

Correlation structure:

ro,t−1 −0.089 ∗∗∗ −0.028 −0.092 ∗∗∗ 0.001 −0.149 ∗∗∗ −0.064 ∗ −0.118 ∗∗∗ −0.026
rd,t 0.162 ∗∗∗ 0.202 ∗∗∗ 0.273 ∗∗∗ 0.390 ∗∗∗

rd,t−1 0.041 ∗∗ 0.015 −0.011 −0.038 ∗∗ −0.040 −0.085 ∗∗ −0.048 −0.122
Q20 (ACF) 60.6 38.64 60.78 35.21 36.62 28.07 37.12 52.53

Mean (hourly) 0.003 0.248 0.002 0.183 0.019 0.701 0.004 0.487
Median 0.006 0.597 0.004 0.361 0.096 1.120 0.011 0.457
StDev 0.237 2.810 0.135 2.556 0.797 10.22 0.162 8.724

Skewness 14.16 4.661 11.58 7.089 8.880 5.307 6.353 5.905
Kurtosis 254.6 39.42 196.5 89.15 117.3 43.48 57.41 46.17

Q20 (ACF) 156.4 1697 247.9 1058 186.8 1151 441.3 1107

The table summarizes the empirical distribution of daily overnight and daytime returns (Panel A) and the
corresponding volatility measure given by the squared return (Panel B) over the post-Lehman period from
2 September 2008 to 31 September 2011 and the preceding period from 12 November 1997 to 29 August 2008.
All returns are in percentages. The correlation structure section reports autocorrelations between the overnight
return on day t and day t− 1, between the daytime return on day t and day t− 1, and the cross-correlation
between the overnight return on day t and daytime return on day t. Q20 (ACF) is the Ljung-Box statistic for
the null of no autocorrelation up to 20 lags. ∗, ∗∗ and ∗ ∗ ∗ indicate significance at the 10%, 5% or 1% levels.

The overnight and daytime squared returns are summarized in Panel B of Table 1. To make the
comparison more informative, we report the hourly volatility as the mean squared return divided by
the number of hours spanned by each segment of the day, 17.5 h (overnight) and 6.5 h (daytime). Return
volatility is higher in daytime than overnight, which is well aligned with market microstructure wisdom
that information flow is greater during trading than non-trading hours. The volatility autocorrelation
function shows a much slower decay at daytime (i.e., more persistence) than overnight. Both volatilities
increase dramatically from the first to the second sample periods. Overall the statistics in Table 1
suggest important differences in the overnight and daytime return distributions.

4.2. VaR Predictions and Evaluation

Before discussing the VaR forecasts per se, we report in Table 2 the estimation results for the
models outlined in Sections 2.2 and 2.3. The estimation window spans the entire 15-year sample period
(T = 3491 days). The models are able to capture important stylized facts.

The overnight model estimates in Table 2, Panel A, top exhibit, reveal the presence of:
(i) asymmetry in the conditional variance (leverage effect) as borne out by a significantly positive
parameter γ1; (ii) fat-tailedness in standardized overnight returns as reflected in a small dof parameter
η0; (iii) negative-skew in the distribution of innovations to the overnight portfolio return as suggested
by ln(ξo) < 0. These findings justify the skewed Student-t distributional assumption for the innovation
process. The sufficient condition for stationarity, γ1 < 2(1− α1 − β1), is satisfied for both indices.
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Table 2. Model estimates and diagnostics from November 1997 to September 2011.

Panel A: Bivariate Approach Panel B: Ex Post Overnight Approach

Russell 2000 S & P 500 Russell 2000 S & P 500

AR-GJR-GARCH model (overnight) AR-ARFIMA model (daytime)
a0 0.0181 (0.0028) 0.0044 (0.0021) a0 −0.0291 (0.0207) −0.0040 (0.0154)
a1 −0.0031 (0.0021) −0.0074 (0.0018) a1 0.0440 (0.0184) −0.0315 (0.0162)
b1 −0.0659 (0.0144) −0.0692 (0.0140) b1 −0.0032 (0.0925) 0.2307 (0.0991)
α0 −0.0001 (0.0000) 0.0002 (0.0001) b0 1.0553 (0.0893) 1.6801 (0.1113)
α1 0.0900 (0.0171) 0.0720 (0.0127) τ0 −0.8061 (0.0247) −0.8067 (0.0228)
β1 0.8620 (0.0169) 0.9080 (0.0124) τ1 0.2313 (0.0186) 0.3115 (0.0196)
γ1 0.0020 (0.0006) 0.0011 (0.0004) τ2 −0.6453 (0.0300) −0.8424 (0.0310)

ln ξ0 −0.0274 (0.0144) −0.0340 (0.0156) τ3 1.0250 (0.0797) 1.7658 (0.1212)
η0 2.9625 (0.1212) 2.9017 (0.1679) τ4 −2.4760 (0.1214) −3.9167 (0.1868)

AR-ARFIMA model (daytime) θ −0.5250 (0.0230) −0.5204 (0.0147)
a0 −0.0074 (0.0208) 0.0039 (0.0159) d 0.4829 (0.0186) 0.4949 (0.0070)
a1 0.0425 (0.0189) −0.0407 (0.0167) σ2 0.9752 (0.0692) 0.9255 (0.0558)
b1 −0.0988 (0.0917) 0.0790 (0.1081) lnξd −0.1008 (0.0242) −0.1273 (0.0211)
τ0 −0.5360 (0.3810) −0.5360 (0.7020) ηd 12.1365 (2.2368) 6.6662 (0.7253)
τ1 0.3059 (0.0194) 0.3576 (0.0207)
τ2 −0.8021 (0.0308) −0.9397 (0.0325)
θ −0.5482 (0.0149) −0.5386 (0.0127)
d 0.4933 (0.0088) 0.4966 (0.0046)

σ2 1.1431 (0.0736) 1.0666 (0.0620)
ln ξd −0.1310 (0.0240) −0.1138 (0.0196)

ηd 14.1627 (3.0623) 6.5079 (0.7316)
DCC model (overnight-daytime)

α 0.0146 (0.0105) 0.0049 (0.0085)
β 0.6828 (0.2402) 0.7716 (0.1480)

The table reports estimation results for the bivariate model discussed in Section 2.2 and the ex post overnight
model discussed in Section 2.3. Panel A pertains to the bivariate modeling approach that amounts to
constructing the VaR forecast for day t at the close of day t− 1; the overnight return process is AR-GJR-GARCH,
Equations (9a)–(9b), the daytime return process is AR-ARFIMA, Equations (10a)–(10b), and the dynamic
covariance is DCC, Equation (11). Panel B pertains to the ex post overnight model that amounts to
constructing the VaR limit for day t at the same-day market open; the daytime return process is AR-ARFIMA,
Equations (12a)–(12b). The overnight and daytime return processes are assumed to follow an asymmetric
Student-t distribution with asymmetry parameter ξ (the table reports the logarithmic transformation, ln ξ,
as it is typical in the literature) and fat-tailedness parameter η. The estimation period is November 1997 to
September 2011. Standard errors are reported in parentheses.

The model estimates in Panel A, middle exhibit, and Panel B, both of which refer to the daytime
trading period, suggest: (i) asymmetry in volatility as borne out by a significantly negative τ2 parameter
in Panel A and significantly negative τ2 and τ4 parameters in Panel B, suggesting a stronger reaction of
the volatility process to bad news than to good news; (ii) fat-tailedness but less so than the overnight
return distribution as borne out by a larger dof parameter ηd; (iii) more marked negative skewness as
suggested by the asymmetry parameter ln(ξd); (iv) the long-memory parameter d > 0 confirms the
slow hyperbolic autocorrelation decay of the logarithmic realized volatility; for both equity indices, d is
significantly less than 1/2 suggesting a stationary but strongly persistent daytime realized volatility
process. The asymmetry in daytime volatility and the fat-tailedness of daytime innovations are stronger
for the S&P 500 index than for the Russell 2000 index. Finally, the model estimates reported in the
bottom exhibit of Panel A indicate that the sufficient stationarity condition, α1 + β1 < 1, is satisfied for
the dynamic conditional correlation model.

We next analyze the outcome of the out-of-sample day-ahead VaR forecasting exercise. In this
exercise, the first VaR forecast is based on the model parameter vector θ0 estimated with information
from day 1 to P, denoted θ̂P, the second forecast is based on θ̂P+1 obtained from observations 2 through
P + 1, and so forth. The fixed length of the rolling estimation window is P = 2713 days and hence,
the out-of-sample forecasted period comprises n = 778 days (T ≡ P + n = 3491 days).
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We perform the VaR forecast evaluation sequentially over J = 279 rolling out-of-sample windows
of fixed length nj, j = 1, ..., J, commencing on 2 September 2008. Each window spans a 2-year trading
period (nj = 500 days). First, we discuss the results of the unconditional predictive ability test. Second,
we interpret the findings from the two backtesting procedures.

Table 3 provides the rejection frequencies of the predictive ability test over the 279 out-of-sample
windows. The first column of the table confronts the bivariate approach and the simpler, nested
bivariate approach without (w/o) the covariance term. For both equity indices and for both the 5%
and 1% VaRs, the null hypothesis that the bivariate VaR forecasts are at least as accurate as those from
the simpler bivariate model without (w/o) covariance is rejected in zero instances. This evidence
suggests that the covariance term captures relevant information (e.g., news spillovers from the
overnight period into the early part of the trading day) which serves to enhance the accuracy of
out-of-sample VaR forecasts.

Table 3. Predictive ability test: rejection frequencies.

Bivariate w/o Covariance Ex Post Overnight

Panel A: Russell 2000

5% VaR 0.000 0.419
1% VaR 0.000 0.061

Panel B: S & P 500

5% VaR 0.000 1.000
1% VaR 0.000 1.000

The table reports the rejection frequency of the one-sided unconditional predictive ability test of [11]
over J = 279 rolling out-of-sample windows of fixed length (500 days). The first window begins
on 2 September 2008 and the last window begins on 8 October 2009. In the first column, the null hypothesis is
that the bivariate model is at least as good as the simpler bivariate model without (w/o) covariance term.
In the second column, the null hypothesis is that the bivariate model is at least as good as the ex post
overnight model that conditions additionally on the same-day overnight return. Null hypothesis rejection
indicates that the bivariate model is outperformed by the comparison model in terms of predictive ability.

In the second column of Table 3, we confront the bivariate approach with the ex post overnight
approach. The null hypothesis is that the bivariate approach that generates the forecasts at the close
of dat t−1 is at least as good as the ex post overnight approach that generates the forecasts at the
open of day t (including the overnight information). The ex post overnight model is superior to
the bivariate model for the large cap S&P 500 index—the null hypothesis is rejected in 100% of the
out-of-sample periods. In sharp contrast, for the small cap Russell 2000 the bivariate model continues
to be the better approach over most of the evaluation windows. Thus the predictive ability test reveals
an important contrast between the S&P 500 index and Russell 2000 index regarding the merit of
constructing the VaR forecasts at the market open of day t with the purpose of including the ex post
overnight information. Doing so is only worthwhile for setting day-ahead trading (VaR) risk limits in
the case of the high-volume S&P 500 index.

To gain further insights into the performance of the bivariate and ex post overnight VaR forecasting
approaches, we proceed to analyze the outcome of the dynamic quantile (DQ) test of Engle and
Manganelli [12] and the dynamic binary (DB) probit-based variant. Table 4 summarizes the results.
Panel A1 reports the percentage of rejections of the null hypothesis over the full set of 279 out-of-sample
windows. Panels A2 and A3 report the percentage of rejections, respectively, over the first 1/10 of
windows that capture the brunt of the post-Lehman debacle (last out-of-sample 500-day window ends
on 6 October 2010) and the remaining 9/10 of windows that represent a relatively calmer period.

The rejection rates of the correct conditional coverage criterion, Equation (19), are computed first
as ∑J

j=1 wj I(pj < 0.05) where pj is the p-value of the test in the jth evaluation window, wj ≡ 1/J and
J is the number of windows; α̂j − αj > 0 implies tail risk underestimation. The rejection rates thus
obtained (Panel A of Table 3) confirm that the ex post overnight approach produces the best VaR forecasts
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for the S&P 500 index, whereas the bivariate approach works best for the Russell 2000 index. Therefore,
despite the fact that the ex post overnight approach incorporates the close-to-open overnight return
into the conditioning information set (=Ot ), the bivariate model can still produce more accurate VaR
forecasts in relatively small-cap equity markets where the lower trading volumes imply that overnight
news are not fully incorporated into the open price. A comparison across Panels A2 and A3 clearly
suggest that the VaR forecasts improve throughout (both equity indices, irrespective of the model)
from the initial post-Lehman period to the later post-Lehman period. As more of the extremely volatile
post-Lehman days are incorporated into the estimation windows, the forecasts become gradually
more accurate.

Table 4. VaR backtesting: rejection frequencies.

Bivariate Ex Post Overnight Bivariate Ex Post Overnight

Russell 2000 S & P 500

Panel A1: Equally-weighted J backtesting windows (J = 279)

DQ test (5% VaR) 0.222 0.480 0.237 0.032
DQ test (1% VaR) 0.291 0.097 0.251 0.237

Probit test (5% VaR) 0.151 0.741 0.566 0.097
Probit test (1% VaR) 0.068 0.097 0.835 0.194

Panel A2: Equally-weighted 1/3J backtesting windows

DQ test (5% VaR) 0.667 0.957 0.301 0.097
DQ test (1% VaR) 0.570 0.269 0.333 0.290

Probit test (5% VaR) 0.452 1.000 1.000 0.290
Probit test (1% VaR) 0.204 0.290 0.677 0.312

Panel A3: Equally-weighted 2/3J backtesting windows

DQ test (5% VaR) 0.000 0.238 0.200 0.000
DQ test (1% VaR) 0.151 0.011 0.205 0.205

Probit test (5% VaR) 0.000 0.611 0.346 0.000
Probit test (1% VaR) 0.000 0.000 0.914 0.135

Panel B: Weighted by Absolute Coverage Error

DQ test (5% VaR) 0.191 0.514 0.381 0.047
DQ test (1% VaR) 0.242 0.054 0.171 0.281

Probit test (5% VaR) 0.085 0.750 0.726 0.113
Probit test (1% VaR) 0.021 0.048 0.813 0.236

Panel C1: Weighted Asymmetrically Underprediction > Overprediction

DQ test (5% VaR) 0.050 0.514 0.329 0.280
DQ test (1% VaR) 0.243 0.054 0.143 0.924

Probit test (5% VaR) 0.045 0.750 0.939 0.672
Probit test (1% VaR) 0.021 0.048 0.807 0.919

Panel C2: Weighted Asymmetrically Overprediction > Underprediction

DQ test (5% VaR) 0.318 0.567 0.447 0.001
DQ test (1% VaR) 0.184 0.019 0.749 0.174

Probit test (5% VaR) 0.120 0.775 0.482 0.002
Probit test (1% VaR) 0.003 0.016 0.949 0.122

The table reports the rejection frequency of the null hypothesis of correct conditional VaR specification,
Equation (18), over J = 279 rolling out-of-sample windows of fixed length (500 days). The first window begins
on 2 September 2008 and the last window begins on 8 October 2009. DQ test is the dynamic quantile test
of [12] and probit test is the probit-based variant. Panel A1 reports the rejection frequency over all windows.
Panels A2 and A3 report the rejection frequencies over the first 1/10J windows and the remaining 9/10J
windows, respectively. The last three panels report weighted rejection frequencies over all windows. Panel B
weights each rejection according to the distance from the empirical conditional coverage (CC) to the nominal
coverage. The empirical CC is the probit-transformed intercept, Equation (22), estimated over the J rolling
out-of-sample windows. Panel C1 weights more heavily the rejections for which the empirical CC exceeds the
nominal coverage (absolute distance) than the rejections for which the empirical CC is below the nominal
coverage (squared distance). Panel C2 weights more heavily the rejections for which the empirical CC is
below the nominal coverage (absolute distance) than the rejections for which the empirical CC exceeds the
nominal coverage (squared distance).
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As formalized above, the rejection rates reported in Panel A assign equal weights to all the
backtesting windows, wj ≡ 1/J, j = 1, ..., J, irrespective of the distance between the empirical
conditional coverage and the nominal coverage, or coverage error α̂j − αj. However, the economic
loss function of a risk manager may assign different importance to different rejections depending
on the magnitude and indeed the sign of the coverage error. Panels B and C add further insights by
taking the magnitude and sign of the coverage error into account. Thus, Panel B summarizes the
dynamic conditional coverage backtesting by weighting (or penalizing) each rejection according to the
magnitude of the coverage error, i.e. wj ≡ |α̂j − αj| for j = 1, ..., J, and the weights are standardized to
add to unity.

Finally, the weighting of the rejections in Panels C1 and C2 takes also into account the
sign of the error. Panel C1 presumes that the risk manager is more concerned about tail risk
underprediction (uncovered losses concern) than overprediction (investment opportunity costs
concern); thus, the penalty is larger |α̂j − αj|, j = 1, ..., J1 for underpredictions and smaller at (α̂j − αj)

2,
j = 1, ..., J2 for overpredictions (J = J1 + J2). For completeness, Panel C2 reverses the direction of the
asymmetry (i.e., overpredictions are penalized more heavily than underpredictions) which may be
more representative of the loss function of the regulator. The evidence in Panels B and C confirms
the differences between the bivariate and ex post overnight approaches with respect to the accuracy of
5% and 1% VaR forecasts. The bivariate approach outperfoms the ex post overnight approach for the
Russell 2000 index; the only exception is the probit test for the 1% VaR. In contrast, for the S&P 500
index the results of the DQ and probit tests endorse the ex post overnight approach, especially so if the
loss function assigns a larger penalty to VaR overpredictions than underpredictions.

Figure 1 plots the empirical conditional coverage, α̂j of the bivariate and ex post overnight VaR
approaches. This empirical coverage is given by the probit-transformed intercept, α = Φ(β0), estimated
sequentially over J rolling out-of-sample windows. For the S&P 500 index, the graphs show that the ex
post overnight 5% VaR forecast stubbornly underpredicts the 5%-quantile while the empirical coverage
of the bivariate 5% VaR hovers around the 5% nominal coverage. In contrast, for the Russell 2000 index
the empirical conditional coverage of the ex post overnight VaR is on the whole closer to the nominal
coverage than that of the bivariate 5% VaR. The plots for the 1% VaR confirm this contrast between the
two indices.

We interpret this contrasting evidence for the two indices as relating to differences in the efficiency
of price discovery at the market open for stocks with different trading volumes. The fact that the
bivariate approach excels for Russell 2000 may indicate that the opening quote for this small cap index
does not reflect the information released during non-trading hours. For S&P 500, the opening price
conveys the information accumulated during non-trading hours more efficiently despite the fact that
not all stocks open for trading immediately at 9:30 am, inducing the price staleness and news spillover
effects discussed above. Barclay and Hendershott [13] show that for Nasdaq stocks, opening prices are
more efficient for larger-volume stocks and, importantly, a critical trading volume threshold is required
to shift price discovery from the trading day to the pre-open. This effectively implies that the opening
price conveys more information for the most heavily-traded stocks. Our contrasting results on the
relative merit of the bivariate and ex post overnight VaR approaches for the two indices are aligned with
the insights in Barclay and Hendershott [13]. For small-cap (Russell 2000) stocks which display smaller
trading volumes the opening price (and hence, the observed overnight return from previous close
to open) is less informative, making the bivariate VaR forecasts formed at the close of day t−1 more
accurate. There is evidence that overnight information is disseminated more efficiently on Nasdaq
compared to the NYSE due to differences in the opening mechanisms of the exchanges (see e.g.,
Masulis and Shivakumar [9]; Greene and Watts [50]. Although Russell 2000 contains relatively more
stocks listed on Nasdaq than S&P 500 (60% vs. 20%, respectively), the ex post previous-close-to-open
return has less information content for setting day-ahead VaR equity trading limits for Russell 2000
than for S&P 500. Overall, we interpret the evidence in our study as suggesting that the former trading
volume effect is stronger than the effect of the trading platform.
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Figure 1. Empirical conditional coverage. 

The graphs plot the empirical conditional coverage of the bivariate VaR and ex post overnight VaR 
forecasting approaches described in Section 2.2 and Section 2.3, respectively. The empirical 
conditional coverage is obtained as the probit-transformed intercept, eq. (22), estimated over 279 
rolling out-of-sample (500-day) windows. The top and bottom horizontal lines denote the 5% and 1% 
nominal coverage, respectively, of the VaR measure. Solid (blue) line corresponds to the empirical 
conditional coverage at 5% and dotted (red) line corresponds to the empirical conditional coverage at 
1%. 
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Figure 1. Empirical conditional coverage. The graphs plot the empirical conditional coverage of the
bivariate VaR and ex post overnight VaR forecasting approaches described in Sections 2.2 and 2.3,
respectively. The empirical conditional coverage is obtained as the probit-transformed intercept,
Equation (22), estimated over 279 rolling out-of-sample (500-day) windows. The top and bottom
horizontal lines denote the 5% and 1% nominal coverage, respectively, of the VaR measure. Solid (blue)
line corresponds to the empirical conditional coverage at 5% and dotted (red) line corresponds to the
empirical conditional coverage at 1%.

5. Conclusions

A task faced daily by risk managers is to establish forward-looking mark-to-market loss limits for
individual trading desks. Value-at-Risk (VaR) has become a standard risk control tool.

This paper has introduced a novel VaR model that predicts the risk measure at market open and,
hence, fully exploits the information released to financial markets overnight. Theoretically, this VaR
measure should be more informative as it uses an expanded information set compared to standard
VaR measures that use information up to the previous day market close. To empirically assess this
hypothesis, we have compared VaR forecasts obtained from this ex post approach against VaR forecasts
from a model that uses a reduced information set. The latter model uses predictions of the overnight
return and the covariance between the daytime and overnight return to compute next day’s VaR.
The empirical comparison between these models has allowed us to shed light on the existence and
importance of price staleness and news spillover. More specifically, we have explored through forecasts
of the VaR measure whether the opening price fully reflects available information at market open or,
instead, there is a period during which news feeds into market prices.



J. Risk Financial Manag. 2016, 9, 10 18 of 20

Our empirical illustration reveals that conditioning the forecasts at the previous-day close and
paying separate modeling efforts to the overnight and daytime segments of the day appears beneficial
for describing the tail behavior of the low-cap Russell portfolio. The covariance term also adds forecast
accuracy to the day-ahead VaR measure. More specifically, for the low-cap Russell 2000 index waiting
until the market opens in order to construct the day-ahead VaR forecast—i.e., extending the information
set to include the ex post overnight return—produces less accurate downside risk forecasts than those
obtained from the bivariate modeling approach. For the large-cap S&P 500 index, in sharp contrast,
the ex post overnight modeling approach produces the most effective VaR limits. The contrasting
results for the two indices may relate to the different levels of trading volume of the constituent stocks.
It has been shown in previous research that price discovery at the market open is more efficient for
high-volume stocks. Therefore, the large cap constituents of the S&P 500 index may convey all relevant
overnight information in their opening prices. In this case, it is worthwhile for the risk manager to
generate the day-ahead VaR forecasts at the market open conditional on an extended information set
that includes the close-to-open return.

This study can be extended in several dimensions. For example, we can consider subsets of
individual stocks with different market capitalization and compare the performance of the two
competing VaR forecasting models as a function of market capitalization. Another interesting avenue
for further research is to analyze VaR forecasts for assets traded in the foreign exchange market.
This market is characterized by continuous trading activity, hence, the comparison between small
and large stocks and the role of the ex-ante covariance between daytime and overnight returns in
predicting one-day-ahead VaR can reveal different insights in these markets.
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22. Žikĕs, F. Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility; Mimeo Imperial

College London, Business School: London, UK, 2009.
23. Fuertes, A.-M.; Olmo, J. Optimally harnessing inter-day and intra-day information for daily value-at-risk

prediction. Int. J. Forecast. 2013, 29, 28–42.
24. Hansen, P.R.; Lunde, A. A realized variance for the whole day based on intermittent high-frequency data.

J. Financ. Econom. 2005, 3, 525–554.
25. Barndorff-Nielsen, O.E.; Shephard, N. Econometric analysis of realised volatility and its use in estimating

stochastic volatility models. J. R. Stat. Soc. Ser. B 2002, 64, 253–280.
26. Corsi, F. A Simple Long Memory Model of Realized Volatility; University of Southern Switzerland: Lugano,

Switzerland, 2004; mimeo.
27. Ghysels, E.; Santa-Clara, P.; Valkanov, R. The MIDAS Touch: Mixed Data Sampling Regression Models; University

of North Carolina: Chapel Hill, NC, USA, 2004; mimeo.
28. Glosten, L.; Jagannathan, R.; Runkle, D. On the relation between the expected value and the volatility of the

nominal excess return on stocks. J. Financ. 1993, 48, 1779–1801.
29. Engle, R.F. Dynamic conditional correlation—A simple class of multivariate GARCH models. J. Bus.

Econ. Stat. 2002, 20, 339–350.
30. Aielli, G.P. Dynamic conditional correlation: On properties and estimation. J. Bus. Econ. Stat. 2013, 31,

282–299.
31. Wu, L. Variance dynamics: Joint evidence from options and high-frequency returns. J. Econ. 2011, 160,

280–287.
32. Liu, C.; Maheu, J. Forecasting realized volatility: A bayesian model-averaging approach. J. Appl. Econ. 2009,

24, 709–733.
33. Fuertes, A.-M.; Izzeldin, M.; Kalotychou, E. On forecasting daily stock volatility: The role of intraday

information and market conditions. Int. J. Forecast. 2009, 25, 259–281.
34. Basel Committee on Banking Supervision. Supervisory Framework for the Use of “Backtesting” in Conjunction

with the Internal Models Approach to Market Risk Capital Requirements; Bank for International Settlements: Basel,
Switzerland, 1996.

35. Kuester, K.; Mittnik, S.; Paolella, M.S. Value-at-Risk prediction: A comparison of alternative strategies.
J. Financ. Econ. 2006, 4, 53–89.

36. Angelidis, T.; Degiannakis, S. Econometric modeling of Value-at-Risk. In New Econometric Modeling Research;
Toggins, W.N., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2008.

37. Giacomini, R.; Komunjer, I. Evaluation and combination of conditional quantile forecasts. J. Bus. Econ. Stat.
2005, 23, 416–431.

38. Clements, M.P.; Galvão, A.B.; Kim, J.H. Quantile forecasts of daily exchange returns from forecasts of realized
volatility. J. Empir. Financ. 2008, 15, 729–750.

39. Brownlees, C.T.; Gallo, G.M. Comparison of volatility measures: A risk management perspective.
J. Financ. Econ. 2010, 8, 29–56.



J. Risk Financial Manag. 2016, 9, 10 20 of 20

40. Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263.
41. West, K.D. Asymptotic inference about predictive ability. Econometrica 1996, 64, 1067–1084.
42. West, K.D.; McCracken, M.W. Regression-based tests of predictive ability. Int. Econ. Rev. 1998, 39, 817–840.
43. Newey, W.K.; West, K.D. Hypothesis testing with efficient methods of moment estimation. Int. Econ. Rev.

1987, 28, 777–787.
44. Christoffersen, P.; Hahn, J.; Inoue, A. Testing and comparing Value-at-Risk measures. J. Empir. Financ. 2001,

8, 325–352.
45. Koenker, R.; Xiao, Z. Quantile autoregression. J. Am. Stat. Assoc. 2006, 101, 980–990.
46. Candelon, B.; Hurlin, C.; Colletaz, G.; Tokpavi, S. Backtesting Value-at-Risk: A GMM duration-based test.

J. Financ. Econ. 2011, 9, 314–343.
47. Berkowitz, J.; Christoffersen, P.; Pelletier, D. Evaluating Value-at-Risk models with desk-level data.

Manag. Sci. 2011, 57, 2213–2227.
48. Dumitrescu, E.I.; Hurlin, C.; Pham, V. Backtesting Value-at-Risk: From dynamic quantile to dynamic binary

tests. Finance 2012, 33, 112.
49. Bandi, F.M.; Russell, J.R. Microstructure noise, realized variance and optimal sampling. Rev. Econ. Stud.

2008, 75, 339–369.
50. Greene, J.T.; Watts, S.G. Price discovery on the NYSE and the Nasdaq: The case of overnight and daytime

news releases. Financ. Manag. 1996, 25, 19–42.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overnight Information for Modeling Daily Prices
	Overnight and Daytime Integrated Variance Processes
	Bivariate Modeling Approach
	Univariate Ex Post Overnight Modeling Approach

	Risk Management Framework
	VaR Forecasts
	Predictive Ability Tests
	Backtesting

	Empirical Application
	Data and Descriptive Statistics
	VaR Predictions and Evaluation

	Conclusions

