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Abstract: We consider a system where the asset values of firms are correlated with the default
thresholds. We first evaluate the probability of default of a single firm under the correlated assets
assumptions. This extends Merton’s probability of default of a single firm under the independent
asset values assumption. At any time, the distance-to-default for a single firm is derived in the system,
and this distance-to-default should provide a different measure for credit rating with the correlated
asset values into consideration. Then we derive a closed formula for the joint default probability
and a general closed formula for the default correlation via the correlated multivariate process of the
first-passage-time default correlation model. Our structural model encodes the sensitivities of default
correlations with respect to the underlying correlation among firms’ asset values. We propose the
disparate credit risk management from our result in contrast to the commonly used risk measurement
methods considering default correlations into consideration.

Keywords: default correlation; probability of default; consistency; credit risk management;
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1. Introduction

In practice, one of the biggest challenges of credit risk models is modeling correlations between
default events, between portfolios of correlated defaultable claims and between credit quality changes.
Dependence among credit default events is indispensable for determining credit risk measures used
to allocate capital for solvency and to investigate systemic risk. There is a huge market for asset
securitization for default swaps (for example CDO, synthetic CDO etc.) and default swaps have a
basket structure with many underlying references. It is clearly important to understand the prices
and credit risk of tranches of CDOs (see [1]). Risk dependence of simultaneous defaults by financial
institutions is also crucial in the study of the stability of the financial system. One of the most important
measures of credit risk with dependence is the probability of default under the dependence in the
portfolio or the financial system. It is also important to measure the joint probability of correlated
defaults and probability of portfolio default.

In this paper, we study the credit risk with dependence to develop the first step in measuring
default of single firm under the asset correlation assumption. We also approach the default of multiple
firms with a structural model, initiated by [2–4]. We also provide an improved distance-to-default
with dependence, with the hope of providing a better credit rating system. Our structural model can
be used to bond portfolios and other structure products.

Default correlation is essential for managing credit risk, and the structure of default correlation
is crucial to price structured credit derivatives as well as in the stability of financial institutions.
Lucas [5] states that general conditions can produce non-zero default correlation and specifies that
general economic conditions and more specific industry and regional factors produce systematic
and idiosyncratic credit risk exposure analogous to systematic and unsystematic equity price risk.
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Significantly biased perceptions of credit risk exposure can derive from omission (Das [6]) or
underestimation (Jorion [7]) of default correlation. The most widely recognized examples are
CreditMetrics; Crouhy, et al. [8] and CreditRisk+ in Gundlach and Lehrbass [9] with incorrect
dependence consideration due to the misunderstanding of the joint default probability. Giesecke [10]
induces default correlation differently in a system of independent asset value changes through
firm-specific default barriers that are themselves correlated random variables. Li [11] defines a
random variable called “time-until-default”.

Unlike the n = 2 case Rebholz [12], Zhou [13], Valužis [14] and Metzler [15], which use separable
variable methods to deal with initial-boundary conditions by formal series, our formulas for evaluating
probabilities of (multiple) defaults are precise and computational accessible. Solutions from previous
literature in closed form are given by an infinite series of modified Bessel functions. Not only with
computational intensity but also with inconsistency, The default correlations and probabilities of
defaults from previous literature frequently attain absolute values greater than 1 as shown in Li and
Krehbiel [16]. The evaluations of probability of default and default correlation from the previous
literature are not only computationally intense but also inconsistent. Zhang and Melnik [17] discuss
the first passage time for multivariate jump-diffusion processes without any explicit default correlation
or default probability. Li and Krehbiel [16] indicate some numerical results to the inconsistency of their
default rate and default correlation. Sacerdote et al. [18] recently expressed the joint density of the first
passage time in terms of the solutions of a system of Volterra-Fredholm first kind integral equation, and
the solution is again given by the same method of Zhou [13] in terms of the formal power series with
modified Bessel function of the first kind. Erlenmaier and Gersbach [19] regard the optimal stopping
time for the default as a non-random variable to deduce the default correlation and completely ignore
the main difficulty in understanding the joint distribution of first-passage-times of two correlated asset
firms. Erlenmaier and Gersbach [20] provide a connection between adverse macroeconomic shocks
and loan default correlations and expresses the default correlation in integral form so that the partial
derivatives of the default correlation can be traced analytically. But they do not discuss the default
correlation itself and the relation with the default probability. They only discuss various properties of
the default correlation with respect to the distances-to-default from implicit relation.

In this paper, we specify the linkage between companies as the correlation of logarithmic changes
of underlying asset values. As mentioned in Li and Krehbiel [16], there is an inconsistency between
the stochastic assumptions of Merton’s firm-specific default probability model with the bivariate first
passage time model of default correlation. We first evaluate the probability of single firm default
with dependence by changing the driving Brownian motions among firms into a combination of
driving Brownian motions through a linear algebra technique. Then we evaluate firm-specific default
probabilities and default correlations under consistent stochastic assumptions in Propositions 1 and 2.
To understand multiple defaults, we need to further extend the results from two joint default probability
to one of n-joint default probability. By using the reflection principle in partial differential equations to
solve the Kolmogorov forward equation with initial-boundary conditions, we resolve this problem to
derive a closed form of the probability of multiple joint defaults in Theorem 1.

We further propose the probability of default algorithm for the dependent firms. The default
algorithm in credit risk management follows from evaluating single firm default, two firms default,
any k firms default simultaneously, and all firms default. For two firms case, Li and Krehbiel [16] show
that the difference between KMV’s and J. P. Morgan’s approach and our probability of joint default is
not trivial, among other things. Understanding default correlation and probabilities of the default state
space is crucial for proper measurement of credit risk. Bond portfolio management is the quintessential
example of default correlation application. Financial stability and the systemic risk are very important
in the financial market. Our analysis provides a proper tool and technique to measure those risks.
We propose a mixed pair default measure MDi(t) to incorporate the dependence by adding related
default correlations. This measure should provide more information than the probability of default
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of a single firm from easy evaluations, and also give the credit risk estimate of the specific firm in
the system.

The default probability and default correlation for more than 3 firms with constant drifts and
constant diffusions can be consistently obtained in this paper. Our contribution concerns reconciliation
of the assumptions of independent log asset changes with the correlated multivariate processes of the
first-passage-time default correlation model. While Jarrow [21] attacks the use of Merton’s structural
credit risk model as a valid source of implied default probabilities due to the violation of the model’s
critical assumption that all the firm’s assets trade in frictionless markets. The mixed default measure
MDi(t) reflects all the market information and the default probability that is directly related to the i-th
firm. Even if the probability of the specified firm default is smaller than one of other firms, the mixed
default measure of the specified firm would be way bigger than one of the other firms due to the larger
impact of default correlation. The default correlation matrix ρD(t) = (ρD

ij (t))1≤i,j≤n might be useful for
regulators to access the possible default contagion from one financial institution to another. The mixed
pair default MDi(t) measures all the possible default correlation from the market to this specified
firm as well as its own probability of default under the dependence by adding the row of the default
correlation matrix. On the other hand, if we add the column of the default correlation matrix, the sum
of default correlations on the i-th column is the total effect of dependence from the specified i-th firm
to rest of firms in the market. This quantity could be used to measure the significance of the firm in
the market.

The remainder of this paper is organized as follows. Section 2 presents the first-passage-time
model for probability of default with dependence. Section 3 provides risk management with default
correlation. Section 4 gives numerical results of the paper and compares them with previous results.
Section 5 concludes our findings. We give a complete proof of main results in Appendix.

2. First-Passage-Time Model for Probability of Default and Default Correlation

In the basic model for default correlations based on the first-passage-time model of Black and
Cox [4], a firm defaults when its asset value breaches the default barrier. We assume that there are n
credit entities with a collection of n firms (the i-th credit entity is referred to as the i-th firm). The i-th
firm defaults whenever this firm’s assets falls below the i-th firm specific threshold.

Assumption 1. The dynamics of total asset values of both firms is given by

d ln V = µdt + ΩdW(t) (1)

where ln VT = (ln V1(t), · · · , ln Vn(t)), µT = (µ1, · · · , µn) are constant drift terms for each firm and WT(t)
is the independent standard n-dimensional Brownian motion. The log-asset covariance matrix is given by
Ω ·Ω′

=
(
ρijσiσj

)
with a constant correlation ρij = Corr(d ln Vi, d ln Vj) for 1 ≤ i, j ≤ n.

Assumption 2. For each firm i, there exists a time-dependent value Ci(t) such that the firm continues to operate
and meet its contractual obligations if Vi(t) > Ci(t). The firm defaults on all of its obligations immediately if
Vi(t) ≤ Ci(t), and some form of corporate restructuring takes place, for 1 ≤ i ≤ n.

For simplicity, we assume the drift vector and variance matrix of the total asset values’ logarithmic
change are constant. This is the same setup as Zhou [13] for n = 2. For simplicity, we focus on the the
default threshold level Ci(t) = eλitKi for constant λi and Ki for i = 1, 2, · · · , n as proposed by Black
and Cox [4]. Black and Cox [4] interpret Ci(t) as the smallest possible value required by the safety
covenant of a debt contract. One can extend to a random barrier and random interest rates as studied
in Nielsen et al. [22], Leland [23] and Leland and Toft [24].
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If the default status are described as Bernoulli random variables,

Di(t) =

{
1 if the firm i defaults by t
0 otherwise.

1 ≤ i ≤ n

then we have, for 1 ≤ i ≤ n,

Di(t) = {τi ≤ t}, τi = min{t ≥ 0 : Vi(t) ≤ eλitKi}

as the first-passage-time that the i-th firm reaches its default threshold.
Define the default correlation Corr(Di(t), Dj(t)) = ρD

ij (t) between the firms i and j over the time
interval [0, t] as

Corr(Di(t), Dj(t)) =
Cov(Di(t), Dj(t))√

Var(Di(t)) ·Var(Dj(t))
=

E[Di(t) · Dj(t)]− E[Di(t)] · E[Dj(t)]√
Var(Di(t)) ·Var(Dj(t))

(2)

Default correlation is central to determining the joint default probability that is the probability of
multiple defaults. If P(Di(t) = 1) = Pi, then

P(Di(t) = 1 and Dj(t) = 1) = PiPj + ρD
ij (t)

√
(1− Pi)(1− Pj)PiPj

P(Di(t) = 1 or Dj(t) = 1) = 1− (1− Pi)(1− Pj)− ρD
ij (t)

√
PiPj(1− Pi)(1− Pj)

We need to first derive the probability of i-th firm default under Assumptions 1 and 2.

Proposition 1. Under Assumptions 1 and 2, the probability of i-th firm default is given by

P(Di(t) = 1) = Pi = N(− ln(Vi,0/Ki)

Σi
√

t
− µi − λi

Σi

√
t)

+(
Vi,0

Ki
)

2(λi−µi)

σ2
i N(− ln(Vi,0/Ki)

Σi
√

t
+

µi − λi
Σi

√
t)

and the distance-to-default at the time t for the i-th firm is given by

ddi(t) =
ln(Vi,0/Ki) + (µi − λi − 1

2 Σ2
i )(T − t)

Σi
√

T − t

where Σ2
i is the i-th eigenvalue of Ω ·ΩT and N(·) is the cumulative probability distribution function for a

standard normal random variable.

The proof of Proposition 1 is given in Appendix.
Then, the i-th firm-specific probability P(Di(t) = 1) = P(τi ≤ t) of default given by Proposition 1

is derived under our Assumptions 1 and 2 with underlying asset correlations. The probability of i-th
firm default is given by

pi(t) = P(Di(t) = 1) = N(− ln(Vi,0/Ki)

σi
√

t
− µi − λi

σi

√
t) (3)

+(
Vi,0

Ki
)

2(λi−µi)

σ2
i N(− ln(Vi,0/Ki)

σi
√

t
+

µi − λi
σi

√
t)

It is derived without the correlation Assumption 1 for each individual firm. We have Pi(t) = pi(t)
if and only if ρij = 0 for all i 6= j. The probability pi(t) of the i-th firm default is obtained
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assuming independence of the stochastic process in Merton (1974). Hence the firm-specific default
probabilities (3) are not consistent with the default correlation of Assumptions 1 and 2, as shown in
Li and Krehbiel [16]. The distance-to-default ddi(t) is also different from the distance-to-default with
independent asset processes:

di(t) =
ln(Vi,0/Ki) + (µi − λi − 1

2 σ2
i )(T − t)

σi
√

T − t

Proposition 2. The probability that either i-th firm or j-th firm defaults and the probability that both firms
default under Assumptions 1 and 2 given {ui, λi, σi, Vi,0, Ki, ρ} are given by

P(Di(t) = 1 or Dj(t) = 1) = 1− F(bi, bj, t) = 1− N2,ρij(
bi

σi
√

t
,

bj

σj
√

t
) (4)

+N2,−ρij(−
bi

σi
√

t
,

bj

σj
√

t
)− N2,ρij(−

bi

σi
√

t
,−

bj

σj
√

t
) + N2,−ρij(

bi

σi
√

t
,−

bj

σj
√

t
)

and the default correlation of the i-th firm and the j-th firm is

ρD
ij (t) =

Pi + Pj − PiPj − P(Di(t) = 1 or Dj(t) = 1)√
Pi(1− Pi)Pj(1− Pj)

where bi = − ln[ Ki
Vi(0)

] + (µi − λi)t, Pi is given in Proposition 1 for 1 ≤ i, j ≤ n, F(bi, bj, t) = P(τij > t)
with τij = τi ∧ τj = min(τi, τj) and the probability of the standard bivariate normal distribution on y1 ≤ x1

and y2 ≤ x2 is denoted by

N2,ρ(x1, x2) =
∫ x2

−∞

∫ x1

−∞

1
2π
√

1− ρ2
e
− y2

1−2ρy1y2+y2
2

2(1−ρ2) dy1dy2

and n2,ρ(y1, y2) = 1
2π
√

1−ρ2
e
− y2

1−2ρy1y2+y2
2

2(1−ρ2) is the standard bivariate normal distribution density function

denoted by N2(0, 1, ρ) for random variables Yi (i = 1, 2) with mean zero and variance 1 and
correlation ρ = Cov(Y1, Y2).

By Proposition 2, the probability that both i-th firm and j-th firm default under Assumptions 1
and 2 is given by

P(Di(t) = 1 and Dj(t) = 1) = Pi + Pj − 1 + N2,ρij(
bi

σi
√

t
,

bj

σj
√

t
) (5)

−N2,−ρij(−
bi

σi
√

t
,

bj

σj
√

t
) + N2,ρij(−

bi

σi
√

t
,−

bj

σj
√

t
)− N2,−ρij(

bi

σi
√

t
,−

bj

σj
√

t
)

which is definitely different from

P(Vi(t) ≤ eλitKi and Vj(t) ≤ eλjtKj) = N2,ρij(
bi

σi
√

t
,

bj

σj
√

t
) (6)

where (6) is used to evaluate the default correlation in Crouhy et al. [8] (also see Bielecki and
Rutkowski [25], p. 117). The essential difference of these evaluations is discussed in [16], Section 2.1.

The proof of Proposition 2 follows from the same method in [16]. Formula (6) evaluates the
probability of joint default on the horizon date, while (5) evaluates the joint default probability prior to
and inclusive of the horizon date. Zhou’s analogous default probability is achieved by solving the
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Kolmogorov forward equation with initial-boundary conditions, with separable variable method and
formal series of eigenfunctions of the boundary value problem. Zhou’s closed-form solution is given
by an infinite series involving the double integral of Bessel functions. The series solution is formal
and not necessarily convergent because the domain of the boundary value problem is unbounded.
Numerical evidence for those inconsistencies is illustrated in [16].

Theorem 1. The evaluation of the probability that either firm defaults under Assumptions 1 and 2 given
{µi, λi, σi, Vi,0, Ki, ρij}1≤i,j≤n is given by

P(τ ≤ t) = P(D1(t) = 1 or D2(t) = 1 · · · , or Dn(t) = 1)

= 1− F(b1, b2, · · · , bn, t)

F(b1, b2, · · · , bn, t) =
2n

∑
i=1

(−1)signQi NΩQi
ΩT

Qi
(sign(z1)b1, sign(z2)b2, · · · , sign(zn)bn) (7)

where τ = min{τ1, · · · , τn}, (sign(z1), · · · , sign(zn) ∈ Qi with sign(zi) = ±1, signQi is
the sum of negative 1 in (sign(z1), · · · , sign(zn), ΩQi = diag(sign(z1), · · · , sign(zn) · Ω, and
NA(x1, · · · , xn) =

∫ xn
−∞ · · ·

∫ x1
−∞

1
(2πt)n/2

√
det A

exp(− 1
2t zT Az)dz1 · · · dzn.

We solve the Kolmogorov forward equation with initial-boundary conditions using the reflection
principle in partial differential equations. This is an extension of n = 2 case in [16]. We first solve
the Kolmogorov forward equation with initial condition from the constant coefficients in the partial
differential operator. The solution gives the n-dimensional Gaussian distribution function that satisfies
all three boundary conditions automatically, except the boundary on the finite regions xi = bi for
1 ≤ i ≤ n. This is the main difficulty that led Rebholz [12], Zhou [13] and Valužis [14] to use the
separable variable methods to obtain a formal series solution, even in n = 2 case. In contrast, we use
the reflection principle first to shift the boundary region as the boundary of the first quadrant, and
then extend the solution to the whole plane Rn by odd extension. After identifying the involution
through the odd extension and using the Dirac function properties, the probability of at-least one
default among all n firms is obtained in Theorem 1. For the completeness of the result, we present the
detailed proof in Appendix. The probability of at-least one default in Theorem 1 is given by 2n terms
with standard multivariate normal distribution function.

For all the firms under Assumptions 1 and 2, we can use Propositions 1 and 2 and Theorem 1 to
determine any possible combination of default events. We outline the basic scheme and hope this will
be useful in determining systemic risk.

Probability of single firm default We first use Proposition 1 to evaluate the probability
P(Di(t) = 1) = Pi(t) of i-th firm default at the time t. The probability Pi of the i-th firm default
incorporates with other firms through Assumptions 1 and 2, and this is essentially different from
the probability pi of the i-th firms default in (3) where the i-th firm is independent of the rest firms.

Probability of two firms default For any pair of two firms, we first evaluate the probability
P(Di(t) = 1 or Dj(t) = 1) that either i-th firm or j-th firm defaults by Proposition 2.

There are

(
n
2

)
many pairs of two firms from those n firms. Similarly for k firms, there are(

n
k

)
many k firms from those n firms.

Hence, the probability P(Di(t) = 1 and Dj(t) = 1) = Pij(t) that both i-th firm and j-th firm default
at the time t is given by

P(Di(t) = 1 and Dj(t) = 1) = Pi + Pj − P(Di(t) = 1 or Dj(t) = 1)



J. Risk Financial Manag. 2016, 9, 7 7 of 19

Probability of three firms default For any triple firms (i, j, k), we apply the sub-matrix taking
the i, j, k rows and columns and the probability P(Di(t) = 1 or Dj(t) = 1 or Dk(t) = 1) that
either i-th firm or j-th firm or k-th firm defaults by Theorem 1 for n = 3. Hence, the probability
P(Di(t) = 1 and Dj(t) = 1 and Dk(t) = 1) = Pijk(t) that both i-th firm and j-th firm and k-th firm
default at the time t is given by

Pijk(t) = −Pi(t)− Pj(t)− Pk(t) + (Pij(t) + Pik(t) + Pjk(t))

+P(Di(t) = 1 or Dj(t) = 1 or Dk(t) = 1)

Probability of k firms default For k ≥ 2, we apply Theorem 1 for all k× k sub-matrix from ΩΩT to
evaluate the probability P(∪k

j=1Dij(t) = 1), and then evaluate the probability Pi1i2···ik (t) that k firms
(from i1-th to ik-th firms) both default at the time t from the following identity and previous steps,

P(∪k
j=1Dij(t) = 1) =

k

∑
j=1

Pij(t)− ∑
j1,j2

Pij1
ij2
(t) + · · ·+ (−1)k−1Pi1i2···ik (t)

Probability of all n firms default Repeat the previous step for 2 ≤ k ≤ n − 1. Evaluate the
probability P(τ ≤ t) that either firm defaults among n firms by Theorem 1. Therefore, the
probability P12···n(t) that all n firms default at the time t is derived from the following identity.

P(τ ≤ t) =
n

∑
i=1

Pi(t)−∑
i,j

Pij(t) + · · ·+ ∑(−1)n−2Pi1i2···in−1(t) + (−1)n−1P12···n(t)

3. Risk Management with the Default Correlation

A portfolio manager would not only be concerned with the default of a single firm but also be
worried with the probability of multiple defaults in the portfolio. Similarly, a regulator would have to
estimate the probability of multiple defaults of a number of financial institutions (banks) if there is
no bailout to let a default of a single financial institution (the too big to fail puzzle). Modeling credit
risk from a portfolio perspective is indispensable if derivatives on credit portfolios are priced and risk
measures of credit portfolios are to be computed. New regulatory rules make it mandatory for financial
institutions to extend their risk measures from a single-contract setting to a portfolio perspective.

An effective credit risk measurement in a portfolio consists of three important components:
(1) the probability of default for each individual firm over various investment horizons; (2) the joint
probability of default between any two firms in the portfolio during various investment horizons;
and (3) the magnitude of financial loss in the case of default. As noted in the literature, the precise
quantity of the default correlations is the most crucial and the most challenging part of credit risk
analysis in a portfolio.

The structural credit risk models assume that all of the firms assets trade and their values
are observable. The major drawback of the structure credit risk models is that both firms’ assets
are not tradable and their volatilities are unobservable. See Jarrow [26] for more debates between
structural models and reduced form models. In practice, one can calibrate the observable stock prices
and stock price’s volatility to estimate the firms’ asset values and volatilities, and further minimize
the error between the market observed stock price and volatility and the model’s asset value and
volatility. In industry practice, the structural models are still used incorrectly as a theoretical model
for estimating the firm’s default probability. Reduced form model is adapted to estimate default
probabilities from historical default data. Jarrow [21] shows that the implied default probability form a
structural credit risk model and the default correlations obtained from credit risk copula models lead
to mis-specified estimates.
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3.1. CreditRisk+ Incorporating Default Correlations

Credit Suisse Financial Products (CSFP) introduced the CreditRisk+ in October 1997.
CreditRisk+ applies techniques from actuarial mathematics in an enhanced way to compute the
probabilities for portfolio loss levels. Among other fundamental ideas in CreditRisk+, the linear
relationship between the systemic risk factors and the probabilities of default is assumed; the defaults
of obligators are assumed independent; correlations among obligators are assumed implicitly due to
common risk factors which drive the probability of defaults.

The original CreditRisk+ does not allow correlations in modelling default events.
Akkaya et al. [27] extend the CreditRisk+ that is able to model default correlations among segments
while preserving the analytical solution for the loss distribution. The portfolio loss X is given by
∑A∈S 1AµA, where 1A is the default indicator for obligor A with P[1A = 1] = pA and µA is the
exposure net of recovery for a single-segment portfolio S. For the N different and correlated segments
S1, · · · , SN , the total loss is given by

X =
N

∑
k=1

Xk =
N

∑
k=1

∑
A∈Sk

1AµA

The expected loss and variance of X are given by

EL(X) =
N

∑
k=1

∑
A∈Sk

pAµA,

Var(X) =
N

∑
k=1

Var(Xk)

=
N

∑
k=1

σ2
Sk

EL2(Xk) + ∑
k 6=l

Corr(Sk, Sl)σSk σSl EL(Xk)EL(Xl) +
N

∑
k=1

∑
A∈Sk

pAµ2
A

The variance Var(X) contains a term ∑k 6=l Corr(Sk, Sl)σSk σSl EL(Xk)EL(Xl) which is the default
correlation measured in the extended CreditRisk+ in [27]. The analytic solution for the default
correlation depends on the assumption on the portfolio loss distributions. The multivariate structure
with nontrivial correlation leads a pragmatic simplification to reduce into a single-segment model.

Due to the non-uniqueness in the parameter estimation, one has to assess the impact of the choice
of parameters on the overall loss distribution. This reduced-form approach to default correlation
does not reflect any underlying structure of the assets. The conditionally independent defaults (CID)
approach creates default dependence among firms through the dependence of the firm’s intensity
processes on a common set of state variables. Contagion models extend the CID model to account for
the empirical information of default clustering and to include the existence of credit risk contagion
mechanisms between firms.

3.2. CreditMetrics Incorporating Default Correlations

From the CreditMetricsTM Technical Document, we examined several rating changes and defaults
in order to establish that such correlations indeed exist. The direct method to estimate joint rating
change likelihoods is to test credit rating time series across many firms which are synchronized in
time as a statistical approach. The advantage of this method is that it is independent of the underlying
process and the joint distribution shape and the underlying correlation. The disadvantage is that
it treats all firms with a same credit rating identical. To improve this method, the CreditMetricsTM

estimates credit quality correlation through bond spreads. Whenever bond price histories are available,
it is reasonable to estimate a certain type of credit correlation by extracting credit spreads from the
bond prices and then estimating the correlation in the movements of credit spreads. This adapts
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a reduced-form approach. The biggest drawback of this approach is that the bond spread data is
notoriously scarce, especially for low credit quality issues.

For the structural model, CreditMetrics uses the correlation between equity returns as a proxy for
the correlation of asset returns. The drawback of this replacement is overlooking discrepency between
equity and asset correlation. It is better than using a fixed correlation as well as much more readily
availability than credit spreads or actual joint rating changes. Due to the scarcity of data for many
obligors and the impossibility of storing a huge correlation matrix, one has to rely on correlations
within a set of indices and mapping scheme to build the obligor-by-obligor correlations from the
index correlations.

Copula methods have been extensively used in both industry and academia to assess the joint
default probability of groups of obligors. However, the choice of the copula and its calibration is
still an issue to debate. The copula reduced form model separates the modelling and estimation of
individual default probabilities from the modelling and calibration of the estimation of credit risk
dependence (the copula). The inconsistency among the reduced form methods is also unavoidable.
The copula model for pricing collateralized debt obligations (CDO’s) and implied default correlations
is misused. Jarrow [21] points out that the default correlation obtained from credit risk copula models
for computing VaR measures leads to misspecified estimates.

3.3. Proposed Mixed Pair Defaults Incorporating Default Correlations

Default dependence, mostly represented by default correlation, is one of most important features
in credit derivatives pricing, hedging and risk management. Despite the inconsistency of the individual
default probability and the default correlation, the default correlation measured in Theorem 1 gives
the proper indication of the default dependence under Assumptions 1 and 2. We define a mixed pair
for the defaults incorporating default correlations.

Under Assumptions 1 and 2, we define a mixed pair of defaults for each firm by (Pi(t), ρD
ij (t)) for

1 ≤ i, j ≤ n. The mixed pair of defaults indicates the measure of the default probability and the default
correlation under the realistic correlated asset assumption. Both measures should play an important
role in credit risk management. We can simply use the sum of the default probability and the default
correlation for the default measure under Assumptions 1 and 2:

MDi(t) = Pi(t) + ∑
j 6=i

ρD
ij (t), 1 ≤ i ≤ n

where MDi(t) is the mixed default measure for the i-th firm and the default correlation ρD
ij (t) between

the i-th firm and the j-th firm is given in Proposition 2. A single default correlation between two firms
can be extended to a default correlation matrix. Theoretically the mixed default measure can be larger
even the individual firm specific default probability is quite lower due to the larger default correlation
from the underlying asset correlation between this firm and the other highly “toxic” firm. The mixed
default measure MDi(t) reflects all the market information and the default probability that is directly
related to the i-th firm. Even if Pi(t) < Pk(t), the mixed default measure MDi(t) > MDk(t) due to the
impact of default correlations.

The default correlation matrix ρD(t) = (ρD
ij (t))1≤i,j≤n might be useful for regulators to access the

possible default mitigation from one financial institution to another. The mixed pair default MDi(t)
measures all the possible default correlation from the market to this specified firm as well as its own
probability of default under the dependence by adding the row of the default correlation matrix.
On the other hand, if we add the column of the default correlation matrix, the quantity ∑j 6=i ρD

ji (t) is
the total effect of dependence from the specified i-th firm to the rest of firms in the market.

The individual asset risk is usually characterized by its return variance in the modern investment
theory. The covariance matrix for a portfolio can be a measure of a risk for the portfolio.
Similarly, the default correlation matrix (or default covariance) is the key to managing a bond portfolio
or other portfolios. One of main risk management tasks is to keep the default risk and the default
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correlation under control. The ideal situation would spread possible defaults out rather than cluster, if
the default cannot be avoided in the risk management. The mixed default measure for each firm or a
single defaultable bond would provide an important measure in risk management for fixed income
portfolios, bank management, insurance industry and capital management, etc. More empirical
analysis on the mixed default measure will be given in a future study.

4. Numerical Analysis

In this section, we show the numerical analysis of our main results. For computation simplification,
we assume λi = µi(i = 1, 2, · · · , n) throughout this section.

Credit quality parameters, V
K , for the numerical analysis of Propositions 1 and 2 and Theorem 1

are selected from implied standardized distances to default estimated from the Standard and Poor’s
2010 annual cumulative default study, Credit Week: 20 April 2011. Implied standardized distance to
default, Zi based on pi(t) in (3), can be estimated from the study’s cumulative default rates P(Z, t) to
the historical default rate Ãi(t), under the maintained hypothesis, λi = µi by minimizing the sum of

squared errors. We have Zi =
ln(Vi,0/Ki)

σi
and

Z = arg minZ ∑
t
(

P(Z, t)
t
− Ã(t)

t
)2

Empirical analysis of default correlations can be done by using firms’ data (Vi,0, Ki, ρ, µi, λi) to
compute the default correlation by Proposition 2. We use the Standard and Poor’s 2010 annual
cumulative default study to first estimate the standard distance to default from default data.

Table 1 is borrowed from Li and Krehbiel [16], and presents the standardized distance to default
for S & P credit ratings implied by the cumulative default probabilities reported in the 2010 cumulative
default study.

Table 1. Implied values Z from 2010 Cumulative Default Study.

AAA AA A BBB BB B C INV SPEC ALL

Z 8.916 8.769 7.569 5.980 3.902 2.515 1.138 7.024 2.782 4.457
V/K 35 33 21 11 5 3 2 17 3 6

Assuming the annualized standard deviation of logarithmic change of asset market value is
σ1 = 0.4, the S & P BBB rated bonds with a ratio of initial asset value to default threshold V1,0

K1
= 11,

and σ2 = 0.3 for bonds rated BB by S&P with V2,0
K2

= 5, and σ3 = 0.2 for bonds rated AA V3,0
K3

= 33.
The constant correlation matrix of the logarithms of asset values is given by parameters (ρ12, ρ13, ρ23):

ρ =

 σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3

 =

 0.16 0.12ρ12 0.08ρ13

0.12ρ12 0.09 0.06ρ23

0.08ρ13 0.06ρ23 0.04


Table 2 illustrates the probability of default for each asset under the correlation changes.

We evaluate the probability of default for each individual firm under Assumptions 1 and 2 in
Proposition 1, and compare the probability of default from Merton (1974) under the isolated stochastic
process for t = 1. For simplicity, we have µi = λi for i = 1, 2, 3. The ratio V1,0

K1
= 11 for the BBB rated

bonds with σ1 = 0.4, V2,0
K2

= 5 for the BB rated bonds with σ2 = 0.3 and V3,0
K3

= 33 for the AA rated
bonds with σ3 = 0.2.
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Table 2. Eigenvalues and Probability of Default with underlying asset correlations.

ρ12 ρ13 ρ23 Σ1 Σ2 Σ3 P1 p1 P2 p2 P3 p3

−0.75 −0.75 −0.75 0.0625 0.0625 6.25 8.67E-22 2.04E-09 0.000% 5.73E-05 16.19% 2.87E-05
−0.75 −0.75 −0.5 0.0658 1.9187 3.5781 8.93E-21 2.04E-09 24.527% 5.73E-05 6.45% 2.87E-05
−0.75 −0.75 −0.25 0.0008 1.0856 4.2886 0.00E+00 2.04E-09 12.242% 5.73E-05 9.13% 2.87E-05
−0.75 −0.75 0 0.0037 1 4.2463 0.00E+00 2.04E-09 10.752% 5.73E-05 8.97% 2.87E-05
−0.75 −0.75 0.25 0.0032 0.5625 4.8093 0.00E+00 2.04E-09 3.188% 5.73E-05 11.08% 2.87E-05
−0.75 −0.75 0.5 0.1603 0.5 2.3397 2.11E-09 2.04E-09 2.284% 5.73E-05 2.23% 2.87E-05
−0.75 −0.75 0.75 0.0625 0.0625 6.25 8.67E-22 2.04E-09 0.000% 5.73E-05 16.19% 2.87E-05

0 0.25 0.75 0.0439 1 3.2061 2.50E-30 2.04E-09 10.752% 5.73E-05 5.08% 2.87E-05
0 0.5 0.75 0.009722 1 3.615322 1.22E-130 2.04E-09 10.752% 5.73E-05 6.59% 2.87E-05
0 0.75 0.75 0.003684 1 4.246484 0.00E+00 2.04E-09 10.752% 5.73E-05 8.97% 2.87E-05
0 −0.25 0.75 0.0439 1 3.2061 2.50E-30 2.04E-09 10.752% 5.73E-05 5.08% 2.87E-05
0 −0.5 0.75 0.009722 1 3.615322 1.22E-130 2.04E-09 10.752% 5.73E-05 6.59% 2.87E-05
0 −0.75 0.75 0.003684 1 4.246484 0.00E+00 2.04E-09 10.752% 5.73E-05 8.97% 2.87E-05

0.5 0.25 0.75 0.0398 0.596293 4.338889 2.81E-33 2.04E-09 3.714% 5.73E-05 9.32% 2.87E-05
0.5 0.5 0.75 0.0625 0.330165 4.732365 8.67E-22 2.04E-09 0.509% 5.73E-05 10.80% 2.87E-05
0.5 0.75 0.75 0.025696 0.25 5.474196 1.36E-50 2.04E-09 0.129% 5.73E-05 13.51% 2.87E-05
0.5 0.25 0.5 0.165568 0.5625 3.397018 3.79E-09 2.04E-09 3.188% 5.73E-05 5.78% 2.87E-05
0.5 0.5 0.5 0.25 0.25 4 1.62E-06 2.04E-09 0.129% 5.73E-05 8.04% 2.87E-05
0.5 0.75 0.5 0.0625 0.330165 4.732365 8.67E-22 2.04E-09 0.509% 5.73E-05 10.80% 2.87E-05

Under the asset correlation changes, we see how the eigenvalues of the covariance matrix varying.
These simple numerical results illustrate the important role of the underlying asset correlations,
and the probability of default P1 behaves more complex than the probability of p1. Note that pi in
Merton [3] does not vary at all for i = 1, 2, 3. But the probability of default Pi is very sensitive to the
correlations ρ12, ρ13, ρ23.

We compute the distance-to-default for each individual firm under Assumptions 1 and 2,
and compare the distance-to-default from [3] under the isolated stochastic process for t = 1.
For simplicity, we have µi = λi for i = 1, 2, 3. The ratio V1,0

K1
= 11 for the BBB rated bonds with

σ1 = 0.4, V2,0
K2

= 5 for the BB rated bonds with σ2 = 0.3 and V3,0
K3

= 33 for the AA rated bonds
with σ3 = 0.2.

Table 3 illustrates the distance-to-default in Proposition 1 under Assumptions 1 and 2.
The distance-to-default is the key to the rating of the underlying firm or bonds. We see the changes
of ddi through the variations of ρ12, ρ13 and ρ23. The distance-to-default dd1 increases dramatically
when the correlation ρ23 of other two firms increases from −0.5 to −0.25, and decreases rapidly when
ρ23 increases from 0.25 to 0.5. This is the essence of correlation. As the correlation of other firms
varies, the distance-to-default as well as the credit rating of the first firm may change dramatically.
We see the big difference between dd3 and d3. Without considering the underlying asset correlations,
the third firm or bonds has the distance-to-default d3 = 17.383. Its actual distance-to-default dd3 with
the underlying asset correlation into consideration is much smaller than d3. Hence, the third firm
(AA rated bonds) is overrated if we have the correlation input.

We evaluate the time series of the probability of default for each individual firm under
Assumptions 1 and 2 in Proposition 1 as well as the time series of the distance-to-default, and compare
the probability of default and the distance-to-default from [3] under the isolated stochastic process
for t = 0.5, 1, 1.5, 2, 2.5, 3 and ρ12 = 0.5, ρ13 = 0.25 and ρ23 = 0.75. For simplicity, we have µi = λi for
i = 1, 2, 3. The ratio V1,0

K1
= 11 for the BBB rated bonds with σ1 = 0.4, V2,0

K2
= 5 for the BB rated bonds

with σ2 = 0.3 and V3,0
K3

= 33 for the AA rated bonds with σ3 = 0.2.
Table 4 illustrates that three firms or bonds positively correlated have their probabilities of default

and distances-to-default changing as t varies. The probability of default P3 for the third AA rated
bonds increases clearly, and P1 stays stagnantly. The distances-to-default for both three assets decrease
as t increases, as well as the difference ddi(t)− di(t) gets smaller as t varies.
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Table 3. Comparing distances-to-default.

ρ12 ρ13 ρ23 dd1 d1 dd2 d2 dd3 d3

−0.75 −0.75 −0.75 9.467 5.795 6.313 5.215 0.149 17.383
−0.75 −0.75 −0.5 9.220 5.795 0.469 5.215 0.903 17.383
−0.75 −0.75 −0.25 84.764 5.795 1.024 5.215 0.653 17.383
−0.75 −0.75 0 39.391 5.795 1.109 5.215 0.666 17.383
−0.75 −0.75 0.25 42.361 5.795 1.771 5.215 0.498 17.383
−0.75 −0.75 0.5 5.789 5.795 1.923 5.215 1.521 17.383
−0.75 −0.75 0.75 9.467 5.795 6.313 5.215 0.149 17.383

0 0.25 0.75 11.340 5.795 1.109 5.215 1.057 17.383
0 0.5 0.75 24.270 5.795 1.109 5.215 0.888 17.383
0 0.75 0.75 39.474 5.795 1.109 5.215 0.666 17.383
0 −0.25 0.75 11.340 5.795 1.109 5.215 1.057 17.383
0 −0.5 0.75 24.270 5.795 1.109 5.215 0.888 17.383
0 −0.75 0.75 39.474 5.795 1.109 5.215 0.666 17.383

0.5 0.25 0.75 11.920 5.795 1.698 5.215 0.637 17.383
0.5 0.5 0.75 9.467 5.795 2.514 5.215 0.520 17.383
0.5 0.75 0.75 14.879 5.795 2.969 5.215 0.325 17.383
0.5 0.25 0.5 5.690 5.795 1.771 5.215 0.976 17.383
0.5 0.5 0.5 4.546 5.795 2.969 5.215 0.748 17.383
0.5 0.75 0.5 9.467 5.795 2.514 5.215 0.520 17.383

Table 4. Time-Series Default Probability and Distance-to-Default.

t P1 p1 P2 p2 P3 p3 dd1 d1 dd2 d2 dd3 d3

0.5 0 1.15E-17 0.000135 6.34E-09 0.254433 2.1E-35 16.928 8.336 10.352 5.549 1.637 12.221
1 0 1.02E-09 0.006953 2.87E-05 0.420328 1.15E-18 12.020 5.795 6.573 3.824 0.637 8.541

1.5 0 4.92E-07 0.02754 0.000509 0.510553 4.76E-13 9.814 4.650 4.757 3.040 0.095 6.892
2 0 1.12E-05 0.056322 0.00222 0.568797 3.18E-10 8.499 3.956 3.591 2.562 −0.286 5.898

2.5 0 7.49E-05 0.087814 0.005468 0.610285 1.62E-08 7.602 3.475 2.739 2.229 −0.585 5.212
3 4.2E-265 0.000269 0.11916 0.010089 0.641746 2.25E-07 6.939 3.115 2.069 1.977 −0.835 4.700

Compute F(b1, b2, b3, t) by Theorem 1 for n = 3. We have (sign(z1), sign(z2), sign(z3)) =

(±1,±1,±1) ∈ Qi, and

ΩQi Ω
T
Qi

=

 σ2
1 sign(z1)sign(z2)ρ12σ1σ2 sign(z1)sign(z3)ρ13σ1σ3

sign(z1)sign(z2)ρ12σ1σ2 σ2
2 sign(z2)sign(z3)ρ23σ2σ3

sign(z1)sign(z3)ρ13σ1σ3 sign(z2)sign(z3)ρ23σ2σ3 σ2
3


For instance with the quadrant (1,−1,−1) ∈ Qi, we have signQi = 2 and

ΩQi Ω
T
Qi

=

 σ2
1 −ρ12σ1σ2 −ρ13σ1σ3

−ρ12σ1σ2 σ2
2 ρ23σ2σ3

−ρ13σ1σ3 ρ23σ2σ3 σ2
3


Hence (−1)signQi NΩQi

ΩT
Qi
(sign(z1)b1, sign(z2)b2, sign(z3)b3)

= (−1)2NΩQi
ΩT

Qi
(b1,−b2,−b3) = Nn,Ai (

b1

σ1
√

t
,− b2

σ2
√

t
,− b3

σ3
√

t
)

where Ai is the matrix ΩQi Ω
T
Qi

with σ1 = σ2 = σ3 = 1 and Nn,Ai is the standard multivariate normal
distribution with Ai. Hence, we have F(b1, b2, b3, t) given by the following.

NΩQ1 ΩT
Q1
(b1, b2, b3)− NΩQ2 ΩT

Q2
(−b1, b2, b3) + NΩQ3 ΩT

Q3
(−b1,−b2, b3)− NΩQ4 ΩT

Q4
(b1,−b2, b3)

+NΩQ5 ΩT
Q5
(−b1, b2,−b3)− NΩQ6 ΩT

Q6
(−b1,−b2,−b3) + NΩQ7 ΩT

Q7
(b1,−b2,−b3)− NΩQ8 ΩT

Q8
(b1, b2,−b3)
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= Nn,A1 (
b1

σ1
√

t
,

b2

σ2
√

t
,

b3

σ3
√

t
)− Nn,A2 (−

b1

σ1
√

t
,− b2

σ2
√

t
,

b3

σ3
√

t
) + Nn,A3 (−

b1

σ1
√

t
,− b2

σ2
√

t
,

b3

σ3
√

t
)

−Nn,A4 (
b1

σ1
√

t
,− b2

σ2
√

t
,

b3

σ3
√

t
) + Nn,A5 (−

b1

σ1
√

t
,

b2

σ2
√

t
,− b3

σ3
√

t
)− Nn,A6 (−

b1

σ1
√

t
,− b2

σ2
√

t
,− b3

σ3
√

t
)

+Nn,A7 (
b1

σ1
√

t
,− b2

σ2
√

t
,− b3

σ3
√

t
)− Nn,A8 (

b1

σ1
√

t
,

b2

σ2
√

t
,− b3

σ3
√

t
)

where we give a complete formula for n = 3 that the probability of either three firms default in
the above.

The following is the algorithm for the numerical evaluation in practice for n = 3 case.

Probability of Default with underlying correlations With the explicit numbers, we first compute
P1(t), P2(t) and P3(t) by Proposition 1 as in Table 2, and evaluate the distance-to-default
dd1(t), dd2(t) and dd3(t) for each three firms as in Table 3. (One can compare these values
with pi(t) and di(t) from previous evaluation to adjust their credit ratings with the consideration
of the underlying correlations under Assumptions 1 and 2.)

Probabilities of either two firms default at the time t From the three firms with BBB, BB and AA
rated by the S & P, we choose any pair (there are three choices) and evaluate the chosen two firms
either one will be default at the time t by Proposition 2. Hence we obtain

P(D1(t) = 1 or D2(t) = 1), P(D1(t) = 1 or D3(t) = 1), P(D2(t) = 1 or D3(t) = 1)

Probability of two firms both default at the time t By the previous two steps, we can evaluate both
i-th firm and j-th firm default at the time t,

P12(t) = P1(t) + P2(t)− P(D1(t) = 1 or D2(t) = 1)

P13(t) = P1(t) + P3(t)− P(D1(t) = 1 or D3(t) = 1)

P23(t) = P2(t) + P3(t)− P(D2(t) = 1 or D3(t) = 1)

Probability of both three firms default at the time t This is to analyze the systemic risk by the
probability of both firms in the considered system to default at the time t. We first evaluate either
firm from the three firms default by Theorem 1,

P(D1(t) = 1 or D2(t) = 1 or D3(t) = 1)

and hence the probability P123(t) is given by

P123(t) = P(D1(t) = 1 or D2(t) = 1 or D3(t) = 1)− P1(t)− P2(t)− P3(t) + P12(t) + P13(t) + P23(t)

Default Correlations and Mixed defaults We can now get the default correlation matrix (ρD
ij (t)) by

Proposition 2. Now we can formulate the mixed pair matrix in the following, P1(t) ρD
12(t) ρD

13(t)
ρD

12(t) P2(t) ρD
23(t)

ρD
13(t) ρD

23(t) P3(t)


By adding the rows of the mixed pair matrix, we obtain the mixed default measures

MD1(t) = P1(t) + ρD
12(t) + ρD

13(t)

and MD2(t), MD3(t) to access the other firms effected on the firm. The quantity ρD
12(t) + ρD

13(t) is
the total effect of dependence from the specified first firm to the market of rest firms. The quantity
ρD

12(t) + ρD
23(t) is the total effect of dependence from the specified second firm to the market of
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rest firms. The quantity ρD
13(t) + ρD

23(t) is the total effect of dependence from the specified third
firm to the market of rest firms.

5. Conclusions

We give the answer to this issue by providing explicit formulas of the probability of multiple
defaults and default correlations in this paper under the dependence. Merton [3] derives the probability
of a single firm default under the isolated asset firm value hypothesis. By using a linear algebra
technique, we change the driving Brownian motions into uncorrelated ones and apply the formula
of Merton [3] to derive the probability of single firm default under the correlated asset values. In
order to solve the probabilities of multiple defaults, we use the reflection principle in PDE to solve the
Kolmogorov forward equation with initial-boundary conditions to evaluate the probability that any
collection of some firms from the choice of all firms default in our main result Theorem 1. Then we
propose an algorithm to determine probabilities of any multiple choice of firms defaults.

We further propose the mixed pair defaults to understand all the possible default correlations
from the market to effect the specific firm. The sum of the i-th column of the default correlation matrix
provide the quantity of the i-th firm to effect the market from the default correlation perspective.
The mixed default pair would provide an important measure in credit risk management for fixed
income portfolio, financial stability and insurance industry.

We also point out that the difference between the probability of single firm default under
dependence in our result and the one used in structural models presently, as well as the difference
between the joint default probability in this paper and the one used by KMV’s and J. P. Morgan’s.
By fully considering the underlying asset correlations, the probability that multiple firms default can
be measured precisely with parameters with respect to the time horizon. Our results can be applied in
broad pricing and risk management related to credit risk.

The probability of multiple defaults and the default correlations are important factors in evaluating
the credit risk of portfolios or correlated firms in credit markets. The financial industry and regulators
recognize the importance of controlling default risks and default correlations for the stability of
financial markets. A closed-form formula for evaluating default correlations in credit risk analysis is
absolutely necessary for both practical and theoretical purposes. The importance and significance of
the probability of multiple defaults and default correlations has been addressed extensively.
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Appendix

Proof of Proposition 1. We use the symmetric matrix property in Ω · ΩT to incorporate with
Assumption 1 by standard Linear Algebra diagonalization. Under Assumptions 1 and 2, we first
derive the default probability for each individual firm then, we use the first-passage-time to get the
default probability and new distance-to-default corresponding to eigenvalues of the covariance matrix.
Note that Ω ·ΩT is a real symmetric matrix if and only if there is a spectral decomposition

Ω ·ΩT =
n

∑
i=1

Σ2
i qiqT

i (A1)

where Ω · ΩTqi = Σ2
i qi due to the covariance matrix’s positivity and {q1, · · · , qn} is an

orthnormal basis such that the orthnormal basis can form an orthogonal matrix Q such that



J. Risk Financial Manag. 2016, 9, 7 15 of 19

QTΩ ·ΩTQ =

 Σ2
1 0 0

0
. . . 0

0 0 Σ2
n

. Hence, the new covariance matrix can be treated as uncorrelated

diffusions as in [3]. The eigenvalues of the covariance matrix Ω ·ΩT = (ρijσiσj)1≤i,j≤n are given by

Σ2
1, Σ2

2, · · · , Σ2
n

where Σi = σi if and only if ρij = 0 for all i 6= j. If n = 2, we have

Σ2
1 =

1
2

(
σ2

1 + σ2
2 +

√
(σ2

1 − σ2
2 )

2 + 4ρσ1σ2

)
, Σ2

2 =
1
2

(
σ2

1 + σ2
2 −

√
(σ2

1 − σ2
2 )

2 + 4ρσ1σ2

)
Then, the i-th firm specific probability of default P(Di(t) = 1) = P(τi ≤ t) is given by

Pi(t) = P(Di(t) = 1) = N(− ln(Vi,0/Ki)

Σi
√

t
− µi − λi

Σi

√
t) (A2)

+(
Vi,0

Ki
)

2(λi−µi)

σ2
i N(− ln(Vi,0/Ki)

Σi
√

t
+

µi − λi
Σi

√
t)

The underlying asset values of these firms are now uncorrelated through the new driving
Brownian motions with respect to the orthnormal basis. Hence, one can adapt Merton’s structural
model for the isolated firm asset value to find the probability of default in (A2) for the i-th firm.

Proof of Theorem 1. The evaluation of the probability that either firm defaults with default correlation
is reduced to the following probability.

P(D1(t) = 1 or D2(t) = 1 · · · , or Dn(t) = 1)

= P(τ1 ≤ t or τ2 ≤ t · · · , or τn ≤ t) = P(τ ≤ t)

where τ = min{τ1, τ2, · · · , τn} and τi = min{t ≥ 0 : Vi(t) ≤ eλitKi} for i = 1, 2, · · · , n.
If λi = µi, then we can set Xi(t) = − ln[e−λitVi(t)/Vi(0)] and bi = − ln[Ki/Vi(0)]. The default

condition Vi(t) ≤ eλitKi is equivalent to Xi(t) ≥ bi.

If λi 6= µi, then set Xi(t) = −(λi − µi)t − ln[e−λitVi(t)/Vi(0)] and bi(t) = − ln[ eλi tKi
eµi tVi(0)

],

the default is equivalent to Xi(t) ≥ bi(t).
For both cases, we have dX(t) = −ΩdW(t) with X(t)T = (X1(t), · · · , Xn(t)) and n-dimensional

independent Brownian motion W(t)T = (W1(t), · · ·Wn(t)).
Let f (x1, x2, · · · , xn, t) be the transition probability density of a particle in the region

{(x1, x2, · · · , xn) ∈ Rn : xi < bi 1 ≤ i ≤ n before the time t. Therefore, we have

F(b1, b2, · · · , bn, t) =
∫ b1

−∞

∫ b2

−∞
· · ·

∫ bn

−∞
f (x1, x2, · · · , xn, t)dx1dx2 · · · dxn = P(τ > t)

= 1− P(τ ≤ t) = 1− P(D1(t) = 1 or D2(t) = 1 · · · , or Dn(t) = 1)

Following the standard Kolmogorov forward equation for the transition probability density
f (x1, x2, · · · , xn, t), we have the classical problem to determine the density from the PDE,
i.e., the transition probability density is the solution of the Kolmogorov forward equation

1
2
(

n

∑
i=1

σ2
i

∂2 f
∂x2

i
+ 2 ∑

1≤i 6=j≤n
ρijσiσj

∂2 f
∂xi∂xj

) =
∂ f
∂t

, xi < bi, 1 ≤ i ≤ n
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subject to the following boundary conditions:

f (−∞, x2, · · · , xn, t) = f (x1, · · · ,−∞, · · · , xn, t) = f (x1, · · · , xn−1,−∞, t) = 0

f (x1, x2, · · · , xn, 0) = δ(x1)δ(x2) · · · δ(xn)

F(b1, b2, · · · , bn, t) ≤ 1, t > 0

f (b1, x2, · · · , xn, t) = · · · = f (x1, · · · , xn−1, bn, t) = 0

where δ(x) is the Dirac’s delta function with
∫ ∞
−∞ δ(x)dx = 1. The equation has a solution

f (x1, x2, · · · , xn, t) =
1

(2πt)n/2 det(ΩΩT)1/2 exp(− 1
2t

xT(ΩΩT)−1x) (A3)

as a time-varying Gaussian distribution with the symmetric matrix ΩΩT , where xT = (x1, · · · , xn).
It is straightforward to verify that the multivariate normal distribution function f (x1, x2, · · · , xn, t)
satisfies the Kolmogorov forward equation and the first three boundary conditions, except
f (b1, x2, · · · , xn, t) = · · · = f (x1, · · · , xn−1, bn, t) = 0.

For completeness, we present the complete proof of the simple reflection principle of the
partial differential equation for this problem. This settles the correlated default probability from
the first-passage-time approach.

Let Pu = ( ∂
∂t −

1
2(∑

n
i=1 σ2

i
∂2

∂x2
i
+2 ∑1≤i 6=j≤n ρijσiσj

∂2

∂xi∂xj
))u = 0 be the partial differential equation with

u(x, 0) = 0, u(−∞, x2, t) = · · · = f (x1, · · · ,−∞, t) = 0, u(b1, x2, · · · , xn, t) = u(x1, · · · , xn−1, bn, t) = 0.
Let Xi = −xi + bi(1 ≤ i ≤ n) be a coordinate shift, and g(X1, X2, · · · , Xn, t) = u(x1, x2, · · · , xn, t) be the
function in terms of the new variables Xi for 1 ≤ i ≤ n. Thus, we have

Pg(X1, X2, · · · , Xn, t) = 0, 0 ≤ Xi < ∞, 1 ≤ i ≤ n

g(X1, X2, · · · , Xn, 0) = δ(X1)δ(X2) · · · δ(Xn)

g(+∞, X2, t) = · · · = g(X1, · · · ,+∞, t) = 0

g(X1, · · · , 0|Xi , · · · , Xn, t) = 0, 0 ≤ Xi < ∞, 1 ≤ i ≤ n

Now, we use the reflection principle to solve the above boundary valued PDE.
Define h(X1, · · · , Xn, t) be the odd extension of g(X1, · · · , Xn, t) as the following:

h(y1, y2, · · · , yn, t) = (−1)∑n
i=1 sign−yi g(sign(y1)y1, · · · , sign(yn)yn, t)

where sign−(yi) = −1 if sign(yi) = −1 and sign−(yi) = 0 if sign(yi) = 1, and the odd extension
of g runs over the 2n quadrants in the Euclidean plane Rn with respect to the quadrant where
(sign(y1), · · · , sign(yn)) belongs to. For example when n = 2, the odd extension of g in first quadrant
Q1 can be expressed by

h(y1, y2, t) =


g(y1, y2, t) if (y1, y2) ∈ Q1

−g(−y1, y2, t) if (y1, y2) ∈ Q2

g(−y1,−y2, t) if (y1, y2) ∈ Q3

−g(y1,−y2, t) if (y1, y2) ∈ Q4

where Qi is the i-th quadrant in the Euclidean plane R2. Similarly, we define an odd extension for the
initial value for δ(y1, y2, · · · , yn) accordingly:

δ(y1, y2, · · · , yn) = (−1)∑n
i=1 sign−yi δ(sign(y1)y1) · · · δ(sign(yn)yn)
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For example when n = 2,

δ(y1, y2) =


δ(y1)δ(y2) if (y1, y2) ∈ Q1

−δ(−y1)δ(y2) if (y1, y2) ∈ Q2

δ(−y1)δ(−y2) if (y1, y2) ∈ Q3

−δ(y1)δ(−y2) if (y1, y2) ∈ Q4

Then, we solve the initial value problem on the whole plane Rn:

Ph(y1, y2, · · · , yn, t) = 0, t > 0, (y1, · · · , yn) ∈ Rn; h(y1, · · · , yn, 0) = δ(y1, y2, y2, · · · , yn)

The problem can be solved through the standard heat kernel on R2,

h(y1, · · · , yn, t) =
∫
Rn

f (y1− z1, y2− z2, · · · , yn − zn, t)δ(z1, z2, · · · , zn)dz1dz2 · · · dzn

where f (z1, z2, · · · , zn, t) = 1
(2πt)n/2 det(ΩΩT)1/2 exp(− 1

2t zT(ΩΩT)−1z). Due to the odd extension,

h(y1, · · · , yn, t) = 0 whenever yi = 0 for some i. Therefore g(y1, y2, · · · , yn, t) is simply the restriction of
h(y1, y2, · · · , yn, t) on the first quadrant Q1. For (y1, y2, · · · , yn) ∈ Q1,

g(y1, y2, · · · , yn, t) = h(y1, y2, · · · , yn, t)

=
∫
Rn

f (y1− z1, y2− z2, · · · , yn − zn, t)δ(z1, z2, · · · , zn)dz1dz2 · · · dzn

By using the definition of δ(z1, z2, · · · , zn) on different regions to decompose the integral into 2n

terms corresponding to each quandrant, we obtain g(y1, y2, · · · , yn, t)

=
∫
Rn

f (y1 − z1, y2 − z2, · · · , yn − zn, t)δ(z1, z2, · · · , zn)dz1dz2 · · · dzn

= ∑
∫

f (y1 − z1, y2 − z2, · · · , yn − zn, t)(−1)∑n
i=1 sign−zi δ(sign(z1)z1) · · · δ(sign(zn)zn)dz1dz2 · · · dzn

= ∑
∫

Q1

(−1)∑n
i=1 sign−zi f (y1 − sign(z1)z1, y2 − sign(z2)z2, · · · , yn − sign(zn)zn, t)δ(z1)δ(z2) · · · δ(zn)dz1dz2 · · · dzn

where the second identity follows from the odd extension of δ(z1, z2, · · · , zn) from the first quadrant to
all the plane Rn, the third identity from the change of variables to switch all different quadrants into the
first quadrant Q1. Therefore the solution for the boundary conditions is given by u(x1, x2, · · · , xn, t)

= g(X1, X2, · · · , Xn, t)

= g(−x1 + b1,−x2 + b2, · · · ,−xn + bn, t)

= ∑
∫

Q1

(−1)∑n
i=1 sign−zi f (−x1 + b1 − sign(z1)z1, · · · ,−xn + bn − sign(zn)zn, t)δ(b1 − z1) · · · δ(bn − zn)dz1 · · · dzn

=
2n

∑
i=1

(−1)signQi

∫ b1

−∞
· · ·

∫ bn

−∞
f (−xi + sign(zi)yi + bi(1− sign(zi)), t)δ(y1) · · · δ(yn)dy1 · · · dyn

=
2n

∑
i=1

(−1)signQi

∫ b1

−∞
· · ·

∫ bn

−∞
fΩQi

(sign(zi)xi + bi(1− sign(zi))− yi , t)δ(y1) · · · δ(yn)dy1 · · · dyn

=
2n

∑
i=1

(−1)signQi fΩQi
(sign(z1)x1 + b1(1− sign(z1)), · · · , sign(zn)xn + bn(1− sign(zn)), t)

where the first two equalities follow from the coordinate shift, the third from the previous identity with
the substitution yi = −xi + bi (1 ≤ i ≤ n), sign Qi is the number of negative 1 for the representative
(±1,±1, · · · ,±1) in Qi, the fourth identity from the variable change yi = bi − zi (1 ≤ i ≤ n) and
(sign(z1), · · · , sign(zn) is the representative of Qi, the fifth identity from the even function property of
f , where fΩQi

is the function f (sign(z1)z1, · · · , sign(zn)zn, t) which is same as replacing Ω by
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diag (sign(z1), · · · , sign(zn))Ω = ΩQi

and the last from the Dirac delta function property.
Thus we have F(b1, b2, · · · , bn, t)

=
∫ bn

−∞
· · ·

∫ b1

−∞
u(x1, x2, · · · , xn, t)dx1 · · · dxn

=
2n

∑
i=1

(−1)signQi

∫ bn

−∞
· · ·

∫ b1

−∞
fΩQi

(sign(z1)x1 + b1(1− sign(z1)), · · · , sign(zn)xn + bn(1− sign(zn)))dx1 · · · dxn

=
2n

∑
i=1

(−1)signQi NΩQi
ΩT

Qi
(sign(z1)b1, sign(z2)b2, · · · , sign(zn)bn)

where the last equality follows from various changing variables and
NA(x1, · · · , xn) =

∫ xn
−∞ · · ·

∫ x1
−∞

1
(2πt)n/2

√
det A

exp(− 1
2t zT Az)dz1 · · · dzn.

For example n = 2, the representative (sign(z1), sign(z2)) = (±1,±1) for the quadrants with
sign(z1) = ±1 and sign(z2) = ±1 has

(1, 1) ∈ Q1, (−1, 1) ∈ Q2, (−1,−1) ∈ Q3, (1,−1) ∈ Q4

signQ1 = 0, signQ2 = 1, signQ3 = 2, signQ4 = 1

ΩQ1 = Ω, ΩQ2 = diag(−1, 1)Ω, ΩQ3 = diag(−1,−1)Ω, ΩQ4 = diag(1,−1)Ω

Hence F(b1, b2, t) = ∑22

i=1(−1)signQi NΩQi
(sign(z1)b1, sign(z2)b2). Thus, we have

F(b1, b2, t) = N2,ρ(
b1

σ1
√

t
, b2

σ2
√

t
)− N2,−ρ(− b1

σ1
√

t
, b2

σ2
√

t
) + N2,ρ(− b1

σ1
√

t
,− b2

σ2
√

t
)− N2,−ρ(

b1
σ1
√

t
,− b2

σ2
√

t
) (A4)

where N2,ρ(x1, x2) =
∫ x2
−∞

∫ x1
−∞

1
2π
√

1−ρ2
e
− y2

1−2ρy1y2+y2
2

2(1−ρ2) dy1dy2 is the probability of the standard bivariate

normal distribution on y1 ≤ x1 and y2 ≤ x2, and 1
2π
√

1−ρ2
e
− y2

1−2ρy1y2+y2
2

2(1−ρ2) is the standard bivariate normal

distribution density function N2(0, 1, ρ) for random variable Yi with mean zero and variance 1 and
correlation ρ = Cov(Y1, Y2).
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