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Abstract: The paper compares portfolio optimization with the Second-Order Stochastic Dominance
(SSD) constraints with mean-variance and minimum variance portfolio optimization. As a
distribution-free decision rule, stochastic dominance takes into account the entire distribution of
return rather than some specific characteristic, such as variance. The paper is focused on practical
applications of the portfolio optimization and uses the Portfolio Safeguard (PSG) package, which has
precoded modules for optimization with SSD constraints, mean-variance and minimum variance
portfolio optimization. We have done in-sample and out-of-sample simulations for portfolios of
stocks from the Dow Jones, S&P 100 and DAX indices. The considered portfolios’ SSD dominate the
Dow Jones, S&P 100 and DAX indices. Simulation demonstrated a superior performance of portfolios
with SD constraints, versus mean-variance and minimum variance portfolios.

Keywords: stochastic dominance; stochastic order; portfolio optimization; portfolio selection;
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1. Introduction

Standard portfolio optimization problems are based on several distribution characteristics, such
as the mean, variance and Conditional Value-at-Risk (CVaR) of the return distribution. For instance,
Markowitz’ [1] mean-variance approach uses estimates of the mean and covariance matrix of the
return distribution. Mean-variance portfolio theory works quite well when return distributions are
close to normal.

This paper considers the portfolio selection problem based on the Stochastic Dominance (SD) rule.
Stochastic dominance takes into account the entire distribution of return, rather than some specific
characteristics. The SD was introduced in mathematics by Mann and Whitney [2] and Lehmann [3].
Later on, the SD concept was adopted in theoretical studies in economics. There is a very extensive
literature on the theoretical aspects of SD, for instance the role of SD rules and their relation with
mean-variance rules are discussed in the monograph by Levy [4]. Muller and Stoyan [5], Shaked
and Shanthikumar [6] and Whitmore and Findlay [7] provide extensive discussions of the stochastic
dominance relations and other comparison methods for random outcomes.

This paper deals with the practical aspects of portfolio optimization problems with SD constraints.
Lizyayev [8] published an overview of various approaches for testing of SD efficiency and finding
efficient portfolios. The problem of constructing mean-risk models, which are consistent with the
second-degree stochastic dominance relation, was considered by Ogryczak and Ruszczynski [9].
Dencheva and Ruszczynski [10] and Kuosmanen [11] developed the first algorithms to identify a
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portfolio that dominates a given benchmark by solving a finite dimension optimization problem.
Dentcheva and Ruszczynski’s [10] optimization approach was further developed in Dentcheva and
Ruszczynski [12] and Rudolf and Ruszczynski [13]. Dentcheva and Ruszczynski [14] introduced
inverse stochastic dominance constraints, which were later employed in Kopa and Chovanec’s [15]
refined method for testing stochastic dominance efficiency. Dentcheva and Ruszczynski [16] developed
an efficient cutting plane algorithm using inverse stochastic dominance constraints. Roman et al. [17]
suggested a portfolio optimization algorithm for SD efficient portfolios. They used SD with a
multi-objective representation of a problem with CVaR in the objective. Fabian et al. [18,19] considered
the cutting plane method to solve the optimization problem with SD constraints.

Lizyayev [8] suggests to classify all approaches into three categories: (1) majorization; (2) revealed
preference; and (3) distribution-based approaches. With this classification, Dentcheva and
Ruszczynski [12,14], Rudolf and Ruszczynski [13], Roman et al. [17] and Fabian et al. [18,19] fall
into the distribution-based category.

This paper considers the optimization problem statement with the Second-Order Stochastic
Dominance (SSD) constraints similar to Rudolf and Ruszczynski [13]. We concentrated on
implementation issues of portfolio optimization and conducted a numerical case study. We used
the Portfolio Safeguard (PSG) [20] optimization package of AORDA1 which has precoded functions
for optimization with SSD constraints. We solved optimization problems for stocks in the Dow
Jones, S&P 100 and DAX indices and found portfolios for which SSD dominate these indices.
We have done out-of-sample simulations and compared the performance of these portfolios with the
mean-variance portfolios based on constant and time-varying covariance matrices. These simulations
have limited usefulness because they were conducted for some specific indices and specific time
periods. Nevertheless, the paper shows that the portfolio optimization with SSD constraints can be
done quite easily, and our findings may be quite helpful to financial optimization practitioners.

2. Optimization Problem Statement with SSD Constraints

2.1. SSD Constraints Definition

Denote by FX (t) the cumulative distribution function of a random variable X. For two integrable
random variables X and Y, we say that X dominates Y in the second-order, if:

ηw

−∞

FX (t)dt ≤
ηw

−∞

FY (t)dt, ∀ η ε R . (1)

In short, we say that X dominates Y in the SSD sense and denote it by X <2 Y. With the partial
moment function of a random variable X for a target value η, the SSD dominance can be equivalently
defined as follows [21]:

E
(
[η− X]+

)
≤ E

(
[η− Y]+

)
, ∀ η ε R, (2)

where [η− X]+ = max (0,η− X). Suppose that Y has a discrete distribution with outcomes, yi,
i = 1, . . . , N. Then, Condition (2) can be reduced to the finite set of inequalities:

E
(
[yi − X]+

)
≤ E

(
[yi − Y]+

)
, i = 1, . . . , N (3)

We use further inequalities (3) for defining a portfolio X dominating benchmark Y.

1 American Optimal Decision (www.aorda.com), Gainesville, FL 32611, USA.

www.aorda.com
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2.2. Portfolio Optimization Problem with SSD Constraints

Let us denote:

wj = portfolio weight of the instrument j, j = 1, . . . , n.
pi = probability of scenario i, i = 1, . . . , N,
rji = return of instrument j on scenario i,

w = vector of portfolio weights, w = (w1, w2,, . . . , wn)
T ,

r (w) = portfolio return as a function of portfolio weights w,
r (w) = expected portfolio return as a function of portfolio weights w.

Portfolio return on scenario i equals:

ri (w) =
n

∑
j=1

wjrji, i = 1, . . . , N.

Expected portfolio return equals:

r (w) =
N

∑
i=1

piri (w) .

Y stands for the random return of the benchmark portfolio, and y_i denotes the realizations of
the benchmark portfolio Y(i = 1, . . . , N). We want to find a portfolio SSD dominating the benchmark
portfolio Y and having minimum cost c (w). We do not allow for shorting of instruments. Let us
denote by W the set of feasible portfolios:

W =

{
w ∈ Rn :

n

∑
j=1

wj = 1; 0 ≤ wj ≤ 1, j = 1, . . . , n

}
.

The optimization problem is formulated as follows:

maximize w r (w)

subject to:
r (w) <2 Y (4)

w ∈ W

Since the benchmark portfolio has a discrete distribution, with (3), we reduce the portfolio
optimization problem (4) to:

maximize w r (w)

subject to:
E
(
[yi − r (w)]+

)
≤ E

(
[yi − Y]+

)
, i = 1, . . . , N

n
∑

j=1
wj = 1,

0 ≤ wj ≤ 1, j = 1, . . . , n

(5)

3. Case Study

3.1. Portfolio Optimization with SSD Constraints: PSG Code

This section is intended for readers interested in the practical implementation of portfolio
optimization with SSD constraints. The Introduction referred to many efficient implementations of
portfolio optimization problems with SSD constraints. However, these implementations are described
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in research papers, and they are not readily available for portfolio optimization practitioners. The
optimization problem (5) can be directly solved with PSG software without additional coding. PSG is
free for academic purposes. We posted at this link [22] several instances of solved problems (codes,
data and solutions) in PSG Run-File (text) format and in PSG MATLAB (MathWorks, Natick, MA,
USA) format. Below is the code for Problem (5) in PSG Run-File (text) format:
Maximize

avg_g(matrix_sde)

Constraint: =1

Linear(matrix_budget)

MultiConstraint: ≤vector_ubound_sd
pm_pen(vector_benchmark_sd, matrix_sde)

Box: ≥0, ≤1

Matrix “matrix_sde” contains a set of scenarios for instruments of the portfolio. The function
“avg_g (matrix_sde)” calculates the average return of the portfolio defined by the matrix of scenarios.
Linear function “linear (matrix_budget)” is used in the budget constraint; it is defined by the coefficients
in the matrix “matrix_budget”. SSD constraints are defined by the partial moment function “pm_pen
(vector_benchmark_sd, matrix_sde)”, which depends on the “vector_benchmark_sd” containing the
components of the vector, yi, i = 1, . . . , N and the matrix of scenarios “matrix_sde” for instruments.

The vector “vector_ubound_sd” contains values E
(
[yi − Y]+

)
, i = 1, . . . , N. The PSG code does not

have cycles; basically, it is presenting the problem (5) in analytic format with precoded functions.
The website link [22] also contains data for the PSG MATLAB Toolbox for solving Problem (5) with
data imported from PSG text format. Furthermore, the MATLAB subroutine for Problem (5) was
automatically generated from the PSG MATLAB Toolbox. A reader can solve Problem (5) by using the
PSG MATLAB subroutine without learning the PSG capabilities. This MATLAB subroutine was used
in cycles in the out-of-sample simulations described in the following section.

Further, we discuss several numerical runs posted at the link [22]. The problems were solved
with a PC with 3.14 GHz.

PROBLEM_1 describes three instances of portfolio optimization problems considered in the
following section. We found portfolios of stocks, which SSD dominate, the DAX, Dow Jones and
S&P 100 indices. The instances have 3046, 3020 and 3020 scenarios (daily returns) and 26, 29 and
90 variables (stocks from the indices included in the optimization), accordingly. The solution times are
0.27, 0.05 and 0.21 s, accordingly. The PSG automatic procedure for removing redundant constraints
removed 8, 0 and 2 constraints in the three instances, accordingly.

PROBLEM_2 describes a dataset with 30,000 scenarios considered in Fabian et al. [18]. This
dataset contains many repeated (coinciding) nonlinear constraints. The PSG MultiConstraint setting in
the problem statement does automatic preprocessing and removes redundant and repeated constraints.
The initial number of constraints (corresponding to the number of scenarios) is 30,000; the automatic
PSG preprocessing of constraints reduces this number to 972. The solution time is 1.41 s.

PROBLEM_3 describes the same dataset as PROBLEM_2 with 30,000 scenarios, but all SSD
constraints are manually specified in the list. The list includes only 972 constraints, because we
manually removed repeated constraints. The solution time is 1.40 s.

PSG is free for academic purposes. The PSG solution times for similar dimensions are comparable
with the solution times of specialized algorithms described in Dentcheva and Ruszczynski [12,14],
Dentcheva and Ruszczynski [16], Rudolf and Ruszczynski [13], Roman et al. [17] and Fabian et al. [18,19].
The advantage of the described problems and PSG codes is that the numerical runs can be easily
verified with the data posted at the link [22]. Similar problems can be solved by replacing data in the
matrices included in the PSG code. Since PSG codes are specified in analytic format, it is possible to
modify the codes without significant effort. For instance, additional constraints, such as “cardinality”,
can be included in the problem statement to limit the number of securities in an optimal portfolio.
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3.2. Mean-Variance Portfolios versus Portfolios with SSD Constraints

This section calculates mean-variance optimal portfolios and optimal portfolio with SSD
constraints specified by (5) for datasets of stocks from the Dow Jones, S&P 100 and DAX indices.

The first dataset includes stocks from the Dow Jones Index (DJI), and the DJ Index is considered
as a benchmark. Similar, the second and third datasets include stocks from the S&P 100 and DAX
indices, and the S&P 100 and DAX indices were used as a benchmark, respectively. The data were
downloaded from Yahoo! Finance [23] and include 3020, 3020 and 3046 historical daily returns of
stocks from 1 January 2004 to 31 December 2015 for the DJ, S&P 100 and DAX indices respectively. The
lists of stocks in the indices are taken on 31 December 2015. Therefore, we considered only 29 stocks
from the DJ Index, 90 stocks from the S&P 100 Index and 26 stocks from the DAX Index (Appendix B
contains the list of the stocks selected for this paper). The stock returns on a daily basis, rji, were
calculated using the logarithm of the ratio of the stock adjusted closing prices, fi ,

rji = ln (fi/fi−1) .

We adjusted for splits the stocks prices of four companies from the DAX Index2. We considered
daily returns as equally probable scenarios. We calculated SSD-based portfolios described in (5),
equally weighted, minimum variance and mean-variance portfolios with the constant and time-varying
covariance matrices. Shorting is not allowed, and the sum of portfolio weights is equal to one,

n

∑
j=1

wj = 1, wj ≥ 0, j = 1, . . . , n.

Here is a brief description of the portfolios:

i. Equally Weighted (EW)
All stocks in the portfolio are equally weighted. Every stock has the same weight 1/n, where n is
the number of stocks in the portfolio.

ii. Minimum Variance (MinVar)
The minimum variance portfolio has minimum variance without any constraint on portfolio
return. Shorting is not allowed, and the sum of the portfolio weights is equal to one.

iii. Mean-Variance (Mean-Var)
The mean-variance portfolio [1] uses the mean return and the variance of the stock returns.
We considered Mean-Var problems having variance in the objective function and the expected
portfolio return of 8% per year in the constraint. Shorting is not allowed, and the sum of the
portfolio weights is equal to one. We imposed a 0.2 upper bound constraint on the positions.

The numerical code was implemented with MATLAB R2012b [24]. We have used the PSG
riskprog subroutine for MATLAB environment to solve MinVar and mean-variance portfolio problems.
The calculations were performed on a notebook having a 2.5-GHz CPU and 8 GByte of RAM.

Table 1 shows the expected yearly returns of the portfolios for the considered approaches.

2 Deutsche Boerse AG (DB1.DE), Fresenius SE & Co. KGaA (FRE.DE), Infineon Technologies AG (IFX.DE) and Merck & Co.
(MRK.DE) stock prices are adjusted for splits.
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Table 1. Expected yearly returns of portfolios. EW, Equally Weighted; MinVar, Minimum Variance;
Mean-Var, Mean-Variance; SSD, Second-Order Stochastic Dominance.

Portfolios DJI S&P 100 DAX

EW 0.04014 0.08509 0.09139
MinVar 0.03419 0.08795 0.13362

Mean-Var 0.08327 0.08327 0.08327
SSD 0.08762 0.24250 0.17922

Benchmark 0.04374 0.04287 0.08439

The SSD dominating portfolios can be used for actual investments. At least in the past, these
portfolios SSD dominated the corresponding indices. Moreover, the expected yearly return of the
portfolio SSD dominating the DJ index equals 0.08762 and significantly exceeds the DJ index return in
this period. Similar observations are valid for the portfolio of S&P 100 and DAX indices; the expected
yearly returns of portfolio SSD dominating the benchmarks equal 0.24250 and 0.17922, respectively.

We compared solving times of SSD constrained optimization (using the PSG subroutine) with
the MinVar and Mean-Var approaches (using the PSG riskprog subroutine). Data loading and solving
times are given in Table 2; all problems are solved almost instantaneously.

Table 2. Loading and solving times (in seconds) with PSG in the MATLAB environment.

DJI S&P 100 DAX

Problem Loading Solving Loading Solving Loading Solving

SSD constrained (PSG code) 2.11 0.12 1.39 0.19 1.80 0.11
MinVar (PSG riskprog) 0.27 0.01 0.33 0.01 0.26 0.01

Mean-Var (PSG riskprog) 0.38 0.01 0.44 0.02 0.38 0.01

3.3. Out-Of-Sample Simulations

We have evaluated the out-of-sample performance of several variants of mean-variance portfolios
and SSD constrained portfolios. We considered a time series framework where the estimation period
(750 and 1000 days) is rolled over time. Portfolios are re-optimized on every first business day of the
month using the recent historical daily returns (750 or 1000). We kept constant positions during the
month. We set a 9% per year return constraint in Mean-Var problem. If the expected return 9% per
year is not feasible (in the beginning of the month), then we set a 6% expected return constraint, and if
we still do not have feasibility, we reduce the expected return to 3% and then to 0%.

The classical mean-variance model considers the constant covariance matrix. For the
out-of-sample simulations, we also considered the time-dependent covariance matrix using the
Constant and Dynamic Conditional Correlation GARCH (CCC and DCC) models in the MinVar and
Mean-Var approaches. Further, we briefly describe the estimation procedure for the time-dependent
covariance matrices.

We considered constant and dynamic conditional correlation GARCH models for estimation
of large time-dependent covariance matrices [25–28]. We estimated the time-dependent covariance
matrix using Ht with a simple GARCH(1,1) model. The CCC-GARCH model assumes that correlations
are constant, R = ρij, and that covariances may change over time, and the time-dependent covariance
matrix Ht is extracted from this model, where Ht = DtRDt. The DCC-GARCH model assumes that
correlations may change over time, and time-dependent covariance matrix Ht is extracted from the
model, where Ht = DtRtDt. Here, Dt is the diagonal matrix from a univariate GARCH model, and
Rt is the time-dependent correlation matrix [29]. This paper assumes the simplest conditional mean
return equation where rj = N−1 ∑N

i=1 rji is the sample mean, and the deviation of returns (rt − r) is
conditionally normal with zero mean and time-dependent covariance matrix Ht [30]. We used Ht

in MinVar and Mean-Var problems. For the estimation of the time-dependent covariance matrix,
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we used the MFE Toolbox3 [31]. The difficulty in the estimation of the covariance matrices with
the DCC model is that the time-dependent conditional correlation matrix has to be positive definite
for all time moments. We observe that with small in-sample time intervals (such as 250 days), the
variance-covariance matrix may not be positive definite. Therefore, we have used 750 and 1000 days
as the in-sample periods.

Figures 1–6 show the out-of-sample compounded daily returns of the portfolios.
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3 The CCC-GARCH and DCC-GARCH models are estimated by using MFE Toolbox for MATLAB software produced by
Kevin Sheppard.
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The out-of-sample performances of portfolios are represented in Tables 3–8. The tables include
yearly compounded portfolio returns for the years 2007–2015, the Total compounded Return (T_R)
and the Sharpe Ratio (Sh_R).

In Table 3 (DJ stocks, t = 750), the SSD constrained portfolio has the highest T_R (1.3961) and
Sh_R (0.5761) higher than all considered portfolios, except DCC Mean-Var and CCC Mean-Var.
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Table 3. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for
DJ stocks (t = 750).

Portfolios 2007 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R

EW 1.0514 0.8322 1.1166 1.0611 1.0280 1.0561 1.1243 1.0501 1.0010 1.3300 0.5398
MinVar 1.0712 0.9169 1.0445 1.0147 1.0549 1.0433 1.0764 1.0253 0.9932 1.2557 0.4736

Mean-Var 1.0666 0.8344 1.0600 1.0565 1.0776 1.0393 1.0498 1.0728 1.016 1.2771 0.5303
CCC MinVar 1.074 0.9285 0.9971 1.0085 1.0585 1.0295 1.0725 1.0429 1.0116 1.2363 0.4230

CCC Mean-Var 1.0805 0.8312 1.0499 1.0557 1.0742 1.0361 1.058 1.0722 1.0545 1.3252 0.5801
DCC MinVar 1.0755 0.9209 1.0174 1.0076 1.0680 1.0310 1.0710 1.0475 1.0145 1.2725 0.4977

DCC Mean-Var 1.0814 0.8394 1.0623 1.0558 1.0785 1.0373 1.0636 1.0690 1.0538 1.3649 0.6422
SSD 1.1202 0.8023 1.0873 1.1037 1.0109 1.0640 1.0827 1.0666 1.0421 1.3961 0.5761

Benchmark 1.0531 0.6157 1.1540 1.0958 1.0321 1.0652 1.2584 1.0688 0.9661 1.1715 0.1660

In Table 4 (DJ stocks, t = 1000), the SSD constrained portfolio has the highest T_R (1.5317) and
Sh_R (0.9008).

Table 4. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for
DJ stocks (t = 1000).

Portfolios 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R

EW 0.8322 1.1166 1.0611 1.0280 1.0561 1.1243 1.0501 1.0010 1.2650 0.4948
MinVar 0.9132 1.0424 1.0162 1.0495 1.0583 1.0773 1.0309 0.9821 1.1719 0.3458

Mean-Var 0.8614 1.0930 1.0724 1.0832 1.0278 1.0512 1.0564 1.0021 1.2509 0.5384
CCC MinVar 0.9515 1.0168 1.0184 1.0444 1.0427 1.0700 1.0592 1.0006 1.2169 0.4356

CCC Mean-Var 0.8129 1.0824 1.0692 1.0808 1.0382 1.0874 1.0657 1.0375 1.2692 0.5521
DCC MinVar 0.9403 1.0236 1.0198 1.0513 1.0272 1.0719 1.0568 1.0075 1.2097 0.4303

DCC Mean-Var 0.8134 1.0791 1.0695 1.0840 1.0409 1.0848 1.0671 1.0494 1.2866 0.5785
SSD 0.8416 1.0914 1.1057 1.0848 1.0449 1.1149 1.1013 1.0836 1.5317 0.9008

Benchmark 0.6157 1.1540 1.0958 1.0321 1.0652 1.2584 1.0688 0.9661 1.1124 0.1325

In Table 5 (S&P 100 stocks, t = 750), the SSD constrained portfolio has the highest T_R (3.0027)
and Sh_R (0.9157).

Table 5. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for
S&P 100 stocks (t = 750).

Portfolios 2007 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R

EW 1.0974 0.5795 1.2285 1.1490 0.9799 1.1736 1.3212 1.1218 0.9566 1.4633 0.3491
MinVar 1.1968 0.7712 1.0044 1.1932 1.2649 1.0415 1.0066 1.2232 0.9882 1.7728 0.5230

Mean-Var 1.1194 0.7686 0.9846 1.0979 1.2306 1.0874 1.1595 1.1758 1.0365 1.7588 0.5944
CCC MinVar 1.2349 0.7155 1.1241 1.1393 1.1796 1.0030 1.0836 1.2031 0.9720 1.6966 0.4367

CCC Mean-Var 1.1455 0.7369 1.0323 1.0861 1.2263 1.0246 1.1561 1.1812 0.9634 1.5644 0.4227
DCC MinVar 1.2397 0.6330 1.0904 1.1972 1.1968 0.9936 1.0928 1.2168 0.9782 1.5844 0.3940

DCC Mean-Var 1.1289 0.7363 1.1177 1.0927 1.2164 1.0040 1.1480 1.2090 1.0062 1.7312 0.5401
SSD 1.3903 0.6163 1.2721 1.2017 1.0769 1.1489 1.4382 1.2542 1.0270 3.0027 0.9157

Benchmark 1.0255 0.5803 1.1532 1.0846 0.9839 1.1240 1.2667 1.0958 0.9908 1.1319 0.1342

In Table 6 (S&P 100 stocks, t = 1000), the SSD constrained portfolio has the highest T_R (1.9756)
and Sh_R (0.7110).
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Table 6. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for
S&P 100 stocks (t = 1000).

Portfolios 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R

EW 0.5795 1.2285 1.149 0.9799 1.1736 1.3212 1.1218 0.9566 1.3335 0.3054
MinVar 0.7704 1.0417 1.1724 1.2598 0.9527 1.0614 1.1961 0.9929 1.4233 0.3610

Mean-Var 0.7882 1.0245 1.0786 1.2111 1.1292 1.1872 1.1692 0.9513 1.5728 0.5141
CCC MinVar 0.7513 1.2639 1.1479 1.2204 0.9831 1.1287 1.259 0.9049 1.6817 0.4441

CCC Mean-Var 0.7679 1.0836 1.1525 1.2024 1.0901 1.1622 1.2241 0.9551 1.7079 0.5720
DCC MinVar 0.7006 1.3141 1.13 1.2188 0.9647 1.1227 1.2569 0.901 1.5551 0.3810

DCC Mean-Var 0.7067 1.0691 1.1331 1.2236 1.1016 1.1708 1.2256 0.9758 1.6157 0.5068
SSD 0.6225 1.1775 1.2189 1.1021 1.2194 1.2811 1.1809 1.0876 1.9756 0.7110

Benchmark 0.5803 1.1532 1.0846 0.9839 1.124 1.2667 1.0958 0.9908 1.1038 0.1231

In Table 7 (DAX stocks, t = 750), the SSD constrained portfolio has T_R (1.9364) higher than all
considered portfolios, except CCC MinVar, and Sh_R (0.5164) higher than all considered portfolios,
except CCC MinVar and DCC MinVar.

Table 7. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for
DAX stocks (t = 750).

Portfolios 2007 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R

EW 1.1476 0.5003 1.2887 1.1687 0.8119 1.2526 1.2034 1.0217 1.1013 1.2582 0.1883
MinVar 1.1195 0.5865 1.1608 1.0742 1.1487 1.1591 1.1537 1.0698 1.2479 1.7328 0.5114

Mean-Var 1.1417 0.5697 0.9906 1.152 1.0535 1.1599 1.1906 1.075 1.1504 1.3824 0.3366
CCC MinVar 1.1079 0.7095 1.1388 1.1007 1.1439 1.1457 1.0697 1.0452 1.3173 1.9558 0.6235

CCC Mean-Var 1.1373 0.5882 0.9504 1.1763 1.1112 1.1242 1.0702 1.0914 1.2195 1.3729 0.3126
DCC MinVar 1.1123 0.7185 1.1219 1.0965 1.1861 1.1346 1.0466 1.0429 1.3018 1.9358 0.6118

DCC Mean-Var 1.1334 0.5993 0.9764 1.1661 1.1019 1.1105 1.0407 1.1002 1.2220 1.3685 0.2998
SSD 1.2125 0.6067 0.9658 1.2335 0.9980 1.2800 1.3673 1.0785 1.1449 1.9364 0.5164

Benchmark 1.2082 0.5555 1.1891 1.1411 0.8181 1.2671 1.2414 1.0123 1.0656 1.3213 0.2248

In Table 8 (DAX stocks, t = 1000), the SSD constrained portfolio has T_R (1.4897) and Sh_R
(0.39520) higher than all considered portfolios, except MinVar, CCC MinVar and DCC MinVar.

Table 8. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for
DAX stocks (t = 1000).

Portfolios 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R

EW 0.5003 1.2887 1.1687 0.8119 1.2526 1.2034 1.0217 1.1013 1.0561 0.0864
MinVar 0.5959 1.147 1.0714 1.148 1.1541 1.1371 1.0747 1.2772 1.5177 0.4489

Mean-Var 0.5674 1.1364 1.1333 0.9793 1.2333 1.1667 1.0971 1.1036 1.2478 0.2632
CCC MinVar 0.7675 1.1449 1.0959 1.1587 1.1423 1.0678 1.0656 1.3261 1.9355 0.6753

CCC Mean-Var 0.5429 1.1534 1.1725 1.0332 1.1796 1.0376 1.0802 1.2337 1.2447 0.2435
DCC MinVar 0.7561 1.1786 1.1032 1.183 1.1505 1.0281 1.0607 1.2619 1.8520 0.6315

DCC Mean-Var 0.5688 1.1566 1.1647 1.0249 1.1996 1.0188 1.0792 1.1939 1.2427 0.2429
SSD 0.6165 1.0476 1.2101 0.9354 1.2022 1.302 1.1201 1.1483 1.4897 0.3952

Benchmark 0.5555 1.1891 1.1411 0.8181 1.2671 1.2414 1.0123 1.0656 1.0718 0.1042

Appendix A shows the weights of SSD constrained portfolios at the last month of the
out-of-sample period and portfolio weights with all in-sample data. Appendix B shows company
codes and names for the Dow Jones, SP500 and DAX indices.

4. Conclusions

This paper used Portfolio Safeguard (PSG) for portfolio optimization with SSD constraints.
The algorithms are very efficient and can be run on a regular PC. The index portfolio optimization
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instances have 3046, 3020 and 3020 scenarios (daily returns) and 26, 29 and 90 variables, accordingly.
The solution times are 0.27, 0.05 and 0.21 s for these instances. Another instance with 76 variables
and 972 scenarios was optimized during 1.4 s. We have done out-of-sample simulations and
compared SSD constrained portfolios with the minimum variance and mean-variance portfolios.
The portfolios were constructed from the stocks of the DJ, S&P 100 and DAX indices. The SSD
constrained portfolio demonstrated quite good out-of-sample performance and in the majority of cases
had the highest compounded return and Sharpe ratio (among the considered portfolios). We think
that SSD constrained optimization can be widely used in actual portfolio management, similar to
mean-variance optimization.

Author Contributions: N. Fidan Keçeci wrote the paper and conducted the case study. V. Kuzmenko was
involved in proving mathematical statements and in software development for the case study. S. Uryasev
provided an overall guidance of the project.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Weights of SSD constrained portfolios at the last month of the out-of-sample period and
weights with all in-sample data. Stocks with zero positions for all periods (750, 1000 and 3020 days for
DJ and S&P 100 and 750, 1000 and 3046 days for DAX) are skipped.

DJ Weights S&P
100 Weights DAX Weights

Code 750
Days

1000
days

3020
Days CODE 750

Days
1000
Days

3020
Days Code 750

Days
1000
Days

3046
Days

AAPL 0 0 0.2 AAPL 0 0 0.2 ADS.DE 0 0 0.075
DIS 0.2 0.2 0.2 ALL 0 0.028 0 ALV.DE 0 0.0555 0
HD 0.2 0.2 0.2 AMZN 0.021 0.016 0.031 BAYN.DE 0 0.066 0.2

MCD 0 0 0.2 BIIB 0 0 0.086 CON.DE 0.2 0.2 0.2
MSFT 0.2 0.2 0 BMY 0.016 0 0 DAI.DE 0.063 0.132 0
NKE 0.2 0.2 0.2 CVS 0 0.004 0 DB1.DE 0.137 0 0
UNH 0.2 0.2 0 DIS 0.086 0.101 0 DPW.DE 0 0.2 0

GD 0.046 0 0 DTE.DE 0.2 0 0
GILD 0.063 0.155 0.127 FRE.DE 0.2 0.2 0.2
HD 0.021 0.2 0 SDF.DE 0 0 0.125

LMT 0.2 0.2 0.043 IFX.DE 0.2 0 0
LOW 0.001 0.023 0 MRK.DE 0 0.1466 0.2
MCD 0 0 0.113
MO 0.186 0.172 0.2

MSFT 0.058 0 0
NKE 0.2 0.005 0.2
RTN 0.016 0.096 0

SBUX 0.045 0 0
WBA 0.041 0 0

Appendix B

Table B1. DJ and DAX company codes and names.

DAX DJ

Code Name Code Name

1 EOAN.DE E.ON SE AAPL Apple Inc.
2 ADS.DE Adidas AG AXP American Express Company
3 ALV.DE Allianz SE BA The Boeing Company
4 BAS.DE BASF SE CAT Caterpillar Inc.
5 BAYN.DE Bayer AG CSCO Cisco Systems, Inc.
6 BEI.DE Beiersdorf AG CVX Chevron Corporation
7 BMW.DE Bayerische Mot. Werke Aktienges. DD E. I. du Pont de Nemours and Company
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Table B1. Cont.

DAX DJ

Code Name Code Name

8 CBK.DE Commerzbank AG DIS The Walt Disney Company
9 CON.DE Continental Aktiengesellschaft GE General Electric Company
10 DAI.DE Daimler AG GS The Goldman Sachs Group, Inc.
11 DB1.DE Deutsche Boerse AG HD The Home Depot, Inc.
12 DBK.DE Deutsche Bank AG IBM Int. Business Machines Corporation
13 DPW.DE Deutsche Post AG INTC Intel Corporation
14 DTE.DE Deutsche Telekom AG JNJ Johnson & Johnson
15 FME.DE Fres. Med. Care AG & Co. KGAA JPM JPMorgan Chase & Co.
16 FRE.DE Fresenius SE & Co. KGaA KO The Coca-Cola Company
17 HEI.DE Heidelberg Cement AG MCD McDonald’s Corp.
18 SDF.DE K + S Aktiengesellschaft MMM 3M Company
19 IFX.DE Infineon Technologies AG MRK Merck & Co. Inc.
20 LHA.DE Deutsche Luft. Aktiengesellschaft MSFT Microsoft Corporation
21 LIN.DE Linde Aktiengesellschaft NKE Nike, Inc.
22 MRK.DE Merck KGaA PFE Pfizer Inc.
23 MUV2.DE Münchener R.G.A. PG The Procter & Gamble Company
24 SAP.DE SAP SE TRV The Travelers Companies, Inc.
25 SIE.DE Siemens Aktiengesellschaft UNH UnitedHealth Group Incorporated
26 TKA.DE ThyssenKrupp AG UTX United Technologies Corporation
27 VZ Verizon Communications Inc.
28 WMT Wal-Mart Stores Inc.
29 XOM Exxon Mobil Corporation

Table B2. S&P 100 company codes and names.

Code Name Code Name

1 AAPL Apple Inc. IBM International Business Machines
2 ABT Abbott Laboratories INTC Intel Corporation
3 ACN Accenture plc JNJ Johnson & Johnson Inc.
4 AIG American International Group Inc. JPM JP Morgan Chase & Co
5 ALL Allstate Corp. KO The Coca-Cola Company
6 AMGN Amgen Inc. LLY Eli Lilly and Company
7 AMZN Amazon.com LMT Lockheed-Martin
8 APA Apache Corp. LOW Lowe’s
9 APC Anadarko Petroleum Corp. MCD McDonald’s Corp.
10 AXP American Express Inc. MDLZ Mondelēz International
11 BA Boeing Co. MDT Medtronic Inc.
12 BAC Bank of America Corp MET MetLife Inc.
13 BAX Baxter International Inc. MMM 3M Company
14 BIIB Biogen Idec MO Altria Group
15 BK Bank of New York MON Monsanto
16 BMY Bristol-Myers Squibb MRK Merck & Co.
17 BRK.B Berkshire Hathaway MS Morgan Stanley
18 C Citigroup Inc. MSFT Microsoft
19 CAT Caterpillar Inc. NKE Nike
20 CL Colgate-Palmolive Co. NOV National Oilwell Varco
21 CMCSA Comcast Corporation ORCL Oracle Corporation
22 COF Capital One Financial Corp. OXY Occidental Petroleum Corp.
23 COP ConocoPhillips PEP PepsiCo Inc.
24 COST Costco PFE Pfizer Inc.
25 CSCO Cisco Systems PG Procter & Gamble Co
26 CVS CVS Caremark QCOM Qualcomm Inc.
27 CVX Chevron RTN Raytheon Company
28 DD DuPont SBUX Starbucks Corporation
29 DIS The Walt Disney Company SLB Schlumberger
30 DOW Dow Chemical SO Southern Company
21 EBAY eBay Inc. SPG Simon Property Group, Inc.
32 EMC EMC Corporation T AT&T Inc.
33 EMR Emerson Electric Co. TGT Target Corp.
34 EXC Exelon TWX Time Warner Inc.
35 F Ford Motor TXN Texas Instruments
36 FCX Freeport-McMoran UNH UnitedHealth Group Inc.
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Table B2. Cont.

Code Name Code Name

37 FDX FedEx UNP Union Pacific Corp.
38 FOXA Twenty-First Century Fox, Inc. UPS United Parcel Service Inc.
39 GD General Dynamics USB US Bancorp
40 GE General Electric Co. UTX United Technologies Corp
41 GILD Gilead Sciences VZ Verizon Communications Inc.
42 GS Goldman Sachs WBA Walgreens Boots Alliance
43 HAL Halliburton WFC Wells Fargo
44 HD Home Depot WMT Wal-Mart
45 HON Honeywell XOM Exxon Mobil Corp
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