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Abstract 

Novel drugs such as bortezomib and high-
dose chemotherapy combined with stem cell
transplantation improved the outcome of multi-
ple myeloma patients in the past decade.
However, multiple myeloma often remains
incurable due to the development of drug resist-
ance governed by the bone marrow micro -
 environment. Therefore targeting new path-
ways to overcome this resistance is needed.
Histone deacetylase (HDAC) inhibitors repre-
sent a new class of anti-myeloma agents.
Inhibiting HDACs results in histone hyperacety-
lation and alterations in chromatine structure,
which, in turn, cause growth arrest differentia-
tion and/or apoptosis in several tumor cells.
Here we summarize the molecular actions of
HDACi as a single agent or in combination with
other drugs in different in vitro and in vivo
myeloma models and in (pre-)clinical trials.

Introduction

Multiple myeloma (MM) is a plasma cell
malignancy, characterized by an accumulation
of monoclonal plasma cells in the bone marrow
(BM) and high levels of monoclonal immu -
 noglobulines or paraprotein in blood and/or
urine. Complex interactions between MM cells
and the BM microenvironment are required for
the growth and progression of MM and result
in the development of drug resistance, angio-
genesis and induction of bone disease.1-4

Enhanced understanding of the interactions
between MM and the BM microenvironment
has led to the identification of new molecular
targets. Novel therapeutic approaches target
growth factors [e.g. insulin-like growth factor-
1 (IGF-1), interleukin-6 (IL-6) and vascular
endothelial growth factor (VEGF)], adhesion
molecules and signaling cascades in the MM
cells such as the mitogen-activated protein

kinase kinase (MEK)/extracellular signal regu-
lated kinase (ERK)-pathway, the phos-
phatidylinositol-3 kinase (PI3K)/ protein
kinase B (Akt)-pathway, the nuclear factor κ B
(NFκB)-pathway and the Wnt-pathway.5,6

Moreover, cells interacting with the MM cells
in the BM, such as stromal cells, endothelial
cells, osteoblasts, osteoclasts and mesenchy-
mal stem cells are also potential targets to
overcome the drug resistance against conven-
tional chemotherapy.7,8

MM represents 1% of all cancers and it is the
second most commonly diagnosed hematologic
malignancy. The incidence is higher with
increasing age and is 4-5 per 100,000 individu-
als each year worldwide. The median age at
diagnosis is 67 years.9 The most common clin-
ical characteristics in MM are bone pain, ane-
mia, recurrent infections and renal failure.10

The standard induction therapy for elderly
patients with symptomatic myeloma, and who
are not candidates for stem cell transplantion,
used to be melphalan (M) and prednisone (P).
Recently, improved effects on survival have
been seen in patients receiving MP combined
with lenalidomide (Revlimid®) (MPR), borte-
zomib (Velcade®) (MPV) or thalidomide
(MPT).11 Only the latter has been accepted as
standard therapy. High-dose therapy plus
autologous stem cell transplantation is consid-
ered the standard therapy for front-line treat-
ment of MM patients aged <65 years.12,13 The
most common pre-transplantation induction
therapies used today are thalidomide-dexam-
ethasone, bortezomib-based regimes, and
lenalidomide-dexamethasone.14,15 New agents
such as bortezomib, thalidomide and lenalido-
mide in the treatment of MM do not only tar-
get the MM cells directly, but also influence
the interactions of the MM cells with the BM
microenvironment. Combining these new
agents with conventional chemotherapy and
high-dose chemotherapy with autologous
stem cell transplantation increases the out-
come of MM patients, although eventually all
MM patients relapse. Therefore, identification
of new key molecules in MM cells and in the
BM microenvironment is crucial for the devel-
opment of new therapeutic strategies.

There is growing evidence that not only
gene defects such as deletions, mutations and
chromosomal abnormalities are responsible
for the onset and progression of cancer.
Several studies have shown that epigenetic
changes, i.e. heritable traits mediated by
changes in DNA other than nucleotide
sequences, play a key role in the downregula-
tion of tumor suppressor genes and/or upregu-
lation of oncogenes and, therefore, are also
involved in the onset and progression of sever-
al malignancies.16,17 Chromatin remodeling is
one of the main processes in epigenetic regu-
lations. Nucleosomes are the repeating units
of chromatin which contain 146 bp DNA

wrapped around a core histone octamer.
Modifications of these nucleosomes on the
histone level, as well as the DNA level, can
alter the chromatin state which can be open or
closed. The post-translational modifications on
the core histones are most common on the
amino-terminal lysine rich tail which passes
through and around the enveloping DNA dou-
ble helix.18 These modifications, such as acety-
lation, methylation, ubiquitinylation, sumoyla-
tion, phosphorylation and glycosylation are
crucial in modulating gene expression, as they
affect the accessibility and interaction of DNA
with other non-histone protein complexes that
could contain transcriptionally co-activating or
co-repressing elements.19,20 More o ver, methyla-
tion of DNA, maintained by the epigenetic
enzymes, methyltransferases and demethy-
lases, also affects the chromatin structure
indirectly by recruiting protein complexes con-
taining enzymes such as histone deacetylases
(HDAC).21 HDAC and the opposite enzyme his-
tone acetyltransferases (HAT) are the most
analyzed enzymes involved in the post-transla-
tional modifications of histones. Both enzymes
maintain the acetylation status of histones and
non-histone proteins. HAT acetylates histones
resulting in neutralizing the positive charge of
histones and a more relaxed, transcriptionally
active chromatin, while HDAC remove the
acetyl group resulting in a more compact, tran-
scriptionally inactive chromatin structure.22

Inhibiting HDAC leads to hyperacetylation of
histones and results in gene expression alter-
ation. In tumor cells, several HDAC inhibitors
(HDACi) have shown promising anti-cancer
activities with anti-proliferative, pro-apoptotic
and anti-angiogeneic properties.23-28

This review provides an overview of the
anti-myeloma activity of different HDACi in
pre-clinical settings and the latest clinical tri-
als with HDACi ongoing in MM patients. 
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The histone deacetylase family

Eighteen HDACs have been identified in
humans and are subdivided into four classes
based on their homology to yeast HDACs and
their enzymatic activities.29,30 Class I HDACs (1,
2, 3 and 8) are homologs to the yeast Rpd3 and
can generally be detected in the nucleus. They
are ubiquitously expressed in several human
cell lines and tissues. Based on phylogenetic
analysis, Gregoretti et al. divided class I into Ia
(HDAC1 and 2), Ib (HDAC3) and Ic (HDAC8).31

Class II HDACs (4, 5, 6, 7, 9 and 10) are relat-
ed to yeast Hda1 (histone deacetylase 1) and
can shuttle between the nucleus and cyto-
plasm. This class is divided into class IIa
(HDACs 4, 5, 7 and 9) and class IIb (HDAC6
and 10) which contain two deacetylase
domains.30 Since HDAC6 contains a unique
alpha-tubulin deacetylase (TCAD) domain, it
can specifically deacetylate alpha-tubulin.32

The third class HDACs are the sirtuins (SIRT
1, 2, 3, 4, 5, 6 and 7) which are homologs to the
yeast Sir2 (silent information regulator 2)
family. These enzymes require nicotine ade-
nine dinucleotide (NAD)+ for their deacetylase
activity in contrast to the zinc-catalyzed mech-
anism used in class I and II HDACs.29 The sir-
tuins appear to deacetylate non-histone pro-
teins and transcription factors including p53.
They can not be inhibited by HDACi such as
suberoylanilide hydroxamic acid (SAHA) or
Trichostatin A (TSA).33 HDAC11 represents
class IV and contains residues in the catalytic
core regions similar to both class I and II
enzymes but does not have strong enough
identity to be placed in either class.34

HDAC inhibitors
Structural classification of HDAC inhibitors

Butyrate and TSA were among the first
chemicals to be identified as HDAC inhibitors.
Dimethylsulfoxide was used to aid superinfec-
tion of murine erythroleukemia cells with the
Friend virus, whereas TSA was originally iso-
lated as an antifungal agent from culture medi-
um of Streptomyces hygroscopicus. Later on, it
was discovered that these compounds could
induce cell differentiation and a correlation
with histone hyperacetylation, which was
maintained by inhibiting HDACs, could be
shown.35-39 It subsequently opened a new field
of research. Since then, a large number of nat-
ural and synthetic HDACi have been developed
by several companies and used as anti-tumor
agents in pre-clinical and clinical settings
(Table 1). On the basis of their chemical struc-
ture, major HDACi can be divided into four cat-
egories: short-chain fatty acids, hydroxamates,
benzamides and cyclic tetrapeptides.26,46,47

Among the various classes of HDACi, short
chain fatty acids such as phenylbutyrate, the

anti-epileptic drug valproic acid (VPA) and
sodium butyrate are only effective at mM con-
centrations and thereby form the less potent
class of HDACi.41 Clinical evaluations have
been performed with these compounds either
alone or in combination and are well tolerated
in patients. However due to the short plasma
half-life, high doses are needed to obtain a
therapeutic effect.40 The first natural hydroxa-
mate was TSA and is now considered as the
reference compound of hydroxamate based
inhibitors. Most of the synthetic hydroxamate
based HDACi target class I and class II with
high potency. SAHA has a potency at µM range
and has recently been approved for the treat-
ment of cutaneous T-cell lymphoma. M-car-
boxycinamic acid bishydroxamide (CBHA) is
another potent second generation inhibitor
which is the structural basis for example
LAQ824 and PXD101, both effective at nM
range towards classes I and II. Two of the
newest hydroxamate based HDACi are LBH589
and ITF2357 with very low IC50 values at nM
concentrations.43,48 Benzamides include MS-
275 and CI-994 and are generally less potent
than the hydroxamates and cyclic tetrapep-
tides. Cyclic tetrapeptides, include the natural
product depsipeptide (FK 228 or FR 901228)
and apicidin. Depsipeptide is a prodrug and
has to be metabolically activated via reduction
of the disulfite binding.45 Recently KD5170, a
novel mercaptoketone-based histone deacety-
lase inhibitor, has been developed. KD5170
showed significant anti-proliferative activity
against a variety of human tumor cell lines,
including human MM cell lines.44

Isoenzyme-selectivity of pan-HDACi and
mechanism of HDAC inhibition

In general, none of these inhibitors, except
tubacin, exhibit specificity towards one isoen-
zyme. However, they inhibit the enzyme activ-
ity of HDACs with varying efficiency (Table 1).
For example, depsipeptide preferentially
inhibits HDAC1 and 2 compared to HDAC4 and
6, whereas the potency of MS-275 to inhibit
HDAC1 is 26 times higher compared to HDAC3
and appears to lack the ability to inhibit the
HDAC6 and 8.45,49 Tubacin, the HDAC6 selective
inhibitor, induces hyperacetylation of α-tubu-
lin and has no effect on the histone acetylation
status, while other hydroxamate inhibitors like
TSA, SAHA and LBH589 induce histone – and
α-tubulin hyperacetylation.42,50-52

X-ray crystallographic analyses clarify the
structure of an HDAC enzyme using an HDAC-
like protein (HDLP) isolated from an anaero-
bic bacterium, on the one hand and on the
other hand how inhibitors such as SAHA and
TSA mediate HDAC inhibition. The HDAC cat-
alytic domain consists of a tube like pocket
whereby a Zn2+ cation is positioned near the
bottom of this narrow pocket. The basic struc-
ture of the HDACi contains a cap group, an

aliphatic chain for a spacer, and a functional
group (except depsipeptide). The cap group
may be necessary for packing the inhibitor at
the rim of the tube-like active site pocket,
while the aliphatic group forms interactions
with the residues of the lining pocket. For TSA,
the hydroxamic acid group (the functional
group) coordinates the zinc through its car-
bonyl and hydroxyl groups, resulting in the for-
mation of a penta-coordinated zinc and there-
by altering the activity of the enzyme.53,54

Pre-clinical observations of
HDACi in multiple myeloma

Anti-myeloma activity of HDACi as
a single agent in vitro
HDACi modulate the gene expression
profile of multiple myeloma cells

Microarray based studies showed that
HDACi induce transcriptional modulations of
7-10 % of the genes in malignant cell lines by
acetylation of histones and non-histone pro-
teins.55-57 The patterns of the HDACi induced
gene expression alterations are quite similar
for different HDAC inhibitors. Definite differ-
ences, however, could be observed by different
agents in different cancer cell lines.58,59

In MM, the first cDNA array using SAHA in
the human MM1S cell line was performed by
Mitsiades et al. SAHA caused selective gene
expression alterations of oncogenes, prolifera-
tive/anti-apoptotic transcription factors, cell
cycle regulators and members of the IGF-1R
and IL-6R signaling cascades.55 Recently, gene
expression profiling of MM1S cells exposed to
VPA have also been performed and showed that
VPA also targeted genes involved in the cellu-
lar pathways crucial for the survival of the MM
cells as seen for SAHA. Furthermore, they
could demonstrate modulation of genes that
contribute to RNA splicing/transcription and
DNA replication, indicating that HDACi could
affect cell growth differently from apoptosis or
cell cycle regulation.56

HDACi inhibit the proliferation of multiple
myeloma cells

Before investigating the molecular effect of
HDACi in certain human MM cell lines, assays
such as 3-(4,5-dimethylthiazol-2-yl)-2,5-di -
phenyl tetrazolium bromide (MTT)- or 3H-thy -
midine incorporation assays were performed to
study the anti-proliferative effect of the HDACi.
Table 2 shows an overview of different HDACi
and their concentration range needed to inhib-
it the proliferation of the human MM cell lines
and/or primary human MM cells. 

HDACi such as VPA, FK228 and ITF2357
affected the viability of IL-6 dependent as well
as IL-6 independent MM cell lines, indicating
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that the anti-myeloma activity of the HDACi is
not influenced by one of the key growth factors
in MM.61,67,68 Furthermore, co-culturing the MM
cells with bone marrow stromal cells (BMSC)
does not protect the cells from cell death
induced by the HDACi LAQ824, ITF2357,
LBH589 or KD5170.65,66,68,71 These data suggest
that HDACi could overcome the protective
effect of the BM micro-environment. The
MM1S cells were resistant to KD5170 and
showed no increase in histone acetylation,
whereas KD5170 sensitive cell lines exhibited
histone hyperacetylation after KD5170 treat-
ment.66 This finding indicates that inhibition of
the HDAC enzymes is necessary for the anti-
tumor effects of the HDACi. 

JNJ-26481585, a recently developed novel
hydroxamate based HDACi with prolonged
pharmacodynamic properties, has anti-prolif-
erative effect at nM concentrations in the
murine 5T33MM model.72 This murine MM cell
line is derived from the 5TMM mouse model
which mimics the human disease closely at the
molecular, cellular and clinical level.73,74

HDACi induce cell death in multiple myeloma
Besides inhibition of proliferation, HDACi

induced cell death is one of the major mecha-
nisms to inhibit the survival of the myeloma
cells. Extrinsic and intrinsic apoptotic path-
ways as well as non-apoptotic cell death such as
autophagy have been reported in myeloma cells
treated with an HDACi. Figure 1 demonstrates
effects of the HDACi on the compounds of the
intrinsic and extrinsic apoptotic pathway.

The extrinsic apoptotic pathway is activated
by ligand binding to death receptors such as
Fas (Apo-1 or CD95), tumor necrosis factor
receptor-1 (TNFR-1) and TNF-related apopto-
sis-inducing ligand (TRAIL or Apo2L) recep-
tors (DR4 and -5), resulting in activation of
caspase-8 and caspase-10. Apo2L/TRAIL inter-
acts with two death receptors (DR4 and DR5)
and potently induces apoptosis in various
tumors, including primary MM cells and MM
cell lines, while exerting minimal or no toxici-
ty in normal cells.75,76

Several studies have demonstrated that
HDACi can upregulate the expression of both
death receptors and their ligands and are pro-

posed to occur selectively in tumor cells.77 The
U266 human MM cell line, although express-
ing significant levels of DR4 and caspase-8, is
resistant to Apo2L/TRAIL and this resistance
could be overcome with VPA. This sensitizing
effect of VPA is mediated by the redistribution
of DR4 to lipid rafts followed by an improved
DR4 signaling.62 However, opposite results
have been obtained by Schwartz et al. who
have demonstrated that VPA activated caspase-
3 but not caspase-9 and caspase-8 in the U266,
OPM2 and RPMI human MM cell lines.63 In the
MM1S line, treated with LBH589, no upregula-
tion of death receptors and their ligands could
be observed. Caspase-8, however, was activat-
ed and the gene expression of the TOSA gene,
negative regulator of the Fas ligand (FasL) or
TRAIL induced apoptosis was downregulated.69

SAHA sensitized MM1S cells to a Fas-activat-
ing monoclonal antibody CH-11 and to recom-
binant TRAIL. This sensitizing effect was asso-
ciated with decreased expression of the anti-
apoptotic protein FLICE-like inhibitory protein
(FLIP) and members of the inhibitors of apop-
tosis (IAP) family such as X-linked IAP
(XIAP).64

Despite these results showing that HDACi
affect the extrinsic pathway, in MM and other
malignant cells it is still not clear how impor-
tant the death-receptor pathway is for the ther-
apeutic effects of HDACi.

The intrinsic apoptotic pathway is mediated
by the mitochondria whereby proapoptotic sig-
nals result in the release of mitochondrial
intermembrane proteins, such as cytochrome c
(cyto-c), apoptosis inducing factors (AIF) and
second mitochondria-derived activator of cas-
pase (Smac). Cytosolic cyto-c binds to apoptot-
ic protease activating factor (Apaf-1), resulting
in Apaf-1 oligomerization and subsequent cas-
pase-9 activation while cytosolic Smac binds to
XIAP and thereby eliminates its inhibitory
effect on caspase-9. Cytosolic AIF induces cas-
pase-independent apoptosis.78 Members from
the BCL2 family partially regulating this path-
way, contain the pro-apoptotic (e.g. Bax, Bak,
Bid and Bim) and anti-apoptotic (e.g. Bcl2,
BclxL and Mcl1) proteins. The BCL2 protein
Bid, can be cleaved by caspase-8 after death-
receptor ligation, and truncated Bid (tBid)
localizes to the mitochondria to initiate the
intrinsic apoptotic pathway.79

MM cells contain higher levels of the anti-
apoptotic proteins Bcl2 and Mcl1 and lower lev-
els of the pro-apoptotic protein Bax compared
to normal plasma cells.76,78 These findings could
play a role in the survival of the MM cells and
the resistance to chemotherapeutic agents.

How HDACi activate the intrinsic apoptotic
cascade is cell context dependent and is still
not completely understood. Treatment of the
U266 MM human cell line and primary MM
human cells with depsipeptide resulted in a
decrease of the anti-apoptotic proteins Mcl1,

Table 1. Isoenzyme-selectivity of pan-HDACi.

Class Compound HDAC specificity Company/Sponsor Ref.

Short-chain fatty acid Butyrate Class I, IIa Merck 40
Valproic acid Class I, IIa NCI 41

Hydroxamate SAHA Class I, II Merck 40
PXD101 Class I, II CuraGen 40
LAQ824 Class I, II Novartis 40
LBH589 Class I, II Novartis 40
Tubacin Class IIb BI and MIT 42
ITF2357 Class I, II Italfarmaco 43

Mercaptoketone KD5170 Class I, II Kalypsys 44
Cyclic tetrapeptide Depsipeptide Class I Gloucester 45
NCI: National Cancer Institute; BI: Broad Institute; MIT: Massachusetts Institute of Technology

Table 2. Potency of HDACi used in different in vitro MM models.

HDACi Range MM cells Ref.
NaB mM U266, RPMI 8226, ARH-77, OPM2 60
VPA mM OPM1, MM1S, DOX-40, INA-6, OPM2, 56, 61, 62, 63

NCI-H929, LP-1, RPMI 8226, U266
SAHA µM MM1S 55, 64
LAQ824 Sub-µM primary human MM cells, MM1S, 65

MM1R, RPMI 8226, -LR5, -MR20, -Dox40
KD5170 R MM1S 66Sub-µM H929, U266, primary human MM cells
FK228 nM U266, RPMI 8266 67
ITF2357 nM CMA-03 68
LBH589 nM primary human MM cells, MM1S, 69

MM1R, U266, -LR7, -Dox40
MM1S: dexamethasone S, IL-6 independent; MM1R: dexamethasone R; RPMI 8226, OPM1, CMA-03, DOX-40: IL-6 independent; LR5: melphalan
R; MR20: mitoxantrone R; Dox40: doxorubicin R; U266: autocrine secretion of IL-6; INA-6, CMA-03: IL-6 dependent; OPM2: IL-6 dependent,
dexamethasone R when IL-6 is added; ARH-77: Epstein-Barr virus (EBV) positive cell line and thereby not considered as a genuine MM cell
line.70 S: sensitive; R: resistant
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Bcl2, BclxL and an increase in Bax; this latter
could only be observed in primary human MM
cells.67 ITF2357 induced apoptosis through the
intrinsic pathway rather than through the
extrinsic pathway in the KMS18 MM cell line
since no cleavage of caspase-8 nor upregula-
tion of DR-4 have been found, whereas cleav-
age of caspase-3 and -9 and downregulation of
Bcl2 and Mcl1 could be demonstrated.68 MM1S
cells treated with LBH589 underwent translo-
cation of cyto-c and AIF from the mitochondria
to the cytosol, upregulation of Apaf-1 and cleav-
age of Bid, caspase-9 and caspase-3. Further -
more, gene expression profiling revealed a
novel apoptosis and caspase activation
inhibitor, AVEN, which was downregulated by
treatment with LBH589.69 These data represent
clear evidence that LBH589 caused cell death
through mitochondrial perturbations. Both
LBH589 and SAHA induced poly (ADP-ribose)
polymerase (PARP) cleavage in MM cells by
two different enzymes, caspase-3 and calpain,
respectively. Using the calpain inhibitor,
calpeptin, and the caspase-3 inhibitor, benzy-
loxycarbonyl-Val-Ala-Asp methylester-fluoro -
me  thyl ketone (z-VAD-fmk), they could demon-
strate in MM1S cells that the LBH589 induced
cell death is calpain-independent and partially

caspase-dependent, while the SAHA induced
cell death is calpain-dependent and caspase-
independent.64,69 Furthermore, SAHA promotes
cleavage of Bid to tBid while overexpression of
the anti-apoptotic protein Bcl2 inhibited
SAHA-induced apoptotic signaling.64 Recent
data indicate that KD5170 mediates cell death
through mitochondrial perturbation in the
U266 cells. KD5170 provoked Bax activation
and cleavage of caspase-9 and caspase-3, caus-
ing loss of mitochondrial membrane potential
and subsequent pro-apoptotic factor release.
The fact that AIF was released, and that the
nuclear condensation was partially blocked in
cells pre-treated with z-VAD-fmk before expo-
sure to the HDACi, suggest that KD5170
induced apoptosis through both caspase-
dependent and caspase-independent path-
ways. Furthermore, KD5170 induced oxidative
stress and oxidative DNA damage in myeloma
cells as evidenced by the upregulation of heme
oxygenase-1 and H2A.X phosphorylation,
which is a marker of DNA double strand
breaks.66,80

Autophagy, an alternative model for apopto-
sis, has been reported to contribute to the
HDACi induced cell death in several tumor cell
lines.81,82 Autophagy is a catabolic process

involving the degradation of long-lived pro-
teins or cytoplasmatic organelles through the
lysosomal machinery.83 Schwartz et al. demon-
strated for the first time that autophagy might
be involved in VPA induced cytotoxicity in
human myeloma cell lines. Only cleavage of
caspase-3 and autophagic vacuoles in the cyto-
plasm could be observed in the myeloma cells
treated with VPA, indicating that autophagic
cell death might be involved.63

HDACi induce cell cycle arrest
HDACi, except tubacin, induce cell cycle

arrest at G1/S phase. The events in the G1
phase are coordinated by the three early G1 D
cyclins (1, 2, 3) and their associated cyclin-
dependent kinases (CDKs) 4/6 (G1 progres-
sion) and CDK 2 (G1/S transition). The tran-
scriptional regulation of the genes, necessary
for G1 progression and G1/S transition,
depends on the phosphorylation state of the
retinoblastoma (Rb) protein. Phosphorylation
of the Rb protein by G1 D cyclin/ cyclin-depend-
ent kinase (CDK) results in the release of E2F,
allowing transcription activation and further
progression through G1 and initation of S
phase. The CDK inhibitors, including the INK4
family (p16) and the Cip/Kip family (p21, p27
and p57), are proteins that negatively regulate
the cell cycle by competing with the cyclin D -
CDK binding and therefore inhibiting the CDK
complex kinase activity. In MM, constitutive
phosphorylation of the Rb protein may be fun-
damental to the growth and development of the
tumor.52 The mRNA level of the three G1 D
cyclins are elevated in virtually all MM tumors
compared to healthy plasma cells and could be
due to an Ig translocation or an unknown
mechanism. The elevated levels of the D
cyclins are not sufficient to promote a cell cycle
and need a corresponding increase of CDK4 or
CDK6.84 Furthermore, several reports have
demonstrated that p16 is frequently hyperme-
thylated in primary human MM cells. However,
no decreased mRNA could be found.85,86

HDACi induce cell cycle arrest in the G1/S
phase which is mostly associated with induc-
tion of p21. This has been observed in the MM
cell lines treated with VPA, NVP-LAQ824,
LBH589, NaB, SAHA and ITF2357.60,61,64,65,68,69 MM
cells treated with VPA or LBH589 also showed
a reduction of cyclin D1 and/or cyclin D2, indi-
cating that induction of p21 is not solely
responsible for cycle arrest.56,61

HDACi inhibit the aggresomal pathway
in multiple myeloma

The aggresomal protein degradation system
represents an alternative system to the protea-
some for degradation of polyubquitinated mis-
folded/unfolded proteins (Figure 2).87 When
degradation of misfolded proteins exceeds the
proteasomal degradation through e.g. protea-
some inhibitors, proteins interact with other
unfolded or partially folded proteins, resulting

Article

Figure 1. Induction of the extrinsic and intrinsic apoptotic pathway by HDACi in myelo-
ma cells. The extrinsic apoptotic pathway is triggered by ligand binding and leads to acti-
vation of caspase-8, which, in turn, activates caspase-3. Activation of the intrinsic apop-
totic pathway results in the release of three compounds: (a) cytochrome-c (cyto-c) which
binds to apoptotic protease activating factor (Apaf-1) to activate caspase-9, (b) apoptosis
inducing factors (AIF) and (c) second mitochondria-derived activator of caspase (Smac).
FLICE-like inhibitory protein (FLIP) and members to the inhibitors of apoptosis (IAP)
are able to prevent apoptosis induced by death receptors or intrinsic pathway respective-
ly. Symbols denote compounds that are up-regulated (*), down-regulated (**), activated
(∏) or translocated to cytosol (r) by HDACi in myeloma cells.
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in accumulation of ubiquitinylated proteins,
organized into perinuclear stuctures termed
“aggresomes”.88,89 Aggresomes are formed by
the retrograde transport of the aggregated pro-
teins on microtubules (MT) and travel to the
MT organizing center (MTOC) region, where
they are sequestered as a single structure sus-
ceptible for lysosomal degradation. Movement
of aggresomes requires intact microtubules
and association with motor dynein. 

HDAC6 deacetylates alfa-tubulin and plays a
key role in the aggresomal pathway since it
can bind poly ubiquitinated proteins and
dynein, facilitating the transport of aggre-
somes along the MTs.32,90 Targeting HDAC6
with tubacin or pan HDAC inhibitors such as
SAHA or LBH589, results in hyperacetylation of
alfa-tubulin, accumulation of polyubiquitinat-
ed proteins and apoptosis.71,91 It has been
shown that tubacin inhibits MM cell growth in
drug-sensitive (MM1S, U266, INA-6 and
RPMI8226) and drug-resistant cell lines
(RPMI-LR5 and RPMI-Dox40) with an IC50

between 5-20 µM, whereas no cytotoxicity in

peripheral blood mononuclear cells (PBMCs)
could be observed at µM levels.92 This indicates
that tubacin sensitivity is independent of drug
resistance and that tubacin selectively targets
malignant cells.

HDACi affect cytokines and proteins
implicated in multiple myeloma survival,
progression and immune escape

Mitsiades et al. showed that SAHA suppress-
es the expression of receptor genes involved in
MM cell proliferation, survival and/or migra-
tion such as IGF-1R, IL-6R and its key signal
transducer gp130, TNF-R, CD138 (syndecan-1)
and CXCR-4.55 Furthermore, in MM1S cells they
could demonstrate that SAHA suppressed
autocrine IGF-1 production and paracrine IL-6
secretion of BMSC by triggering MM cell bind-
ing. This suggests that SAHA can overcome
cell adhesion-mediated drug resistance.55,64

OPM-2 cells treated with NaB decreased IL-6R
but when cells were transfected with an
expression vector of IL-6R no decrease of the
receptor could be observed. Increased p21
expression and apoptosis could be observed in

both transfected and untransfected cell lines,
indicating that downregulation of the IL-6R is
not required for the induction of p21 or apopto-
sis.60 This observation again confirms that
HDACi act on multiple cellular pathways. 

Several studies provide evidence that
HDACi suppress angiogenesis through a direct
effect on the growth and differentiation of
endothelial cells on one hand and by down-reg-
ulating the expression of pro-angiogenic
genes in tumor cells on the other hand.93-95 The
anti-angiogenic effect of HDACi in myeloma
has been demonstrated using OPM-2 and KM3
cells treated with VPA. VPA decreases VEGF
secretion and VEGF receptor expression,
resulting in inhibition of the vascular tubule
formation of endothelial cells in co-cultures
with myeloma cells. These data confirm the
anti-angiogenic effect of HDACi on myeloma
which is important to suppress spread of the
MM cells.61,96,97

Recently, De Bruyne et al. showed that the
tetraspanin CD9 which shows an inverse cor-
relation between its expression level and
tumor metastasis in solid tumors, is epigenet-
ically down-regulated in MM and could be up-
regulated by treating myeloma cells with
LBH589. Myeloma cells expressing CD9
become more susceptible for natural killer
mediated cytolysis and the expression corre-
lates with non-active MM disease. These
observations suggest that the immune escape
of the tumor cells and molecules, correlating
with the MM disease status, can be affected by
HDACi.98

Anti-myeloma activity of HDACi in
combination therapy in vitro
Bortezomib

Bortezomib, a first-in-class, potent and
reversible proteasome inhibitor, has been suc-
cessfully introduced in clinical practice and
represents the standard of care in sympto-
matic MM patients.99 The anti-myeloma activi-
ty of bortezomib is a result of NF-κB inhibi-
tion, upregulation of various apoptotic path-
ways, and effects on the tumor micro-environ-
ment.100-103 Pei et al. were the first to demon-
strate in vitro that HDACi in combination with
bortezomib resulted in an improved cytotoxic
effect compared to their effect as single agent.
Sequential exposure of U266 and MM1S cells
to bortezomib and SAHA or NaB potently
induced caspase-3, -8 and -9 activation and
release of the pro-apoptotic mitochondrial pro-
teins cyto-c and Smac, resulting in a synergis-
tic induction of apoptosis. This effect was
associated with a reduction in NF-κB DNA
binding activity, modulation of JNK activation
and a reactive oxygen species (ROS)-depend-
ent downregulation of Cyclin D1, Mcl-1 and
XIAP. Combining bortezomib with PXD101
caused oxidative stress accompanied by an

Figure 2. The aggresome pathway prevents accumulation of misfolded proteins. Unfolded
or misfolded proteins, that exceed proteasomal degradation, form aggregates and are
transported to the microtubule organizing center (MTOC) for degradation. This trans-
port requires HDAC6 which deacetylates alfa-tubulin and binds both polyubiquitinated
proteins and dynein. Inhibiting HDAC6 with tubacin, whether or not combined with the
proteasome inhibitor bortezomib, accumulates misfolded or unfolded proteins and leads
to apoptosis.
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enhanced effect on Bim expression, DNA dam-
age, MAPK p38 activation and p53 phosphory-
lation. These observations indicate that there
are several molecular mechanisms that may
contribute to the synergy between bortezomib
and HDACi.104 Specific inhibition of the aggre-
somal pathway by tubacin together with pro-
teasome inhibition by bortezomib also result-
ed in an accumulation of ubiquitinated pro-
teins followed by a synergistic anti MM-activi-
ty, mediated by stress-induced JNK activation,
followed by caspase/PARP cleavage.92 In addi-
tion, further investigations on cytoskeletal
events showed that bortezomib alone lead to
aggresome formation and, combining it with
LBH589 or SAHA, both inhibiting HDAC6,
resulted in a disruption of aggresome forma-
tion leading to apoptosis.71,91 Nawrocki et al.
demonstrated that the oncogen Myc regulates
the sensitivity of MM cells to bortezomib in
combination with SAHA. Oncogenic activation
of Myc is a hallmark of nearly all rapidly divid-
ing malignant cells. In MM, the Myc expres-
sion is directly correlated with intracellular
endoplasmatic reticulum (ER) content and
protein synthesis rate. Bortezomib in combi-
nation with SAHA resulted in an induction of
the pro-apoptotic BH3-only protein Noxa and
ER stress indicated by a disruption of calcium
homeostasis and activation of caspase-4.
Further knock-down studies demonstrated
that caspase-4 and Noxa play significant roles
in Myc-driven sensitivity to the combination of
bortezomib and SAHA.91

Enhanced anti-MM activity of the combina-
tion therapy could not only be observed in pri-
mary human MM cells but also in co-culture
conditions and conditions with exogenous
growth factors IL-6 or IGF-1. Taken together,
bortezomib in combination with HDACi may
represent a promising therapeutic strategy
that can overcome drug-resistance.71,69,91,92

Death receptor ligands
In several tumor cells, an enhanced apoptot-

ic effect can be observed using HDACi and
activators of the TRAIL and Fas pathway.
However, the molecular mechanism underly-
ing this synergism is still unclear and is cell-
type specific. 

Fandy et al. demonstrated that TSA, as well
as SAHA, in combination with TRAIL have
potent synergistic effect in the ARO-1 MM
cells.105 Similar apoptotic effects have been
observed in MM1S, U266 and H929 cell lines
treated with KD5170 and TRAIL.66 The fact that
SAHA and TSA could up-regulate the two death
receptors DR4 and DR5 in the MM cells, cou-
pled with a downregulation of anti-apoptotic
proteins (Bcl-2 and XIAP) could explain the
synergistic effect of combination therapy.105

However, it has been shown that HDACi could
also achieve synergy with TRAIL without
changing the TRAIL receptors or anti-apoptotic

proteins, by simultaneously activating the
intrinsic and extrinsic pathways.40,106

DNA methyltransferase inhibitors
5-azacitidine is a DNA methyltransferase

inhibitor and shows activity against MM.107 5-
azacitidine and analogs such as 5-azacytidine
(decitabine) are interesting tools to investi-
gate hypermethylation in tumorigenesis and
the clinical efficacy is currently being
assessed in phase II trials.108,109 Several investi-
gations have already shown that hypermethy-
lated tumor suppresor genes can be most effi-
ciently reactivated by combining DNA
demethylating agents with HDACi, this could
thereby result in an enhanced reduction of
tumor cell growth.110-114

Treatment of the human myeloma cell line,
U266 with NaB and decitabine resulted in a G1
arrest, whereas no cell cycle arrest could be
observed when the compounds were used as
single agents. Also, the expression level of the
p16 gene on RNA and protein level was signif-
icantly increased when both epigenetic agents
were applied simultaneously.115 Our group
could also show in the human myeloma
Karpas707 cell line that the upregulation of the
pro-apoptotic protein Bim by LBH589 could be
enhanced by decitabine, while decitabine
alone had no effect on Bim expression.116

Conventional therapeutic agents
LAQ824, depsipeptide and LBH589 showed

an enhanced decrease in survival of human
MM cell lines with the conventional therapeu-
tic agents such as dexamethasone and mel-
phalan.65,67,69 Targeting different pathways could
contribute partially to the enhanced anti-MM
effect; namely caspase-8 is activated by
LAQ824 and not by dexamethasone whereby
combining both agents provides an additional
apoptotic signal to those already induced by
dexamethasone. Further investigations are
needed to clarify the molecular mechanism of
the synergism between chemotherapeutic
agents and HDACi.

Anti-myeloma activity of HDACi in
vivo

To study the pathogenesis of MM and to find
new treatment strategies, different animal
models have been developed, each with their
own advantages and disadvantages.73

To determine whether in vivo the anti-
myeloma effects of LAQ824, VPA and KD5170
correlate with their in vitro activity, human
MM xenografts in immunodeficient mice
were used. Xenograft murine models were
subcutaneously injected with RPMI8226,
OPM1 or H929 and daily treatment with
LAQ824, VPA or KD5170, respectively, started
when tumors were measurable. These in vivo
studies resulted in a significant decrease in
tumor growth and a significant increase in
survival of mice treated with the HDACi.65-67

Furthermore, the enhanced anti-myeloma
activity of LBH589 with bortezomib could be
demonstrated in vivo by Atadja et al. using a
disseminated luciferized MM1S MM xeno -
graft mouse model.117 One of the major limita-
tions of these in vivo experiments is the lack
of the interaction of MM cells with a human
micro-environment and therefore a protective
effect of the BM micro-environment against
the anti-myeloma activity of the HDACi in
vivo cannot be excluded.

Recently, the syngeneic murine 5T33 and
5T2MM models, which mimic the human
myeloma disease closely, have been used to
investigate the anti-myeloma activity of JNJ-
26481585.74 Injecting C57Bl/KaLwRij mice with
5T2 or 5T33MM cells results in a migration of
the MM cells to the BM followed by tumor
growth, induction of angiogenesis and induc-
tion of a MM bone disease (only in the 5T2MM
model). 5T2 and 5T33MM mice treated with
JNJ-26481585 resulted in a significant decrease
in tumor load and a reduction in the MM bone
disease.72 Moreover, when a very low dose of
JNJ-26481585 was combined with bortezomib,
MM bone disease was more reduced than seen
with bortezomib alone (Deleu et al., personal
observations, 2009). These in vivo studies
demonstrated that the antimyeloma activity of
the HDACi as single agents or in combination
with bortezomib could not be overcome by the
BM micro-environment.

Clinical observations of HDACi
in multiple myeloma

Several clinical trials with HDACi alone or
in combination with other antimyeloma agents
are ongoing (Table 3).118-125 Phase I clinical tri-
als showed that HDACi, such as SAHA, LBH589
and depsipeptide are well tolerated in myeloma
patients. In phase II clinical trials, the activity
of the HDACi as single agent was limited.
However, combining HDACi with dexametha-
sone and/or bortezomib resulted in a more
promising therapeutic setting in the treatment
of MM, even in patients with refractory and
relapsed MM.

Future directions

It has become clear that pan-HDACi have
anti-neoplastic activities by affecting multiple
pathways involved in cell growth, survival,
immune response and tumor vasculature.
However, the precise underlying mechanism of
the inhibition of the different HDACs by pan-
HDACi and their biological role in MM patho-
genesis remain to be clarified. A greater
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understanding of the molecular effects of the
HDACi and the role of HDACs is essential in
selecting patients who are potential candi-
dates for HDACi therapy and in designing com-
bination studies. The development of isoform-
specific inhibitors would be a valuable tool to
investigate the biological role of specific
HDACs. However, it is still not clear whether
selective inhibition of HDACs has therapeutic
advantages over a pan-HDACi. Clinical trials
demonstrated promising anti-tumor responses
to HDACi, mainly in combination with other
agents such as bortezomib or dexamethasone
which are already in clinical use. Therefore,
the development of new and improved HDACi
should be encouraged together with their use
in combination therapy to improve the out-
come for MM patients. 
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